
Workgroup: ohai

Internet-Draft:

draft-schwartz-ohai-consistency-doublecheck-02

Published: 1 July 2022

Intended Status: Standards Track

Expires: 2 January 2023

Authors: B. M. Schwartz

Google LLC

Key Consistency for Oblivious HTTP by Double-Checking

Abstract

The assurances provided by Oblivious HTTP depend on the client's

ability to verify that it is using the same Gateway, Target, and

KeyConfig as many other users. This specification defines a protocol

to enable this verification.

About This Document

This note is to be removed before publishing as an RFC.

Status information for this document may be found at https://

datatracker.ietf.org/doc/draft-schwartz-ohai-consistency-

doublecheck/.

Source for this draft and an issue tracker can be found at https://

github.com/bemasc/access-services.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 2 January 2023.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/doc/draft-schwartz-ohai-consistency-doublecheck/
https://datatracker.ietf.org/doc/draft-schwartz-ohai-consistency-doublecheck/
https://datatracker.ietf.org/doc/draft-schwartz-ohai-consistency-doublecheck/
https://github.com/bemasc/access-services
https://github.com/bemasc/access-services
https://datatracker.ietf.org/drafts/current/

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

2. Conventions and Definitions

3. Overview

4. Requirements

4.1. Oblivious Service

4.2. Oblivious Relay

4.3. Client

5. Example: Oblivious DoH

6. Performance Implications

6.1. Latency

6.2. Thundering Herds

7. Security Considerations

7.1. In scope

7.1.1. Forgery

7.1.2. Deanonymization

7.1.3. Abusive traffic

7.2. Out of scope

8. IANA Considerations

9. References

9.1. Normative References

9.2. Informative References

Acknowledgments

Author's Address

1. Introduction

Oblivious HTTP [I-D.ietf-ohai-ohttp] identifies four parties to each

exchange: the Client, Relay, Gateway and Target. When used properly,

Oblivious HTTP enables the Client to send requests to the Target in

such a way that the Target and Gateway cannot tell whether two

requests came from the same Client, and the Relay cannot see the

contents of the requests.

The Target and Gateway are tightly coupled, as the Gateway can see

and modify all cleartext data to and from the Target. For ease of

description, we will refer to the Target and Gateway collectively

¶

¶

https://trustee.ietf.org/license-info

(including the URI and KeyConfig for the Gateway and the URI of the

Target) as the "Service".

Oblivious HTTP's threat model assumes that at least one of the Relay

and the Service is acting properly, i.e. complying with the protocol

and keeping certain information confidential. If either Relay or

Service misbehaves, the only effect must be a denial of service.

In order for these security guarantees to hold, several

preconditions must be met:

The Client must be one of many users who might be using the

Relay. Otherwise, use of the Relay reveals the user's identity

to the Gateway.

The Client must hold an authentic KeyConfig for the Gateway.

Otherwise, the Client could be speaking to the Relay,

impersonating the Gateway.

All users of the Relay must be equally likely to use this

Service, regardless of their prior activity. Otherwise, the

encrypted request identifies the Client to the Service.

(optional) The Gateway must not learn the IP addresses of the

Clients, collectively. Otherwise, the Gateway might be able to

deanonymize requests by correlating them with external

information about the Clients.

This specification defines behaviors for the Client, Relay, and

Service that achieve preconditions 2-4. (This specification does not

address precondition 1.)

This specification assumes that the Service is identified by an

Access Description [I-D.schwartz-masque-access-descriptions], which

we call the "Service Description". For this specification to meet

its goals, the Service Description's URL must have been distributed

to clients in a globally consistent fashion. For example, the

Service Description URL might be the default value of a software

setting, or it might be published on a third party's website. This

specification allows clients to convert the static, long-lived

Service Description URL into a fresh Service Description without

losing the privacy guarantees of Oblivious HTTP.

In principle, Services could achieve a similar effect by

distributing their Service Descriptions directly through this

globally consistent channel. However, these ad hoc pubication

channels may not be fast enough to support frequent updates (e.g.,

key rotations), especially if updates require user intervention.

¶

¶

¶

1.

¶

2.

¶

3.

¶

4.

¶

¶

¶

¶

This draft combines elements of the "Direct Discovery", "Single

Proxy Discovery", and "Independent Verification" strategies defined

in [I-D.wood-key-consistency].

2. Conventions and Definitions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

3. Overview

In the Key Consistency Double-Check procedure, the Client emits two

HTTP GET requests: one to the Relay, and one through the Relay to

the Service Description Host using CONNECT-UDP. (The Service

Description Host, Gateway, and Target are most commonly expected to

be a single origin.) The Relay will forward the first request to the

Service Description Host if the response is not in cache.

