
Network Working Group S. Leonard
Internet-Draft Penango, Inc.
Intended status: Informational June 29, 2014
Expires: December 31, 2014

A Uniform Resource Name (URN) Namespace for Certificates
draft-seantek-certspec-03

Abstract

 Digital certificates are used in many systems and protocols to
 identify and authenticate parties. This document describes a Uniform
 Resource Name (URN) namespace that identifies certificates. These
 URNs can be used when certificates need to be identified by value or
 reference.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on December 31, 2014.

Copyright Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Leonard Expires December 31, 2014 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft certspec June 2014

1. Introduction

 Digital certificates are used in many systems and protocols to
 identify and authenticate parties. Security considerations
 frequently require that the certificate must be identified with
 certainty, because selecting the wrong certificate will lead to
 validation errors (resulting in denial of service), or in improper
 credential selection (resulting in unwanted disclosure or
 substitution attacks). The goal of this namespace is to provide a
 uniform syntax for identifying certificates with precision in Uniform
 Resource Identifiers (URIs), specifically Uniform Resource Names
 (URNs).

 Using this syntax, any protocol or system that refers to a
 certificate in a textual format can unambiguously identify that
 certificate by value or reference. Implementers that parse these
 URNs can resolve them into actual certificates. Examples include:

 urn:cert:SHA-1:3ea3f070773971539b9dbf1b98c54be3a4f0f3c8
 urn:cert:issuersn:cn=AcmeIssuingCompany,st=California,c=US;0134F1
 urn:cert:base64:MIIBHDCBxaADAgECAgIAmTAJBgcqhkjOPQQBMBAxDjAMBgNVBAMT
 BVNtYWxsMB4XDTEzMTEwNTE5MjUzM1oXDTE2MDgwMjE5MjUzM1ow
 EDEOMAwGA1UEAxMFU21hbGwwWTATBgcqhkjOPQIBBggqhkjOPQMB
 BwNCAAS2kwRQ1thNMBMUq5d_SFdFr1uDidntNjXQrc3D_QpzYWkE
 WDsxeY8xcbl2m0TBO4TJ_2CevdoOX0OMIOaqJ_TNoxAwDjAMBgNV
 HRMBAf8EAjAAMAkGByqGSM49BAEDRwAwRAIgPyF8ok6h2NxMQ4uJ
 OcGcXYcvZ1ua0kB-rIv0omHcfNECICKwpTp3LDIwhlHTQ_DulQDD
 eYn-lnYQVc2Gm1WKAuxp

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119.

2. Motivation and Purpose

 Although certificates have diverse applications, there has been no
 uniform way to refer to a certificate in text. De-facto standards
 such as PEM [RFC1421] and PKIX text encoding [PT] are used to include
 whole certificates in textual formats, but this practice is
 impractical for a variety of use cases. Certificates that identify
 long public keys (e.g., 2048-bit RSA keys) and that contain required
 and recommended PKIX extensions can easily exceed many kilobytes in
 length.

 The purpose of this document is to provide a uniform textual format
 for identifying individual certificates. Certificate specifications,

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc1421

Leonard Expires December 31, 2014 [Page 2]

Internet-Draft certspec June 2014

 or "certspecs", are not designed or intended to provide a search tool
 or query language to match multiple certificates; the goal is to
 replace data elements that would otherwise have to include whole
 certificates in order to identify them. When a URN resolver resolves
 a "certspec", the resolver's output is expected to be a single
 certificate or nothing.

2.1. Static Identification

 Identifying a specific certificate by reference or value allows
 diverse applications to have a common syntax. For example,
 applications can store certspecs as local or shared preferences, so
 that users can edit them without resorting to application-specific
 storage formats or relying on the availability of particular
 protocols represented by URLs (such as http:, ldap:, file:, or ni:
 schemes). When conveyed in protocol, a certspec can identify a
 specific certificate to a client or server using text-based formats
 such as YAML, XML, JSON, and others. The format described in this
 document is intended to be readily reproducible by users using common
 certificate processing tools, so that users can easily create,
 recognize, compare, and reproduce them at a glance. For example, the
 hash-based identifications use hexadecimal encoding so that a user
 can easily compose or compare an URN with a simple copy-and-paste
 operation. Accordingly, some tradeoffs have been made in favor of
 human usability.

2.2. Resolution to Context-Appropriate Schemes

 When the certificate represented by a certspec needs to be resolved,
 an application can resort to any number of schemes. For example,
 when the certificate is identified by hash, the application can
 resolve the certspec to a Named Information (ni:) URI [RFC6920] for
 further processing. When the certificate is identified by issuer and
 serial number, the application can resolve the certspec to an LDAP
 service (for example,
 ldap:///cn=ExampleCA,o=ExampleCo,st=California,c=US).

