
tls B. Schwartz
Internet-Draft Google LLC
Intended status: Standards Track October 31, 2019
Expires: May 3, 2020

TLS Metadata for Load Balancers
draft-schwartz-tls-lb-02

Abstract

 A load balancer that does not terminate TLS may wish to provide some
 information to the backend server, in addition to forwarding TLS
 data. This draft proposes a protocol between load balancers and
 backends that enables secure, efficient delivery of TLS with
 additional information. The need for such a protocol has recently
 become apparent in the context of split mode ESNI.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 3, 2020.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Schwartz Expires May 3, 2020 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft TLS-LB October 2019

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Conventions and Definitions 2
2. Background . 2
3. Goals . 3
4. Overview . 4
5. Encoding . 4
6. Defined ProxyExtensions 6
6.1. padding . 6
6.2. client_address . 6
6.3. destination_address 6
6.4. esni_inner . 6
6.5. certificate_padding 7
6.6. overload . 7
6.7. ratchet . 8

7. Protocol wire format . 9
8. Security considerations 10
8.1. Integrity . 10
8.2. Confidentiality . 10
8.3. Fingerprinting . 11

9. IANA Considerations . 11
10. References . 11
10.1. Normative References 11
10.2. Informative References 12

Appendix A. Acknowledgements 12
 Author's Address . 12

1. Conventions and Definitions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP

14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 Data encodings are expressed in the TLS 1.3 presentation language, as
 defined in Section 3 of [TLS13].

2. Background

 A load balancer is a server or bank of servers that acts as an
 intermediary between the client and a range of backend servers. As
 the name suggests, a load balancer's primary function is to ensure
 that client traffic is spread evenly across the available backend
 servers. However load balancers also serve many other functions,

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174

Schwartz Expires May 3, 2020 [Page 2]

Internet-Draft TLS-LB October 2019

 such as identifying connections intended for different backends and
 forwarding them appropriately, or dropping connections that are
 deemed malicious.

 A load balancer operates at a specific point in the protocol stack,
 forwarding e.g. IP packets, TCP streams, TLS contents, HTTP
 requests, etc. Most relevant to this proposal are TCP and TLS load
 balancers. TCP load balancers terminate the TCP connection with the
 client and establish a new TCP connection to the selected backend,
 bidirectionally copying the TCP contents between these two
 connections. TLS load balancers additionally terminate the TLS
 connection, forwarding the plaintext to the backend server (typically
 inside a new TLS connection). TLS load balancers must therefore hold
 the private keys for the domains they serve.

 When a TCP load balancer forwards a TLS stream, the load balancer has
 no way to incorporate additional information into the stream.
 Insertion of any additional data would cause the connection to fail.
 However, the load-balancer and backend can share additional
 information if they agree to speak a new protocol. The most popular
 protocol used for this purpose is currently the PROXY protocol
 [PROXY], developed by HAPROXY. This protocol prepends a plaintext
 collection of metadata (e.g. client IP address) onto the TCP socket.
 The backend can parse this metadata, then pass the remainder of the
 stream to its TLS library.

 The PROXY protocol is effective and widely used, but it offers no
 confidentiality or integrity protection, and therefore might not be
 suitable when the load balancer and backend communicate over the
 public internet. It also does not offer a way for the backend to
 reply.

3. Goals

 o Enable TCP load balancers to forward metadata to the backend.

 o Enable backends to reply.

 o Reduce the need for TLS-terminating load balancers.

 o Ensure confidentiality and integrity for all forwarded metadata.

 o Enable split ESNI architectures.

 o Prove to the backend that the load balancer intended to associate
 this metadata with this connection.

 o Achieve good CPU and memory efficiency.

Schwartz Expires May 3, 2020 [Page 3]

Internet-Draft TLS-LB October 2019

 o Don't impose additional latency.

 o Support backends that receive a mixture of direct and load-
 balanced TLS.

 o Enable simple and safe implementation.

