
tls B.

Schwartz

Internet-Draft Google

LLC

Intended status: Standards Track October 31,

2019

Expires: May 3, 2020

 TLS Metadata for Load Balancers

 draft-schwartz-tls-lb-02

Abstract

 A load balancer that does not terminate TLS may wish to provide some

 information to the backend server, in addition to forwarding TLS

 data. This draft proposes a protocol between load balancers and

 backends that enables secure, efficient delivery of TLS with

 additional information. The need for such a protocol has recently

 become apparent in the context of split mode ESNI.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the

 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering

 Task Force (IETF). Note that other groups may also distribute

 working documents as Internet-Drafts. The list of current Internet-

 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six

months

 and may be updated, replaced, or obsoleted by other documents at any

 time. It is inappropriate to use Internet-Drafts as reference

 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 3, 2020.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the

 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal

 Provisions Relating to IETF Documents

 (https://trustee.ietf.org/license-info) in effect on the date of

 publication of this document. Please review these documents

 carefully, as they describe your rights and restrictions with

respect

 to this document. Code Components extracted from this document must

 include Simplified BSD License text as described in Section 4.e of

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Schwartz Expires May 3, 2020 [Page

1]

Internet-Draft TLS-LB October

2019

 the Trust Legal Provisions and are provided without warranty as

 described in the Simplified BSD License.

Table of Contents

 1. Conventions and Definitions

2

 2. Background .

2

 3. Goals .

3

 4. Overview .

4

 5. Encoding .

4

 6. Defined ProxyExtensions

6

 6.1. padding .

6

 6.2. client_address .

6

 6.3. destination_address

6

 6.4. esni_inner .

6

 6.5. certificate_padding

7

 6.6. overload .

7

 6.7. ratchet .

8

 7. Protocol wire format .

9

 8. Security considerations

10

 8.1. Integrity .

10

 8.2. Confidentiality .

10

 8.3. Fingerprinting .

11

 9. IANA Considerations .

11

 10. References .

11

 10.1. Normative References

11

 10.2. Informative References

12

 Appendix A. Acknowledgements

12

 Author's Address .

12

1. Conventions and Definitions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

 "OPTIONAL" in this document are to be interpreted as described in

BCP

 14 [RFC2119] [RFC8174] when, and only when, they appear in all

 capitals, as shown here.

 Data encodings are expressed in the TLS 1.3 presentation language,

as

 defined in Section 3 of [TLS13].

2. Background

 A load balancer is a server or bank of servers that acts as an

 intermediary between the client and a range of backend servers. As

 the name suggests, a load balancer's primary function is to ensure

 that client traffic is spread evenly across the available backend

 servers. However load balancers also serve many other functions,

Schwartz Expires May 3, 2020 [Page

2]

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174

Internet-Draft TLS-LB October

2019

 such as identifying connections intended for different backends and

 forwarding them appropriately, or dropping connections that are

 deemed malicious.

 A load balancer operates at a specific point in the protocol stack,

 forwarding e.g. IP packets, TCP streams, TLS contents, HTTP

 requests, etc. Most relevant to this proposal are TCP and TLS load

 balancers. TCP load balancers terminate the TCP connection with the

 client and establish a new TCP connection to the selected backend,

 bidirectionally copying the TCP contents between these two

 connections. TLS load balancers additionally terminate the TLS

 connection, forwarding the plaintext to the backend server

(typically

 inside a new TLS connection). TLS load balancers must therefore

hold

 the private keys for the domains they serve.

 When a TCP load balancer forwards a TLS stream, the load balancer

has

 no way to incorporate additional information into the stream.

 Insertion of any additional data would cause the connection to fail.

 However, the load-balancer and backend can share additional

 information if they agree to speak a new protocol. The most popular

 protocol used for this purpose is currently the PROXY protocol

 [PROXY], developed by HAPROXY. This protocol prepends a plaintext

 collection of metadata (e.g. client IP address) onto the TCP socket.

 The backend can parse this metadata, then pass the remainder of the

 stream to its TLS library.

 The PROXY protocol is effective and widely used, but it offers no

 confidentiality or integrity protection, and therefore might not be

 suitable when the load balancer and backend communicate over the

 public internet. It also does not offer a way for the backend to

 reply.