3. One-Per-Kind

 A certspec is intended to identify a single certificate
 unambiguously. A certificate has no more than one corresponding
 certspec per certspec type; however, a certificate is expected to
 have an array of certspecs that identify the certificate. The choice
 of which certspec to use in a given situation is context-specific.

https://datatracker.ietf.org/doc/html/rfc6920

Leonard Expires December 31, 2014 [Page 3]

Internet-Draft certspec June 2014

4. certspec Syntax

 A certspec is a URN that complies with the modern URN syntax
 [URNBIS], with a few accommodations for usability. Following
 [URNBIS], NID is "cert", and the Namespace Specific String (NSS) has
 the ABNF below. The query and fragment productions are relevant to
 certspecs; these are discussed in Section 7. Rules from [RFC5234]
 are also used.

NSS = certspec-hash / certspec-content / certspec-el /
 other-certspec-type ":" other-certspec-value

hexOctet = 2HEXDIG

certspec-hash = "SHA-1" ":" 20hexOctet /
 "SHA-256" ":" 32hexOctet /
 "SHA-384" ":" 48hexOctet /
 "SHA-512" ":" 64hexOctet

certspec-content = "hex" ":" 1*hexOctet /
 "base64" ":" base64url / base64relaxed

base64url = 1*base64urlcharP
base64relaxed = 1*(base64urlcharP / "+" / "/") ; not pchar

base64urlchar = ALPHA / DIGIT / "-" / "_" / pct-encoded ; from RFC 3986

certspec-el = "issuersn" ":" distinguishedNameUC ";" serialNumber /
 "ski" ":" 1*(hexOctet)

distinguishedNameUC = 1*pchar-no-semi / ; close to RFC 3986
 distinguishedNameUCrelaxed
serialNumber = 1*hexOctet

; semicolon omitted, since it delimits serialNumber
pchar-no-semi = unreserved / pct-encoded / "!" / "$" / "&" / "'" /
 "(" / ")" / "*" / "+" / "," / "=" / ":" / "@"

distinguishedNameUCrelaxed = 1*(pchar / WSP / UTFMB) ; not pchar
 ; from RFC 4512

certspec-type = scheme ; from RFC 3986
certspec-value = 1*pchar ; from RFC 3986

other-certspec-type = certspec-type
other-certspec-value = certspec-value

 Figure 1: certspec ABNF

https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc4512
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc3986

Leonard Expires December 31, 2014 [Page 4]

Internet-Draft certspec June 2014

4.1. certspec-type and certspec-value

 A certspec NSS is comprised of two parts: certspec-type and certspec-
 value. The certspec-type identifies the certificate specification
 type. The acceptable characters for spec-type are the same as those
 in an URI scheme name (Section 3.1 in [RFC3986]); types are compared
 case-insensitively. The certspec-value identifies the certificate
 specification value. The acceptable characters for spec-value depend
 on the spec-type, but are never more than pchar except for relaxed
 human usability reasons in a few cases discussed below. To simplify
 processing in several other cases, characters are significantly
 restricted to the point that percent-encoding is prohibited. In such
 cases, a generator MUST NOT generate percent-encoded values, and a
 parser MUST treat the production as an error.

 Several certspecs use hexadecimal encodings of octets. Generally: if
 the hex octets are malformed (whether in the source material, such as
 the corresponding certificate element, or in the hex text), the
 certspec is invalid.

5. Standard Certificate Specifications

 Standard certificate specifications are intended for interchange as
 durable, persistent, unique, and intuitive (to users and developers)
 identifiers for individual certificates--the exact criteria for URNs.
 This section provides four cryptographic hash-based certspecs, two
 content-based certspecs, and two element-based certspecs.

5.1. Cryptographic Hash-Based Specifications

 A cryptographic hash or "fingerprint" of a certificate uniquely
 identifies that certificate. For hash-based certspecs, the hash is
 computed over the octets of the DER encoding of the certificate,
 namely, the Certificate type in Section 4.1 of [RFC5280]. The
 certspec-value is the hexadecimal encoding of the hash value octets.
 For example, a 256-bit SHA-256 hash is represented by exactly 32 hex
 octets, or 64 hex characters.

 Lexical equivalence of two hash-based certspecs that have the same
 certspec-type SHALL be determined by a case-insensitive comparison of
 certspec-values, or by converting the hexadecimal certspec-values to
 octets and comparing exact equivalence of the octets. A conforming
 implementation MUST reject values that contain non-hex digits, such
 as spaces, tabs, hyphens, percent-encoded characters, or anything
 else.

