
tls B. Schwartz
Internet-Draft Google LLC
Intended status: Standards Track July 02, 2019
Expires: January 3, 2020

TLS Metadata for Load Balancers
draft-schwartz-tls-lb-01

Abstract

 A load balancer that does not terminate TLS may wish to provide some
 information to the backend server, in addition to forwarding TLS
 data. This draft proposes a protocol between load balancers and
 backends that enables secure, efficient delivery of TLS with
 additional information. The need for such a protocol has recently
 become apparent in the context of split mode ESNI.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 3, 2020.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Schwartz Expires January 3, 2020 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft TLS-LB July 2019

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Conventions and Definitions 2
2. Background . 2
3. Goals . 3
4. Overview . 4
5. Encoding . 4
6. Defined ProxyExtensions 5
7. Use with TLS over TCP . 6
8. Use with QUIC . 6
9. Configuration . 8
10. Security considerations 9
10.1. Integrity . 9
10.2. Confidentiality . 9

11. IANA Considerations . 10
12. References . 10
12.1. Normative References 10
12.2. Informative References 10

Appendix A. Acknowledgements 11
Appendix B. Open Questions 11

 Author's Address . 11

1. Conventions and Definitions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 Data encodings are expressed in the TLS 1.3 presentation language, as
 defined in Section 3 of [TLS13].

2. Background

 A load balancer is a server or bank of servers that acts as an
 intermediary between the client and a range of backend servers. As
 the name suggests, a load balancer's primary function is to ensure
 that client traffic is spread evenly across the available backend
 servers. However load balancers also serve many other functions,
 such as identifying connections intended for different backends and
 forwarding them appropriately, or dropping connections that are
 deemed malicious.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174

Schwartz Expires January 3, 2020 [Page 2]

Internet-Draft TLS-LB July 2019

 A load balancer operates at a specific point in the protocol stack,
 forwarding e.g. IP packets, TCP streams, TLS contents, HTTP
 requests, etc. Most relevant to this proposal are TCP and TLS load
 balancers. TCP load balancers terminate the TCP connection with the
 client and establish a new TCP connection to the selected backend,
 bidirectionally copying the TCP contents between these two
 connections. TLS load balancers additionally terminate the TLS
 connection, forwarding the plaintext to the backend server (typically
 inside a new TLS connection). TLS load balancers must therefore hold
 the private keys for the domains they serve.

 When a TCP load balancer forwards a TLS stream, the load balancer has
 no way to incorporate additional information into the stream.
 Insertion of any additional data would cause the connection to fail.
 However, the load-balancer and backend can share additional
 information if they agree to speak a new protocol. The most popular
 protocol used for this purpose is currently the PROXY protocol
 [PROXY], developed by HAPROXY. This protocol prepends a plaintext
 collection of metadata (e.g. client IP address) onto the TCP socket.
 The backend can parse this metadata, then pass the remainder of the
 stream to its TLS library.

 The PROXY protocol is widely used, but it offers no confidentiality
 or integrity protection, and therefore might not be suitable when the
 load balancer and backend communicate over the public internet.

3. Goals

 o Enable TCP load balancers to forward metadata to the backend.

 o Reduce the need for TLS-terminating load balancers.

 o Ensure confidentiality and integrity for all forwarded metadata.

 o Enable split ESNI architectures.

 o Prove to the backend that the load balancer intended to associate
 this metadata with this connection.

 o Achieve good CPU and memory efficiency.

 o Don't impose additional latency.

 o Support backends that receive a mixture of direct and load-
 balanced TLS.

 o Support use in QUIC.

Schwartz Expires January 3, 2020 [Page 3]

Internet-Draft TLS-LB July 2019

 o Enable simple and safe implementation.