3. Goals

 o Enable TCP load balancers to forward metadata to the backend.

 o Enable backends to reply.

 o Reduce the need for TLS-terminating load balancers.

 o Ensure confidentiality and integrity for all forwarded metadata.

 o Enable split ESNI architectures.

 o Prove to the backend that the load balancer intended to associate

 this metadata with this connection.

 o Achieve good CPU and memory efficiency.

Schwartz Expires May 3, 2020 [Page

3]

Internet-Draft TLS-LB October

2019

 o Don't impose additional latency.

 o Support backends that receive a mixture of direct and load-

 balanced TLS.

 o Enable simple and safe implementation.

4. Overview

 The proposed protocol supports a two-way exchange between a load

 balancer and a backend server. It works by prepending information

to

 the TLS handshake:

 +-----------+ +-----------+ +-----------+

 | Backend A | | Backend B | | Backend C |

 +-----------+ +-----------+ +-----------+

 \/ /\

 4. EncryptedProxyData[\/ /\ 3. ClientHello (verbatim)

 got SNI info] \/ /\ 2. EncryptedProxyData[

 5. ServerHello, etc. \/ /\ SNI="secret.b",

 \/ /\ client=2, etc.]

 \/ /\

 +---------------+

 | Load balancer |

 +---------------+

 \/ /\

 6. ServerHello, etc. \/ /\ 1. ClientHello[

 (verbatim) \/ /\ ESNI=enc("secret.b")]

 \/ /\

 +-----------+ +-----------+ +-----------+

 | Client 1 | | Client 2 | | Client 3 |

 +-----------+ +-----------+ +-----------+

 Figure 1: Data flow diagram

5. Encoding

 A ProxyExtension is identical in form to a standard TLS Extension

 (Section 4.2 of [TLS13]), with a new identifier space for the

 extension types.

 struct {

 ProxyExtensionType extension_type;

 opaque extension_data<0..2^16-1>;

 } ProxyExtension;

 ProxyExtensions can be sent in an upstream (to the backend) or

 downstream (to the load balancer) direction

Schwartz Expires May 3, 2020 [Page

4]

Internet-Draft TLS-LB October

2019

 enum {

 upstream(0),

 downstream(1),

 (255)

 } ProxyDataDirection;

 The ProxyData contains a set of ProxyExtensions.

 struct {

 ProxyDataDirection direction;

 ProxyExtension proxy_data<0..2^16-1>;

 } ProxyData;

 The EncryptedProxyData structure contains metadata associated with

 the original ClientHello (Section 4.1.2 of [TLS13]), encrypted with

a

 pre-shared key that is configured out of band.

 struct {

 opaque psk_identity<1..2^16-1>;

 opaque nonce<8..2^16-1>

 opaque encrypted_proxy_data<1..2^16-1>;

 } EncryptedProxyData;

 o "psk_identity": The identity of a PSK previously agreed upon by

 the load balancer and the backend. Including the PSK identity

 allows for updating the PSK without disruption.

 o "nonce": Non-repeating initializer for the AEAD. This prevents

an

 attacker from observing whether the same ClientHello is marked

 with different metadata over time.

 o "encrypted_proxy_data": "AEAD-Encrypt(key, nonce,

additional_data,

 plaintext=ProxyData)". The key and AEAD function are agreed out

 of band and associated with "psk_identity". The

"additional_data"

 is context-dependent.

 When the load balancer receives a ClientHello, it serializes any

 relevant metadata into an upstream ProxyData, then encrypts it with

 the ClientHello as "additional_data" to produce the

 EncryptedProxyData. The backend's reply is a downstream ProxyData

 struct, also transmitted as an EncryptedProxyData, using the

upstream

 EncryptedProxyData as "additional_data". Recipients in each case

 MUST verify that "ProxyData.direction" has the expected value, and

 discard the connection if it does not.

 The downstream ProxyData SHOULD NOT contain any ProxyExtensionType

 values that were not present in the upstream ProxyData.

Schwartz Expires May 3, 2020 [Page

5]

Internet-Draft TLS-LB October

2019

6. Defined ProxyExtensions

 Like a standard TLS Extension, a ProxyExtension is identified by a

 uint16 type number. Load balancers MUST only include extensions

that

 are registered for use in ProxyData. Backends MUST ignore any

 extensions that they do not recognize.