4. Overview

 The proposed protocol supports a two-way exchange between a load
 balancer and a backend server. It works by prepending information to
 the TLS handshake:

 +-----------+ +-----------+ +-----------+
 | Backend A | | Backend B | | Backend C |
 +-----------+ +-----------+ +-----------+
 \/ /\
 4. EncryptedProxyData[\/ /\ 3. ClientHello (verbatim)
 got SNI info] \/ /\ 2. EncryptedProxyData[
 5. ServerHello, etc. \/ /\ SNI="secret.b",
 \/ /\ client=2, etc.]
 \/ /\
 +---------------+
 | Load balancer |
 +---------------+
 \/ /\
 6. ServerHello, etc. \/ /\ 1. ClientHello[
 (verbatim) \/ /\ ESNI=enc("secret.b")]
 \/ /\
 +-----------+ +-----------+ +-----------+
 | Client 1 | | Client 2 | | Client 3 |
 +-----------+ +-----------+ +-----------+

 Figure 1: Data flow diagram

5. Encoding

 A ProxyExtension is identical in form to a standard TLS Extension
 (Section 4.2 of [TLS13]), with a new identifier space for the
 extension types.

 struct {
 ProxyExtensionType extension_type;
 opaque extension_data<0..2^16-1>;
 } ProxyExtension;

 ProxyExtensions can be sent in an upstream (to the backend) or
 downstream (to the load balancer) direction

Schwartz Expires May 3, 2020 [Page 4]

Internet-Draft TLS-LB October 2019

 enum {
 upstream(0),
 downstream(1),
 (255)
 } ProxyDataDirection;

 The ProxyData contains a set of ProxyExtensions.

 struct {
 ProxyDataDirection direction;
 ProxyExtension proxy_data<0..2^16-1>;
 } ProxyData;

 The EncryptedProxyData structure contains metadata associated with
 the original ClientHello (Section 4.1.2 of [TLS13]), encrypted with a
 pre-shared key that is configured out of band.

 struct {
 opaque psk_identity<1..2^16-1>;
 opaque nonce<8..2^16-1>
 opaque encrypted_proxy_data<1..2^16-1>;
 } EncryptedProxyData;

 o "psk_identity": The identity of a PSK previously agreed upon by
 the load balancer and the backend. Including the PSK identity
 allows for updating the PSK without disruption.

 o "nonce": Non-repeating initializer for the AEAD. This prevents an
 attacker from observing whether the same ClientHello is marked
 with different metadata over time.

 o "encrypted_proxy_data": "AEAD-Encrypt(key, nonce, additional_data,
 plaintext=ProxyData)". The key and AEAD function are agreed out
 of band and associated with "psk_identity". The "additional_data"
 is context-dependent.

 When the load balancer receives a ClientHello, it serializes any
 relevant metadata into an upstream ProxyData, then encrypts it with
 the ClientHello as "additional_data" to produce the
 EncryptedProxyData. The backend's reply is a downstream ProxyData
 struct, also transmitted as an EncryptedProxyData, using the upstream
 EncryptedProxyData as "additional_data". Recipients in each case
 MUST verify that "ProxyData.direction" has the expected value, and
 discard the connection if it does not.

 The downstream ProxyData SHOULD NOT contain any ProxyExtensionType
 values that were not present in the upstream ProxyData.

Schwartz Expires May 3, 2020 [Page 5]

Internet-Draft TLS-LB October 2019

6. Defined ProxyExtensions

 Like a standard TLS Extension, a ProxyExtension is identified by a
 uint16 type number. Load balancers MUST only include extensions that
 are registered for use in ProxyData. Backends MUST ignore any
 extensions that they do not recognize.

 There are initially seven type numbers allocated:

 enum {
 padding(0),
 client_address(1),
 destination_address(2),
 esni_inner(3),
 certificate_padding(4),
 overload(5),
 ratchet(6),
 (65535)
 } ProxyExtensionType;

6.1. padding

 The "padding" extension functions as described in [RFC7685]. It is
 used here to avoid leaking information about the other extensions.
 It can be used in upstream and downstream ProxyData.