4. Overview

 The proposed protocol provides one-way communication from a load
 balancer to a backend server. It works by prepending information to
 the forwarded connection:

 +-----------+ +-----------+ +-----------+
 | Backend A | | Backend B | | Backend C |
 +-----------+ +-----------+ +-----------+
 \/ /\
 4. ServerHello, \/ /\ 2. EncryptedProxyData[SNI: "secret.b",
 etc. \/ /\ client: 2, etc.]
 \/ /\ 3. ClientHello (verbatim)
 \/ /\
 +---------------+
 | Load balancer |
 +---------------+
 \/ /\
 5. ServerHello, \/ /\ 1. ClientHello[ESNI: enc("secret.b")]
 etc. (verbatim) \/ /\
 \/ /\
 +-----------+ +-----------+ +-----------+
 | Client 1 | | Client 2 | | Client 3 |
 +-----------+ +-----------+ +-----------+

 Figure 1: Data flow diagram

5. Encoding

 A ProxyExtension is identical in form to a standard TLS Extension
 (Section 4.2 of [TLS13]), with a new identifier space for the
 extension types.

 struct {
 ProxyExtensionType extension_type;
 opaque extension_data<0..2^16-1>;
 } ProxyExtension;

 The ProxyData contains a set of ProxyExtensions.

 struct {
 ProxyExtension proxy_data<0..2^16-1>;
 } ProxyData;

Schwartz Expires January 3, 2020 [Page 4]

Internet-Draft TLS-LB July 2019

 The EncryptedProxyData structure contains metadata associated with
 the original ClientHello (Section 4.1.2 of [TLS13]), encrypted with a
 pre-shared key that is configured out of band.

 struct {
 opaque psk_identity<1..2^16-1>;
 opaque nonce<8..2^16-1>
 opaque encrypted_proxy_data<1..2^16-1>;
 } EncryptedProxyData;

 o psk_identity: The identity of a PSK previously agreed upon by the
 load balancer and the backend. Including the PSK identity allows
 for updating the PSK without disruption.

 o nonce: Non-repeating initializer for the AEAD. This prevents an
 attacker from observing whether the same ClientHello is marked
 with different metadata over time.

 o encrypted_proxy_data: AEAD-Encrypt(key, nonce,
 additional_data=ClientHello, plaintext=ProxyData). The key and
 AEAD function are agreed out of band and associated with
 psk_identity.

 When the load balancer receives a ClientHello, it serializes any
 relevant metadata into a ProxyData, then encrypts it with the
 ClientHello as additional data, to produce EncryptedProxyData.

6. Defined ProxyExtensions

 Like a standard TLS Extension, a ProxyExtension is identified by a
 2-byte type number. There are initially three type numbers
 allocated:

 enum {
 padding(0),
 network_address(1),
 esni_inner(2),
 (65535)
 } ProxyExtensionType;

 The "padding" extension functions as described in [RFC7685]. It is
 used here to avoid leaking information about the other extensions.

 The "network_address" extension functions as described in
 [I-D.kinnear-tls-client-net-address]. It conveys the client IP
 address observed by the load balancer.

https://datatracker.ietf.org/doc/html/rfc7685

Schwartz Expires January 3, 2020 [Page 5]

Internet-Draft TLS-LB July 2019

 The "esni_inner" extension can only be used if the ClientHello
 contains the encrypted_server_name extension [ESNI]. The
 extension_data is the ClientESNIInner (Section 5.1.1 of [ESNI]),
 which contains the true SNI and nonce. This is useful when the load
 balancer knows the ESNI private key and the backend does not, i.e.
 split mode ESNI.

 Load balancers SHOULD only include extensions that are specified for
 use in ProxyData, and backends MUST ignore any extensions that they
 do not recognize.

7. Use with TLS over TCP

 When forwarding a TLS stream over TCP, the load balancer SHOULD send
 a ProxyHeader at the beginning of the stream:

 struct {
 uint8 opaque_type = 0;
 ProtocolVersion version = 0;
 uint16 length = length(ProxyHeader.contents);
 EncryptedProxyData contents;
 } ProxyHeader;

 The opaque_type field ensures that this header is distinguishable
 from an ordinary TLS connection, whose first byte is always 22
 (ContentType = handshake in Section 5.1 of [TLS13]). This structure
 matches the layout of TLSPlaintext with a ContentType of "invalid",
 potentially simplifying parsing.

 Following the ProxyHeader, the load balancer MUST send the full
 contents of the TCP stream, exactly as received from the client. The
 backend will observe the ProxyHeader, immediately followed by a
 TLSPlaintext frame containing the ClientHello. The backend will
 decrypt the ProxyHeader using the ClientHello as associated data, and
 process the ClientHello and the remainder of the stream as standard
 TLS.