 There are initially seven type numbers allocated:

 enum {

 padding(0),

 client_address(1),

 destination_address(2),

 esni_inner(3),

 certificate_padding(4),

 overload(5),

 ratchet(6),

 (65535)

 } ProxyExtensionType;

6.1. padding

 The "padding" extension functions as described in [RFC7685]. It is

 used here to avoid leaking information about the other extensions.

 It can be used in upstream and downstream ProxyData.

6.2. client_address

 The "client_address" extension functions as described in

 [I-D.kinnear-tls-client-net-address]. It conveys the client IP

 address observed by the load balancer. Backends that make use of

 this extension SHOULD include an empty "client_address" extension in

 the downstream ProxyData.

6.3. destination_address

 The "destination_address" extension is identical to the

 "client_address" extension, except that it contains the load

 balancer's server IP address that received this connection.

6.4. esni_inner

 The "esni_inner" extension is only sent upstream, and can only be

 used if the ClientHello contains the encrypted_server_name extension

 [ESNI]. The "extension_data" is the ClientESNIInner (Section 5.1.1

 of [ESNI]), which contains the true SNI and nonce. This is useful

 when the load balancer knows the ESNI private key and the backend

 does not, i.e. split mode ESNI.

https://datatracker.ietf.org/doc/html/rfc7685

Schwartz Expires May 3, 2020 [Page

6]

Internet-Draft TLS-LB October

2019

6.5. certificate_padding

 The "certificate_padding" extension always contains a single uint32

 value. The upstream value conveys the padding granularity "G", and

 the downstream value indicates the unpadded size of the Certificate

 struct (Section 4.4.2 of [TLS13]).

 To pad the Handshake message (Section 4 of [TLS13]) containing the

 Certificate struct, the backend SHOULD select the smallest

 "length_of_padding" (Section 5.2 of [TLS13]) such that

 "Handshake.length + length_of_padding" is a multiple of "G".

 The load balancer SHOULD include this extension whenever it sends

the

 "esni_inner" extension.

 Padding certificates from many backends to the same length is

 important to avoid revealing which backend is responding to a

 ClientHello. Load balancer operators SHOULD ensure that no backend

 has a unique certificate size after padding, and MAY set "G" large

 enough to make all responses have equal size.

6.6. overload

 In the upstream ProxyData, the "overload" extension contains a

single

 uint16 indicating the approximate proportion of connections that are

 being routed to this server as a fraction of 65535. If there is

only

 one server, load balancers SHOULD set the value to 65535.

 In the downstream ProxyData, the value is an OverloadValue:

 enum {

 accepted(0),

 overloaded(1),

 rejected(2),

 (255)

 } OverloadState;

 struct {

 OverloadState state;

 uint16 load;

 uint32 ttl;

 } OverloadValue;

 When "OverloadValue.state" is "accepted", the backend is accepting

 connections normally. The "overloaded" state indicates that the

 backend is accepting this connection, but would prefer not to

receive

 additional connections. A value of "rejected" indicates that the

 backend did not accept this connection. When sending a "rejected"

Schwartz Expires May 3, 2020 [Page

7]

Internet-Draft TLS-LB October

2019

 response, the backend SHOULD close the connection without sending a

 ServerHello.

 "OverloadValue.load" indicates the load fraction of the responding

 backend server, with 65535 indicating maximum load.

 The load balancer SHOULD treat this information as valid for

 "OverloadValue.ttl" seconds, or until it receives another

 OverloadValue from that server.

 Load balancers that have multiple available backends for an origin

 SHOULD avoid connecting to servers that are in the "overloaded" or

 "rejected" state. When a connection is rejected, the load balancer

 MAY retry that connection by sending the ClientHello to a different

 backend server. When multiple servers are in the "accepted" state,

 the load balancer MAY use "OverloadValue.load" to choose among them.

 When there is a server in an unknown state (i.e. a new server or one

 whose last TTL has expired), the load balancer SHOULD direct at

least

 one connection to it, in order to refresh its OverloadState.

 If all servers are in the "overloaded" or "rejected" state, the load

 balancer SHOULD drop the connection.