Figure 1: Overview of Key-Consistency Double-Check

The Relay caches the response, ensuring that all clients share it

during its freshness lifetime. The client checks this against the

authenticated response from the Service Description Host, preventing

forgeries.

4. Requirements

4.1. Oblivious Service

The Oblivious Service MUST publish an Access Description [I-

D.schwartz-masque-access-descriptions] containing the

"ohttp.gateway" key, e.g.:

¶

¶

¶

 +--------+ +-------+ +-------------+

 | |<=====>| |<----->| Service |

 | Client | | Relay | | Description |

 | |<=====================>| Host |

 +--------+ +-------+ +-------------+

¶

¶

{

 "ohttp": {

 "gateway": {

 "uri": "https://example.com/ohttp/",

 "key": "(KeyConfig in Base64)"

 }

 }

}

This Access Description is called the Service Description, and its

origin is called the Service Description Host. This origin MUST

support HTTP/3 [RFC9114], so that it can be accessed via the proxy's

CONNECT-UDP service (see Section 4.2).

The Service Description Host MUST include a "strong validator" ETag

(Section 2 of [RFC7232]) in any response to a GET request for this

Service Description, and MUST support the "If-Match" HTTP request

header (Section 3 of [RFC7232]). The response MUST indicate "Cache-

Control: public, no-transform, s-maxage=(...), immutable" [RFC9111]

[RFC8246]. For efficiency reasons, the max age SHOULD be at least 60

seconds, and preferably much longer.

If the Service Description changes, and the resource receives a

request whose "If-Match" header identifies a previously served

version that has not yet expired, it MUST return a success response

containing the previous version. This response MAY indicate "Cache-

Control: private".

4.2. Oblivious Relay

The Oblivious Relay MUST also provide CONNECT-UDP service [I-D.ietf-

masque-connect-udp], and SHOULD also offer DNS over HTTPS [RFC8484],

to enable the use of HTTPS records [SVCB] with CONNECT-UDP. This

corresponds to an Access Description that includes the

"ohttp.relay", "udp", and "dns" keys:

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc7232#section-2
https://rfc-editor.org/rfc/rfc7232#section-3

{

 "dns": {

 "template": "https://doh.example.com/dns-query{?dns}",

 },

 "udp": {

 "template":

 "https://proxy.example.org/masque{?target_host,target_port}"

 },

 "ohttp": {

 "relay": {

 "template": "https://relay.example.org/ohttp{?request_uri}"

 }

 }

}

Figure 2: Example Relay Access Service Description

The Oblivious Relay MUST allow use of the GET method to retrieve

small JSON responses, and SHOULD make ample cache space available in

order to avoid eviction of Service Descriptions. The Relay SHOULD

share cache state among all clients, to ensure that they use the

same Service Descriptions for each Oblivious Service. If the cache

must be partitioned for architectural or performance reasons,

operators SHOULD keep the number of users in each partition as large

as possible.

Oblivious Relays MUST preserve the ETag response header on cached

responses, and MUST add an Age header ([RFC9111], Section 5.1) to

all proxied responses. Oblivious Relays MUST respect the "Cache-

Control: immutable" directive, and MUST NOT revalidate fresh

immutable cache entries in response to any incoming requests. (Note

that this is different from the general recommendation in

Section 2.1 of [RFC8246]). Oblivious Relays also MUST NOT accept

PUSH_PROMISE frames from the target.

Relays SHOULD employ defenses against malicious attempts to fill the

cache. Some possible defenses include:

Rate-limiting each client's use of GET requests.

Prioritizing preservation of cache entries that have been served

to many clients, if eviction is required.

Oblivious Relays that are not intended for general-purpose proxy

usage MAY impose strict transfer limits or rate limits on HTTP

CONNECT and CONNECT-UDP usage.

If the Relay offers a DNS over HTTPS resolver, it MUST NOT enable

EDNS Client Subnet support [RFC7871].

¶

¶

¶

* ¶

*

¶

¶

¶

https://rfc-editor.org/rfc/rfc9111#section-5.1
https://rfc-editor.org/rfc/rfc8246#section-2.1

4.3. Client

The Client is assumed to know an "https" URI of the relevant Service

Description. Before using that Service Description, it MUST perform

the following "double-check" procedure:

Send a GET request to the Oblivious Relay's template

(ohttp.proxy.template) with request_uri set to the Service

Description URI.

Record the response (A).

Check that response A's "Cache-Control" values indicates

"public" and "immutable".