 Conforming implementations to this Internet-Draft MUST process these
 hash-based certspecs, unless security considerations dictate

https://datatracker.ietf.org/doc/html/rfc3986#section-3.1
https://datatracker.ietf.org/doc/html/rfc5280#section-4.1

Leonard Expires December 31, 2014 [Page 5]

Internet-Draft certspec June 2014

 otherwise. Acceptable reasons for refusing to process a certspec
 include a) the local policy prohibits use of the hash, or b) the hash
 has known cryptographic weaknesses, such as a preimage attacks, which
 weaken the cryptographic uniqueness guarantees of the hash.

5.1.1. SHA-1

 The certspec-type is "SHA-1". The hash is computed using SHA-1
 [SHS].

5.1.2. SHA-256

 The certspec-type is "SHA-256". The hash is computed using SHA-256
 [SHS].

5.1.3. SHA-384

 The certspec-type is "SHA-384". The hash is computed using SHA-384
 [SHS].

5.1.4. SHA-512

 The certspec-type is "SHA-512". The hash is computed using SHA-512
 [SHS].

5.2. Content-Based Specifications

 A certificate may be identified reflexively by its constituent
 octets. For small-to-medium certificates, identifying the
 certificate by embedding it in the certspec will be computationally
 efficient and resistant to denial-of-service attacks (by always being
 available). A conforming implementation MUST implement base64 and
 hex specs.

 The octets of a certificate are the octets of the DER encoding of the
 certificate, namely, the Certificate type in Section 4.1 of
 [RFC5280]. The DER encoding includes tag and length octets, so it
 always starts with 30h (the tag for SEQUENCE).

 Lexical equivalence of two certspecs that are value-based SHALL be
 determined by decoding the certspec-value to certificate octets, and
 comparing the octets for strict equivalence. Accordingly, it is
 possible that base64 and hex certspecs are lexically equivalent.

 Because users may end up copying and pasting base64 or hex-encoded
 certificates into certspecs, and because these certspecs will
 routinely exceed 72 characters, a production might contain embedded
 whitespace. If there are contexts where line breaks or other

https://datatracker.ietf.org/doc/html/rfc5280#section-4.1
https://datatracker.ietf.org/doc/html/rfc5280#section-4.1

Leonard Expires December 31, 2014 [Page 6]

Internet-Draft certspec June 2014

 whitespace must be allowed for practical reasons, the implementation
 should consider the URN in context as "a URN, possibly with embedded
 whitespace (which is ignored)".

5.2.1. base64

 The certspec-type is "base64". The certspec-value is the base64url
 encoding of the certificate octets (Section 5 of [RFC4648]), but MAY
 be relaxed as follows. Unlike the data: URL [RFC2397], URN NSS
 productions are not supposed to have the "/" character, which is
 integral to standard base64. On the other hand, it is anticipated
 that users will want to copy-and-paste base64 encoded certificates--
 such as those produced by PKIX text encodings--directly into base64
 certspecs. Generators of base64 certspecs SHOULD emit base64url-
 encoded data, where the characters '-' and '_' refer to values 62 and
 63, respectively, and where the trailing equal signs '=' are absent.
 Alternatively, generators MAY emit base64 data with precent-encoding
 for the non-pchar conformant characters (specifically "/"). In any
 event, generators MUST NOT generate non-pchar conformant characters
 (specifically "/"). Parsers of base64 certspecs that are not under
 strict URN conformance constraints MUST also accept '+' and '/' as
 values 62 and 63, respectively, and MUST accept trailing '='
 characters in conformance with standard base64. None of '+', '/', or
 '=' have reserved meanings in this certspec-type. This relaxed
 parsing rule is reflected in the base64relaxed production of
 Figure 1.

 Similarly, [URNBIS] states that non-reserved characters (in this
 case, alphanumerics) must not be "%"-encoded, but a lenient
 implementation MAY decode these "%"-encoded characters anyway. This
 document neither recommends nor discourages such leniency, but
 implementors should weigh the benefits and risks as discussed further
 in the Security Considerations (Section 11). Overall, percent-
 encoding in base64 certspecs is permissible because unlike most of
 the other certspecs, the complete base64 encoding is not expected to
 be human-readable or identifiable at a glance.

5.2.2. hex

 The certspec-type is "hex". The certspec-value is the hexadecimal
 encoding of the certificate octets. Percent-encoding is not allowed;
 implementations MUST NOT process percent-encoded values. The reasons
 are because percent-encoding would reduce the human readability of
 the certspec, and (marginally) increase the complexity of certspec
 parsers.

https://datatracker.ietf.org/doc/html/rfc4648#section-5
https://datatracker.ietf.org/doc/html/rfc2397

Leonard Expires December 31, 2014 [Page 7]

Internet-Draft certspec June 2014

5.3. Element-Based Specifications

 A certificate may be identified by certain data elements contained
 within it. The following certspecs reflect the traditional reliance
 of PKIX [RFC5280] and CMS [RFC5652] on a certificate's issuer
 distinguished name and serial number, or a certificate's subject key
 identifier.