6.7. ratchet

 If the backend server is reachable without traversing the load

 balancer, and an adversary can observe packets on the link between

 the load balancer and the backend, then that adversary can execute a

 replay flooding attack, sending the backend server duplicate copies

 of observed EncryptedProxyData and ClientHello. This attack can

 waste server resources on the Diffie-Hellman operations required to

 process the ClientHello, resulting in denial of service.

 The "ratchet" extension reduces the impact of such an attack on the

 backend server by allowing the backend to reject these duplicates

 after decrypting the ProxyData. (This decryption uses only a

 symmetric cipher, so it is expected to be much faster than typical

 Diffie-Hellman operations.) Its upstream payload consists of a

 RatchetValue:

 struct {

 uint64 index;

 uint64 floor;

 } RatchetValue;

Schwartz Expires May 3, 2020 [Page

8]

Internet-Draft TLS-LB October

2019

 A RatchetValue is scoped to a single backend server and

 "psk_identity". Within that scope, the load balancer initializes

 "index" to a random value, and executes the following procedure:

 1. For each new forwarded connection (to the same server under the

 same "psk_identity"), increment "index".

 2. Set "floor" to the "index" of the earliest connection that has

 not yet been connected or closed.

 The backend server initializes "floor" to the first

 "RatchetValue.floor" it receives (under a "psk_identity"), and then

 executes the following procedure for each incoming connection:

 1. Define "a >= b" if the most significant bit of "a - b" is 0.

 2. Let "newValue" be the RatchetValue in the ProxyData.

 3. If "newValue.index < floor", ignore the connection.

 4. If "newValue.floor >= floor", set "floor" to "newValue.floor".

 5. OPTIONALLY, ignore the connection if "newValue.index" has been

 seen recently. This can be implemented efficiently by keeping

 track of any "index" values greater than "floor" that appear to

 have been skipped.

 With these measures in place, replays can be rejected without

 processing the ClientHello.

 In principle, this replay protection fails after 2^64 connections

 when the "floor" value wraps. On a backend server that averages

10^9

 new connections per second, this would occur after 584 years. To

 avoid this replay attack, load balancers and backends SHOULD

 establish a new PSK at least this often.

 Backends that are making use of the "ratchet" extension SHOULD

 include an empty "ratchet" extension in their downstream ProxyData.

7. Protocol wire format

 When forwarding a TLS stream over TCP, the load balancer SHOULD

 prepend a TLSPlaintext whose "content_type" is XX (proxy_header) and

 whose "fragment" is the EncryptedProxyData.

 Following this proxy header, the load balancer MUST send the full

 contents of the TCP stream, exactly as received from the client.

The

 backend will observe the proxy header, immediately followed by a

Schwartz Expires May 3, 2020 [Page

9]

Internet-Draft TLS-LB October

2019

 TLSPlaintext containing the ClientHello. The backend will decrypt

 the EncryptedProxyData using the ClientHello as associated data, and

 process the ClientHello and the remainder of the stream as standard

 TLS.

 Similarly, the backend SHOULD reply with the downstream

 EncryptedProxyData in a proxy header, followed by the normal TLS

 stream, beginning with a TLSPlaintext frame containing the

 ServerHello. If the downstream ProxyHeader is not present, has an

 unrecognized version number, or produces an error, the load balancer

 SHOULD proxy the rest of the stream regardless.

8. Security considerations

8.1. Integrity

 This protocol is intended to provide both parties with a strong

 guarantee of integrity for the metadata they receive. For example,

 an active attacker cannot take metadata intended for one stream and

 attach it to another, because each stream will have a unique

 ClientHello, and the metadata is bound to the ClientHello by AEAD.

 One exception to this protection is in the case of an attacker who

 deliberately reissues identical ClientHello messages. An attacker

 who reuses a ClientHello can also reuse the metadata associated with

 it, if they can first observe the EncryptedProxyData transferred

 between the load balancer and the backend. This could be used by an

 attacker to reissue data originally generated by a true client (e.g.

 as part of a 0-RTT replay attack), or it could be used by a group of

 adversaries who are willing to share a single set of client secrets

 while initiating different sessions, in order to reuse metadata that

 they find helpful.