Establish a CONNECT-UDP tunnel through the proxy to the Service

Description URI's origin.

Fetch the Service Description URI through this tunnel, using a

GET request with "If-Match" set to response A's ETag.

Record the response (B).

Check that responses A and B were successful and the contents

are identical, otherwise fail.

This procedure ensures that the Service Description is authentic and

will be shared by all users of this proxy. Once response A or B

expires, the client MUST refresh it before continuing to use this

Service Description, and MUST repeat the "double-check" process if

either response changes.

Clients MUST perform each fetch to the origin (step 4) as a fully

isolated request. Any state related to this origin (e.g. cached DNS

records, CONNECT-UDP tunnels, QUIC transport state, TLS session

tickets, HTTP cookies) MUST NOT be shared with prior or subsequent

requests.

5. Example: Oblivious DoH

In this example, the client has been configured with an Oblivious

DoH server and an Oblivious Relay. The Oblivious DoH server is

identified by a Service Description at "https://doh.example.com/

config.json" with the following contents:

¶

1.

¶

2. ¶

3.

¶

4.

¶

5.

¶

6. ¶

7.

¶

¶

¶

¶

{

 "dns": {

 "template": "https://doh.example.com/dns-query{?dns}",

 },

 "ohttp": {

 "gateway": {

 "uri": "https://example.com/ohttp/",

 "key": "(KeyConfig in Base64)"

 }

 }

}

The Oblivious Relay is identified as "proxy.example.org", which

implies an Access Description at "https://proxy.example.org/.well-

known/access-services". This resource's contents are:

{

 "dns": {

 "template": "https://proxy.example.org/dns-query{?dns}",

 },

 "udp": {

 "template":

 "https://proxy.example.org/masque{?target_host,target_port}"

 },

 "ohttp": {

 "relay": {

 "template": "https://relay.example.org/ohttp{?request_uri}"

 }

 }

}

The following exchanges then occur between the client and the proxy:

¶

¶

¶

¶

The client now has a CONNECT-UDP tunnel to doh.example.com, over

which it performs the following GET request using HTTP/3:

Having successfully fetched the Service Description from both

locations, the client confirms that:

The responses are identical.

HEADERS

:method = GET

:scheme = https

:authority = relay.example.org

:path = /ohttp?request_uri=https%3A%2F%2Fdoh.example.com%2Fconfig.json

accept: application/access-services+json

 HEADERS

 :status = 200

 cache-control: public, immutable, \

 no-transform, s-maxage=86400

 age: 80000

 etag: ABCD1234

 content-type: application/access-services+json

 [Service Description contents here]

HEADERS

:method = CONNECT

:protocol = connect-udp

:scheme = https

:authority = proxy.example.org

:path = /masque?target_host=doh.example.com,target_port=443

capsule-protocol = ?1

 HEADERS

 :status = 200

 capsule-protocol = ?1

¶

¶

HEADERS

:method = GET

:scheme = https

:authority = doh.example.com

:path = /config.json

if-match = ABCD1234

 HEADERS

 :status = 200

 cache-control: public, immutable, \

 no-transform, s-maxage=86400

 etag: ABCD1234

 content-type: application/access-services+json

 [Service Description contents here]

¶

¶

* ¶

The cache-control response from the proxy contained the "public"

and "immutable" directives.

The client can now use the KeyConfig in this Service Description to

reach the Oblivious DoH server, by converting DNS-over-HTTPS

requests into Binary HTTP requests for "https://doh.example.com/dns-

query", encrypting them to ohttp.gateway.key, and POSTing the

encrypted requests to "https://relay.example.org/ohttp?

request_uri=https%3A%2F%2Fexample.com%2Fohttp%2F".

6. Performance Implications

6.1. Latency

Suppose that the Client-Relay Round-Trip Time (RTT) is A, and the

Relay-Service Description Host RTT is B. Suppose additionally that

the Client has a persistent connection to the Relay that is already

running. Then the procedure described in Section 4.3 requires:

A for the GET request to the Relay

+B if the requested Service Description is not in cache

+B if the Relay does not have a TLS session ticket for the

Service Description Host

A for the CONNECT-UDP request to the Relay

A + B for the QUIC handshake to the Service Description Host

A + B for the GET request to the Service Description Host

This is a total of 4A + 4B in the worst case. However, clients can

reduce the latency by issuing the requests to the Relay in parallel,

and by using CONNECT-UDP's "false start" support. The Service

Description Host can also optimize performance, by issuing long-

lived TLS session tickets. With these optimizations, the expected

total time is 2A + 2B.