6.2. client_address

 The "client_address" extension functions as described in
 [I-D.kinnear-tls-client-net-address]. It conveys the client IP
 address observed by the load balancer. Backends that make use of
 this extension SHOULD include an empty "client_address" extension in
 the downstream ProxyData.

6.3. destination_address

 The "destination_address" extension is identical to the
 "client_address" extension, except that it contains the load
 balancer's server IP address that received this connection.

6.4. esni_inner

 The "esni_inner" extension is only sent upstream, and can only be
 used if the ClientHello contains the encrypted_server_name extension
 [ESNI]. The "extension_data" is the ClientESNIInner (Section 5.1.1
 of [ESNI]), which contains the true SNI and nonce. This is useful
 when the load balancer knows the ESNI private key and the backend
 does not, i.e. split mode ESNI.

https://datatracker.ietf.org/doc/html/rfc7685

Schwartz Expires May 3, 2020 [Page 6]

Internet-Draft TLS-LB October 2019

6.5. certificate_padding

 The "certificate_padding" extension always contains a single uint32
 value. The upstream value conveys the padding granularity "G", and
 the downstream value indicates the unpadded size of the Certificate
 struct (Section 4.4.2 of [TLS13]).

 To pad the Handshake message (Section 4 of [TLS13]) containing the
 Certificate struct, the backend SHOULD select the smallest
 "length_of_padding" (Section 5.2 of [TLS13]) such that
 "Handshake.length + length_of_padding" is a multiple of "G".

 The load balancer SHOULD include this extension whenever it sends the
 "esni_inner" extension.

 Padding certificates from many backends to the same length is
 important to avoid revealing which backend is responding to a
 ClientHello. Load balancer operators SHOULD ensure that no backend
 has a unique certificate size after padding, and MAY set "G" large
 enough to make all responses have equal size.

6.6. overload

 In the upstream ProxyData, the "overload" extension contains a single
 uint16 indicating the approximate proportion of connections that are
 being routed to this server as a fraction of 65535. If there is only
 one server, load balancers SHOULD set the value to 65535.

 In the downstream ProxyData, the value is an OverloadValue:

 enum {
 accepted(0),
 overloaded(1),
 rejected(2),
 (255)
 } OverloadState;
 struct {
 OverloadState state;
 uint16 load;
 uint32 ttl;
 } OverloadValue;

 When "OverloadValue.state" is "accepted", the backend is accepting
 connections normally. The "overloaded" state indicates that the
 backend is accepting this connection, but would prefer not to receive
 additional connections. A value of "rejected" indicates that the
 backend did not accept this connection. When sending a "rejected"

Schwartz Expires May 3, 2020 [Page 7]

Internet-Draft TLS-LB October 2019

 response, the backend SHOULD close the connection without sending a
 ServerHello.

 "OverloadValue.load" indicates the load fraction of the responding
 backend server, with 65535 indicating maximum load.

 The load balancer SHOULD treat this information as valid for
 "OverloadValue.ttl" seconds, or until it receives another
 OverloadValue from that server.

 Load balancers that have multiple available backends for an origin
 SHOULD avoid connecting to servers that are in the "overloaded" or
 "rejected" state. When a connection is rejected, the load balancer
 MAY retry that connection by sending the ClientHello to a different
 backend server. When multiple servers are in the "accepted" state,
 the load balancer MAY use "OverloadValue.load" to choose among them.

 When there is a server in an unknown state (i.e. a new server or one
 whose last TTL has expired), the load balancer SHOULD direct at least
 one connection to it, in order to refresh its OverloadState.

 If all servers are in the "overloaded" or "rejected" state, the load
 balancer SHOULD drop the connection.

6.7. ratchet

 If the backend server is reachable without traversing the load
 balancer, and an adversary can observe packets on the link between
 the load balancer and the backend, then that adversary can execute a
 replay flooding attack, sending the backend server duplicate copies
 of observed EncryptedProxyData and ClientHello. This attack can
 waste server resources on the Diffie-Hellman operations required to
 process the ClientHello, resulting in denial of service.