 Backends that are sensitive to this attack SHOULD implement the

 "ratchet" mechanism in Section 6.7, including the optional defenses.

8.2. Confidentiality

 This protocol is intended to maintain confidentiality of the

metadata

 transferred between the load balancer and backend, especially the

 ESNI plaintext and the client IP address. An observer between the

 client and the load balancer does not observe this protocol at all,

 and an observer between the load balancer and backend observes only

 ciphertext.

 However, an adversary who can monitor both of these links can easily

 observe that a connection from the client to the load balancer is

 shortly followed by a connection from the load balancer to a

backend,

Schwartz Expires May 3, 2020 [Page

10]

Internet-Draft TLS-LB October

2019

 with the same ClientHello. This reveals which backend server the

 client intended to visit. In many cases, the choice of backend

 server could be the sensitive information that ESNI is intended to

 protect.

8.3. Fingerprinting

 Connections to different domains might be distinguishable by the

 cleartext contents of the ServerHello, such as "cipher_suite" and

 "server_share.group". Load balancer operators with ESNI support

 SHOULD provide backend operators with a list of cipher suites and

 groups to support, and a preference order, to avoid different

 backends having distinctive behaviors.

9. IANA Considerations

 IANA will be directed to add the following allocation to the TLS

 ContentType registry:

 +-------+--------------+---------+---------------+

 | Value | Description | DTLS-OK | Reference |

 +-------+--------------+---------+---------------+

 | XX | proxy_header | N | This document |

 +-------+--------------+---------+---------------+

 IANA will be directed to create a new "TLS ProxyExtensionType

Values"

 registry on the TLS Extensions page. Values less than 0x8000 will

be

 subject to the "RFC Required" registration procedure, and the rest

 will be "First Come First Served". To avoid codepoint exhaustion,

 proxy developers SHOULD pack all their nonstandard information into

a

 single ProxyExtension.

10. References

10.1. Normative References

 [ESNI] Rescorla, E., Oku, K., Sullivan, N., and C. Wood,

 "Encrypted Server Name Indication for TLS 1.3", draft-

 ietf-tls-esni-04 (work in progress), July 2019.

 [I-D.kinnear-tls-client-net-address]

 Kinnear, E., Pauly, T., and C. Wood, "TLS Client Network

 Address Extension", draft-kinnear-tls-client-net-

 address-00 (work in progress), March 2019.

https://datatracker.ietf.org/doc/html/draft-ietf-tls-esni-04
https://datatracker.ietf.org/doc/html/draft-ietf-tls-esni-04
https://datatracker.ietf.org/doc/html/draft-kinnear-tls-client-net-address-00
https://datatracker.ietf.org/doc/html/draft-kinnear-tls-client-net-address-00

Schwartz Expires May 3, 2020 [Page

11]

Internet-Draft TLS-LB October

2019

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate

 Requirement Levels", BCP 14, RFC 2119,

 DOI 10.17487/RFC2119, March 1997,

 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC7685] Langley, A., "A Transport Layer Security (TLS)

ClientHello

 Padding Extension", RFC 7685, DOI 10.17487/RFC7685,

 October 2015, <https://www.rfc-editor.org/info/rfc7685>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [TLS13] Rescorla, E., "The Transport Layer Security (TLS)

Protocol

 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August

2018,

 <https://www.rfc-editor.org/info/rfc8446>.

10.2. Informative References

 [PROXY] Tarreau, W., "The PROXY protocol", March 2017,

 <https://www.haproxy.org/download/1.8/doc/proxy-

 protocol.txt>.

Appendix A. Acknowledgements

 This is an elaboration of an idea proposed by Eric Rescorla during

 the development of ESNI. Thanks to David Schinazi, David Benjamin,

 and Piotr Sikora for suggesting important improvements.

Author's Address

 Benjamin M. Schwartz

 Google LLC

 Email: bemasc@google.com

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc7685
https://www.rfc-editor.org/info/rfc7685
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://datatracker.ietf.org/doc/html/rfc8446
https://www.rfc-editor.org/info/rfc8446
https://www.haproxy.org/download/1.8/doc/proxy-protocol.txt
https://www.haproxy.org/download/1.8/doc/proxy-protocol.txt

Schwartz Expires May 3, 2020 [Page

12]