This procedure only needs to be repeated if the Service Description

has expired. To enable regular key rotation and operational

adjustments, a cache lifetime of 24 hours may be suitable. Clients

MAY perform this procedure in advance of an expiration to avoid a

delay.

6.2. Thundering Herds

All clients of the same Relay and Service will have locally cached

Service Descriptions with the same expiration time. When this entry

expires, all active clients will send refresh GET requests to the

*

¶

¶

¶

* ¶

- ¶

-

¶

* ¶

* ¶

* ¶

¶

¶

proxy at their next request. Relays SHOULD use "request coalescing"

to avoid duplicate cache-refresh requests to the target.

If the Service Description has changed, these clients will initiate

GET requests through the Relay to the Service Description Host to

double-check the new contents. Relays and Service Description Hosts

MAY use an HTTP 503 response with a "Retry-After" header to manage

load spikes.

7. Security Considerations

7.1. In scope

7.1.1. Forgery

A malicious Relay could attempt to learn the contents of the

Oblivious HTTP request by forging a Service Description containing

its own KeyConfig. This is prevented by the client's requirement

that the KeyConfig be served to it by the Service Description Host

over HTTPS (Section 4.3).

7.1.2. Deanonymization

A malicious Service could attempt to link multiple Oblivious HTTP

requests together by issuing each Client a unique, persistent

KeyConfig. This attack is prevented by the Client's requirement that

the KeyConfig be fresh according to the Relay's cache (Section 4.3).

A malicious Service could attempt to rotate its entry in the Relay's

cache in several ways:

Using HTTP PUSH_PROMISE frames. This attack is prevented by

disabling PUSH_PROMISE at the Relay (Section 4.2).

By also acting as a Client and sending requests designed to

replace the Service Description in the cache before it expires:

By sending GET requests with a "Cache-Control: no-cache" or

similar directive. This is prevented by the response's "Cache-

Control: public, immutable" directives, which are verified by

the Client (Section 4.3), and by the Relay's obligation to to

respect these directives strictly (Section 4.2).

By filling the cache with new entries, causing its previous

Service Description to be evicted. Section 4.2 describes some

possible mitigations.

A malicious Service could attempt to link different requests for the

Service Description, in order to link the Oblivious HTTP requests

that follow shortly after. This is prevented by fully isolating each

¶

¶

¶

¶

¶

*

¶

*

¶

-

¶

-

¶

[I-D.ietf-masque-connect-udp]

[I-D.ietf-ohai-ohttp]

request (Section 4.3), and by disabling EDNS Client Subnet (Section

4.2).

7.1.3. Abusive traffic

A malicious client could use the proxy to send abusive traffic to

any destination on the internet. Abuse concerns can be mitigated by

imposing a rate limit at the proxy (Section 4.2).

7.2. Out of scope

This specification assumes that the client starts with identities of

the Relay and Service that are authentic and widely shared. If these

identities are inauthentic, or are unique to the client, then the

security goals of this specification are not achieved.

This specification assumes that at most a small fraction of Clients

are acting on behalf of a malicious Service. If a large fraction of

the Clients are malicious, they could conspire to flood the Relay's

cache with entries that seem popular, leading to rapid eviction of

the malicious Service's Service Descriptions. Similar concerns apply

if a malicious Service can compel naive Clients to fetch a very

large number of Service Descriptions.

A Client's requests for the Service Description may become linkable

if they have distinctive QUIC Initials, HTTP/3 Settings, RTT, or

other protocol features observable through the Relay. This

specification does not offer specific mitigations for protocol

fingerprinting.

8. IANA Considerations

No IANA action is requested.

9. References

9.1. Normative References

Schinazi, D., "Proxying UDP in HTTP", Work in Progress,

Internet-Draft, draft-ietf-masque-connect-udp-15, 17 June

2022, <https://datatracker.ietf.org/doc/html/draft-ietf-

masque-connect-udp-15>.

Thomson, M. and C. A. Wood, "Oblivious HTTP",

Work in Progress, Internet-Draft, draft-ietf-ohai-

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/doc/html/draft-ietf-masque-connect-udp-15
https://datatracker.ietf.org/doc/html/draft-ietf-masque-connect-udp-15

[I-D.schwartz-masque-access-descriptions]

[RFC2119]

[RFC7232]

[RFC7871]

[RFC8174]

[RFC8246]

[RFC8484]

[RFC9111]

[RFC9114]

[I-D.wood-key-consistency]

ohttp-01, 15 February 2022, <https://

datatracker.ietf.org/doc/html/draft-ietf-ohai-ohttp-01>.