 The "ratchet" extension reduces the impact of such an attack on the
 backend server by allowing the backend to reject these duplicates
 after decrypting the ProxyData. (This decryption uses only a
 symmetric cipher, so it is expected to be much faster than typical
 Diffie-Hellman operations.) Its upstream payload consists of a
 RatchetValue:

 struct {
 uint64 index;
 uint64 floor;
 } RatchetValue;

Schwartz Expires May 3, 2020 [Page 8]

Internet-Draft TLS-LB October 2019

 A RatchetValue is scoped to a single backend server and
 "psk_identity". Within that scope, the load balancer initializes
 "index" to a random value, and executes the following procedure:

 1. For each new forwarded connection (to the same server under the
 same "psk_identity"), increment "index".

 2. Set "floor" to the "index" of the earliest connection that has
 not yet been connected or closed.

 The backend server initializes "floor" to the first
 "RatchetValue.floor" it receives (under a "psk_identity"), and then
 executes the following procedure for each incoming connection:

 1. Define "a >= b" if the most significant bit of "a - b" is 0.

 2. Let "newValue" be the RatchetValue in the ProxyData.

 3. If "newValue.index < floor", ignore the connection.

 4. If "newValue.floor >= floor", set "floor" to "newValue.floor".

 5. OPTIONALLY, ignore the connection if "newValue.index" has been
 seen recently. This can be implemented efficiently by keeping
 track of any "index" values greater than "floor" that appear to
 have been skipped.

 With these measures in place, replays can be rejected without
 processing the ClientHello.

 In principle, this replay protection fails after 2^64 connections
 when the "floor" value wraps. On a backend server that averages 10^9
 new connections per second, this would occur after 584 years. To
 avoid this replay attack, load balancers and backends SHOULD
 establish a new PSK at least this often.

 Backends that are making use of the "ratchet" extension SHOULD
 include an empty "ratchet" extension in their downstream ProxyData.

7. Protocol wire format

 When forwarding a TLS stream over TCP, the load balancer SHOULD
 prepend a TLSPlaintext whose "content_type" is XX (proxy_header) and
 whose "fragment" is the EncryptedProxyData.

 Following this proxy header, the load balancer MUST send the full
 contents of the TCP stream, exactly as received from the client. The
 backend will observe the proxy header, immediately followed by a

Schwartz Expires May 3, 2020 [Page 9]

Internet-Draft TLS-LB October 2019

 TLSPlaintext containing the ClientHello. The backend will decrypt
 the EncryptedProxyData using the ClientHello as associated data, and
 process the ClientHello and the remainder of the stream as standard
 TLS.

 Similarly, the backend SHOULD reply with the downstream
 EncryptedProxyData in a proxy header, followed by the normal TLS
 stream, beginning with a TLSPlaintext frame containing the
 ServerHello. If the downstream ProxyHeader is not present, has an
 unrecognized version number, or produces an error, the load balancer
 SHOULD proxy the rest of the stream regardless.

8. Security considerations

8.1. Integrity

 This protocol is intended to provide both parties with a strong
 guarantee of integrity for the metadata they receive. For example,
 an active attacker cannot take metadata intended for one stream and
 attach it to another, because each stream will have a unique
 ClientHello, and the metadata is bound to the ClientHello by AEAD.

 One exception to this protection is in the case of an attacker who
 deliberately reissues identical ClientHello messages. An attacker
 who reuses a ClientHello can also reuse the metadata associated with
 it, if they can first observe the EncryptedProxyData transferred
 between the load balancer and the backend. This could be used by an
 attacker to reissue data originally generated by a true client (e.g.
 as part of a 0-RTT replay attack), or it could be used by a group of
 adversaries who are willing to share a single set of client secrets
 while initiating different sessions, in order to reuse metadata that
 they find helpful.