 When receiving a ProxyHeader with an unrecognized version, the
 backend SHOULD ignore this ProxyHeader and proceed as if the
 following byte were the first byte received.

8. Use with QUIC

 A QUIC load balancer provides this service by extracting the
 ClientHello from any client Initial packet [I-D.ietf-quic-tls]. A
 multi-tenant load balancer needs to perform this extraction anyway in
 order to determine where the connection should be forwarded, either
 by SNI or ESNI.

Schwartz Expires January 3, 2020 [Page 6]

Internet-Draft TLS-LB July 2019

 Extracting a TLS ClientHello from a QUIC handshake is a version-
 dependent action, so a load balancer cannot support unrecognized
 versions of QUIC. If the load balancer receives a packet with an
 unrecognized QUIC version, it MUST reply with a VersionNegotiation
 packet indicating the supported versions (currently only version 1).
 If the backend applies downgrade protection, it SHOULD account for
 the impact of the load balancer.

 In QUIC version 1, each handshake begins with an Initial packet sent
 by the client. This packet uses the QUIC "long header" packet form,
 starting with a "fixed bit" of 1 and a "frame type" of 0x0.

 +-+-+-+-+-+-+-+-+
 |1|1| 0 |R R|P P|
 +-+
 | Version (32) |
 +-+
 |DCIL(4)|SCIL(4)|
 +-+
 | Destination Connection ID (0/32..144) ...
 +-+
 | Source Connection ID (0/32..144) ...
 +-+
 | Token Length (i) ...
 +-+
 | Token (*) ...
 +-+
 | Length (i) ...
 +-+
 | Packet Number (8/16/24/32) ...
 +-+
 | Payload (*) ...
 +-+

 Figure 2: QUIC Initial Packet

 A client Initial packet contains a complete ClientHello, in a CRYPTO
 frame in the payload. The load balancer extracts this ClientHello in
 order to compute EncryptedProxyData.

 TODO: Confirm that HelloRetryRequest elicits an Initial containing a
 complete ClientHello. The QUIC draft text is unclear.

 To send EncryptedProxyData to the backend, the load balancer
 constructs a new packet with a header copied from the Initial, but
 with a frame type of 0x1 and a new version (0xTBD). Its payload
 consists of the old Initial's version number (currently always 1) and
 the EncryptedProxyData.

Schwartz Expires January 3, 2020 [Page 7]

Internet-Draft TLS-LB July 2019

 +-+-+-+-+-+-+-+-+
 |1|1| 1 |R R|P P|
 +-+
 | New Version, 0xTBD (32) |
 +-+
 |DCIL(4)|SCIL(4)|
 +-+
 | Destination Connection ID (0/32..144) ...
 +-+
 | Source Connection ID (0/32..144) ...
 +-+
 | Token Length (i) ...
 +-+
 | Token (*) ...
 +-+
 | New Length (i) ...
 +-+
 | Packet Number (8/16/24/32) ...
 +-+
 | Initial Version (32) ...
 +-+
 | EncryptedProxyData ...
 +-+

 Figure 3: EncryptedProxyData packet to the backend

 The load balancer then forwards the client Initial unmodified, except
 for replacing its Version number with 0xTBD. All other QUIC packets
 are forwarded entirely unmodified.

 The backend, upon receipt of a packet with QUIC version 0xTBD and
 type "0" or "1", waits for a second packet with version 0xTBD, the
 other type value, and matching connection IDs, token, and packet
 number. When both packets have been received, the backend can
 reconstruct the original Initial packet and decrypt the
 EncryptedProxyData.

 If the second packet is not received within a brief time period (e.g.
 100 ms), the backend SHOULD discard the first packet.

9. Configuration

 The method of configuring of the PSK on the load balancer and backend
 is not specified here. However, the PSK MAY be represented as a
 ProxyKey:

Schwartz Expires January 3, 2020 [Page 8]

Internet-Draft TLS-LB July 2019

 struct {
 ProtocolVersion version = 0;
 opaque psk_identity<1..2^16-1>;
 CipherSuite cipher_suite;
 opaque key<16..2^16-1>
 } ProxyKey;

10. Security considerations

10.1. Integrity

 This protocol is intended to provide the backend with a strong
 guarantee of integrity for the metadata written by the load balancer.
 For example, an active attacker cannot take metadata intended for one
 stream and attach it to another, because each stream will have a
 unique ClientHello, and the metadata is bound to the ClientHello by
 AEAD.