Schwartz, B. M., "HTTP Access Service Description

Objects", Work in Progress, Internet-Draft, draft-

schwartz-masque-access-descriptions-01, 28 June 2022,

<https://datatracker.ietf.org/doc/html/draft-schwartz-

masque-access-descriptions-01>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/rfc/

rfc2119>.

Fielding, R., Ed. and J. Reschke, Ed., "Hypertext

Transfer Protocol (HTTP/1.1): Conditional Requests", RFC

7232, DOI 10.17487/RFC7232, June 2014, <https://www.rfc-

editor.org/rfc/rfc7232>.

Contavalli, C., van der Gaast, W., Lawrence, D., and W.

Kumari, "Client Subnet in DNS Queries", RFC 7871, DOI

10.17487/RFC7871, May 2016, <https://www.rfc-editor.org/

rfc/rfc7871>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

McManus, P., "HTTP Immutable Responses", RFC 8246, DOI

10.17487/RFC8246, September 2017, <https://www.rfc-

editor.org/rfc/rfc8246>.

Hoffman, P. and P. McManus, "DNS Queries over HTTPS

(DoH)", RFC 8484, DOI 10.17487/RFC8484, October 2018,

<https://www.rfc-editor.org/rfc/rfc8484>.

Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke,

Ed., "HTTP Caching", STD 98, RFC 9111, DOI 10.17487/

RFC9111, June 2022, <https://www.rfc-editor.org/rfc/

rfc9111>.

Bishop, M., Ed., "HTTP/3", RFC 9114, DOI 10.17487/

RFC9114, June 2022, <https://www.rfc-editor.org/rfc/

rfc9114>.

9.2. Informative References

Davidson, A., Finkel, M., Thomson, M.,

and C. A. Wood, "Key Consistency and Discovery", Work in

https://datatracker.ietf.org/doc/html/draft-ietf-ohai-ohttp-01
https://datatracker.ietf.org/doc/html/draft-ietf-ohai-ohttp-01
https://datatracker.ietf.org/doc/html/draft-schwartz-masque-access-descriptions-01
https://datatracker.ietf.org/doc/html/draft-schwartz-masque-access-descriptions-01
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc7232
https://www.rfc-editor.org/rfc/rfc7232
https://www.rfc-editor.org/rfc/rfc7871
https://www.rfc-editor.org/rfc/rfc7871
https://www.rfc-editor.org/rfc/rfc8174
https://www.rfc-editor.org/rfc/rfc8246
https://www.rfc-editor.org/rfc/rfc8246
https://www.rfc-editor.org/rfc/rfc8484
https://www.rfc-editor.org/rfc/rfc9111
https://www.rfc-editor.org/rfc/rfc9111
https://www.rfc-editor.org/rfc/rfc9114
https://www.rfc-editor.org/rfc/rfc9114

[SVCB]

Progress, Internet-Draft, draft-wood-key-consistency-02,

4 March 2022, <https://datatracker.ietf.org/doc/html/

draft-wood-key-consistency-02>.

Schwartz, B., Bishop, M., and E. Nygren, "Service binding

and parameter specification via the DNS (DNS SVCB and

HTTPS RRs)", Work in Progress, Internet-Draft, draft-

ietf-dnsop-svcb-https-10, 24 May 2022, <https://

datatracker.ietf.org/doc/html/draft-ietf-dnsop-svcb-

https-10>.

Acknowledgments

TODO acknowledge.

Author's Address

Benjamin M. Schwartz

Google LLC

Email: bemasc@google.com

¶

https://datatracker.ietf.org/doc/html/draft-wood-key-consistency-02
https://datatracker.ietf.org/doc/html/draft-wood-key-consistency-02
https://datatracker.ietf.org/doc/html/draft-ietf-dnsop-svcb-https-10
https://datatracker.ietf.org/doc/html/draft-ietf-dnsop-svcb-https-10
https://datatracker.ietf.org/doc/html/draft-ietf-dnsop-svcb-https-10
mailto:bemasc@google.com

	Key Consistency for Oblivious HTTP by Double-Checking
	Abstract
	About This Document
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Conventions and Definitions
	3. Overview
	4. Requirements
	4.1. Oblivious Service
	4.2. Oblivious Relay
	4.3. Client

	5. Example: Oblivious DoH
	6. Performance Implications
	6.1. Latency
	6.2. Thundering Herds

	7. Security Considerations
	7.1. In scope
	7.1.1. Forgery
	7.1.2. Deanonymization
	7.1.3. Abusive traffic

	7.2. Out of scope

	8. IANA Considerations
	9. References
	9.1. Normative References
	9.2. Informative References

	Acknowledgments
	Author's Address