 Backends that are sensitive to this attack SHOULD implement the
 "ratchet" mechanism in Section 6.7, including the optional defenses.

8.2. Confidentiality

 This protocol is intended to maintain confidentiality of the metadata
 transferred between the load balancer and backend, especially the
 ESNI plaintext and the client IP address. An observer between the
 client and the load balancer does not observe this protocol at all,
 and an observer between the load balancer and backend observes only
 ciphertext.

 However, an adversary who can monitor both of these links can easily
 observe that a connection from the client to the load balancer is
 shortly followed by a connection from the load balancer to a backend,

Schwartz Expires May 3, 2020 [Page 10]

Internet-Draft TLS-LB October 2019

 with the same ClientHello. This reveals which backend server the
 client intended to visit. In many cases, the choice of backend
 server could be the sensitive information that ESNI is intended to
 protect.

8.3. Fingerprinting

 Connections to different domains might be distinguishable by the
 cleartext contents of the ServerHello, such as "cipher_suite" and
 "server_share.group". Load balancer operators with ESNI support
 SHOULD provide backend operators with a list of cipher suites and
 groups to support, and a preference order, to avoid different
 backends having distinctive behaviors.

9. IANA Considerations

 IANA will be directed to add the following allocation to the TLS
 ContentType registry:

 +-------+--------------+---------+---------------+
 | Value | Description | DTLS-OK | Reference |
 +-------+--------------+---------+---------------+
 | XX | proxy_header | N | This document |
 +-------+--------------+---------+---------------+

 IANA will be directed to create a new "TLS ProxyExtensionType Values"
 registry on the TLS Extensions page. Values less than 0x8000 will be
 subject to the "RFC Required" registration procedure, and the rest
 will be "First Come First Served". To avoid codepoint exhaustion,
 proxy developers SHOULD pack all their nonstandard information into a
 single ProxyExtension.

10. References

10.1. Normative References

 [ESNI] Rescorla, E., Oku, K., Sullivan, N., and C. Wood,
 "Encrypted Server Name Indication for TLS 1.3", draft-

ietf-tls-esni-04 (work in progress), July 2019.

 [I-D.kinnear-tls-client-net-address]
 Kinnear, E., Pauly, T., and C. Wood, "TLS Client Network
 Address Extension", draft-kinnear-tls-client-net-

address-00 (work in progress), March 2019.

https://datatracker.ietf.org/doc/html/draft-ietf-tls-esni-04
https://datatracker.ietf.org/doc/html/draft-ietf-tls-esni-04
https://datatracker.ietf.org/doc/html/draft-kinnear-tls-client-net-address-00
https://datatracker.ietf.org/doc/html/draft-kinnear-tls-client-net-address-00

Schwartz Expires May 3, 2020 [Page 11]

Internet-Draft TLS-LB October 2019

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC7685] Langley, A., "A Transport Layer Security (TLS) ClientHello
 Padding Extension", RFC 7685, DOI 10.17487/RFC7685,
 October 2015, <https://www.rfc-editor.org/info/rfc7685>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [TLS13] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

10.2. Informative References

 [PROXY] Tarreau, W., "The PROXY protocol", March 2017,
 <https://www.haproxy.org/download/1.8/doc/proxy-

protocol.txt>.

Appendix A. Acknowledgements

 This is an elaboration of an idea proposed by Eric Rescorla during
 the development of ESNI. Thanks to David Schinazi, David Benjamin,
 and Piotr Sikora for suggesting important improvements.

Author's Address

 Benjamin M. Schwartz
 Google LLC

 Email: bemasc@google.com

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc7685
https://www.rfc-editor.org/info/rfc7685
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://datatracker.ietf.org/doc/html/rfc8446
https://www.rfc-editor.org/info/rfc8446
https://www.haproxy.org/download/1.8/doc/proxy-protocol.txt
https://www.haproxy.org/download/1.8/doc/proxy-protocol.txt

Schwartz Expires May 3, 2020 [Page 12]