 One exception to this protection is in the case of an attacker who
 deliberately reissues identical ClientHello messages. An attacker
 who reuses a ClientHello can also reuse the metadata associated with
 it, if they can first observe the EncryptedProxyData transferred
 between the load balancer and the backend. This could be used by an
 attacker to reissue data originally generated by a true client (e.g.
 as part of a 0-RTT replay attack), or it could be used by a group of
 adversaries who are willing to share a single set of client secrets
 while initiating different sessions, in order to reuse metadata that
 they find helpful.

 As such, the backend SHOULD treat this metadata as advisory.

10.2. Confidentiality

 This protocol is intended to maintain confidentiality of the metadata
 transferred between the load balancer and backend, currently
 consisting of the ESNI plaintext and the client IP address. An
 observer between the client and the load balancer does not observe
 this protocol at all, and an observer between the load balancer and
 backend observes only ciphertext.

 However, an adversary who can monitor both of these links can easily
 observe that a connection from the client to the load balancer is
 shortly followed by a connection from the load balancer to a backend,
 with the same ClientHello. This reveals which backend server the
 client intended to visit. In many cases, the choice of backend
 server could be the sensitive information that ESNI is intended to
 protect.

Schwartz Expires January 3, 2020 [Page 9]

Internet-Draft TLS-LB July 2019

11. IANA Considerations

 Need to create a new ProxyExtensionType registry.

 Need to allocate TBD as a reserved QUIC version code.

12. References

12.1. Normative References

 [ESNI] Rescorla, E., Oku, K., Sullivan, N., and C. Wood,
 "Encrypted Server Name Indication for TLS 1.3", draft-

ietf-tls-esni-03 (work in progress), March 2019.

 [I-D.ietf-quic-tls]
 Thomson, M. and S. Turner, "Using TLS to Secure QUIC",

draft-ietf-quic-tls-20 (work in progress), April 2019.

 [I-D.kinnear-tls-client-net-address]
 Kinnear, E., Pauly, T., and C. Wood, "TLS Client Network
 Address Extension", draft-kinnear-tls-client-net-

address-00 (work in progress), March 2019.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC7685] Langley, A., "A Transport Layer Security (TLS) ClientHello
 Padding Extension", RFC 7685, DOI 10.17487/RFC7685,
 October 2015, <https://www.rfc-editor.org/info/rfc7685>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [TLS13] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

12.2. Informative References

 [PROXY] Tarreau, W., "The PROXY protocol", March 2017,
 <https://www.haproxy.org/download/1.8/doc/

proxy-protocol.txt>.

https://datatracker.ietf.org/doc/html/draft-ietf-tls-esni-03
https://datatracker.ietf.org/doc/html/draft-ietf-tls-esni-03
https://datatracker.ietf.org/doc/html/draft-ietf-quic-tls-20
https://datatracker.ietf.org/doc/html/draft-kinnear-tls-client-net-address-00
https://datatracker.ietf.org/doc/html/draft-kinnear-tls-client-net-address-00
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc7685
https://www.rfc-editor.org/info/rfc7685
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://datatracker.ietf.org/doc/html/rfc8446
https://www.rfc-editor.org/info/rfc8446
https://www.haproxy.org/download/1.8/doc/proxy-protocol.txt
https://www.haproxy.org/download/1.8/doc/proxy-protocol.txt

Schwartz Expires January 3, 2020 [Page 10]

Internet-Draft TLS-LB July 2019

Appendix A. Acknowledgements

 This is an elaboration of an idea proposed by Eric Rescorla during
 the development of ESNI. Thanks to David Schinazi and David Benjamin
 for suggesting important improvements.

Appendix B. Open Questions

 Should the ProxyExtensionType registry have a reserved range for
 private extensions?

Author's Address

 Benjamin M. Schwartz
 Google LLC

 Email: bemasc@google.com

Schwartz Expires January 3, 2020 [Page 11]