 If some of an element-based certspec is based on the DER encoded part
 of a certificate, and if the encodings are incorrect, the URN is
 invalid.

5.3.1. issuersn: Issuer Name and Serial Number

 The certspec-type is "issuersn".

 The distinguishedNameUC production encodes the certificate's issuer
 distinguished name (DN) field in LDAP string format, whose characters
 are subsequently percent-encoded to conform to URN NSS syntax. The
 <distinguishedName> on which distinguishedNameUC is based is defined
 in [RFC4514], and <SEMI> is defined in [RFC4512]. [RFC4514] no
 longer separates relative distinguished names (RDNs) by semicolons,
 as required by its predecessor, [RFC2253]. Accordingly, ";" is used
 to separate the issuer's DN from the subject's serial number.

 Care should be taken in escaping and percent-encoding the relevant
 characters. In particular:

 "?" is permitted in a distinguishedName, but MUST NOT appear in a
 URN unless it delimits the query component (see [URNBIS]). Any
 "?" characters in distinguished names MUST be percent-encoded when
 placed in the certspec-value.

 "#" is used as a token at the beginning of the hexstring
 production for attributeValue data, but MUST NOT appear in a URN
 unless it delimits the fragment component (see [URNBIS]). Any "#"
 characters in distinguished names MUST be percent-encoded when
 placed in the certspec-value.

 "\" is the escape (ESC) character in LDAP strings (see [RFC4514]),
 but is not in the URI repetoire. Any "\" characters MUST be
 percent-encoded when placed in the certspec-value.

 For reference, only the following characters are permitted in
 distinguished names in the issuer production of a URN:

 ALPHA DIGIT - . _ ~ ! $ & ' () * + , = : @
 pct-encoded (% followed by two HEXDIG)

https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc5652
https://datatracker.ietf.org/doc/html/rfc4514
https://datatracker.ietf.org/doc/html/rfc4512
https://datatracker.ietf.org/doc/html/rfc4514
https://datatracker.ietf.org/doc/html/rfc2253
https://datatracker.ietf.org/doc/html/rfc4514

Leonard Expires December 31, 2014 [Page 8]

Internet-Draft certspec June 2014

 If human input is anticipated, an application MAY relax its
 processing as suggested in Appendix A.

 The serialNumber production is the hexadecimal encoding the DER-
 encoded contents octets of the CertificateSerialNumber (INTEGER,
 i.e., not the type or length octets) as specified in Section 4.1 of
 [RFC5280].

 A conforming implementation SHOULD implement this issuersn certspec.
 If the implementation implements it, the implementation MUST process
 serial numbers up to the same length as required by Section 4.1.2.2
 of [RFC5280] (20 octets), and MUST process distinguished name strings
 as required by [RFC4514], including the table of minimum
 AttributeType name strings that MUST be recognized. Additionally,
 implementations MUST process attribute descriptors specified in
 [RFC5280] (MUST or SHOULD), and [RFC5750] (specifically: E, email,
 emailAddress). For reference, a complete list of required attribute
 descriptors is provided in Appendix B. Implementations are
 encouraged to recognize additional attribute descriptors where
 possible. A sample list of such attribute descriptors is provided in

Appendix C.

 Lexical equivalence of two issuersn certspecs SHALL be determined by
 comparing the serialNumbers for exact equivalence, and comparing the
 issuer distinguished names for a match.

 The lexical equivalence of serialNumbers SHALL be determined by a
 case-insensitive comparison of them, or by converting the hexadecimal
 text to octets and comparing exact equivalence of the octets. A
 conforming implementation MUST reject values that contain non-hex
 digits, such as spaces, tabs, hyphens, percent-encoded characters, or
 anything else.

 The lexical equivalence of issuer distinguished names SHALL be
 determined by (percent-)decoding the URNs, followed by parsing the
 LDAP strings. The resulting distinguished names match if they
 satisfy the name matching requirements of [RFC5280] and [RFC4517].

5.3.2. ski: Subject Key Identifier

 The certspec-type is "ski". The certspec-value is the hexadecimal
 encoding of the certificate's subject key identifier, which is
 recorded in the certificate's Subject Key Identifier extension
 (Section 4.2.1.2 of [RFC5280]). The octets are the DER-encoded
 contents octets of the SubjectKeyIdentifier (OCTET STRING) extension
 value. A certificate that lacks a subject key identifier cannot and
 MUST NOT be identified using this spec.

https://datatracker.ietf.org/doc/html/rfc5280#section-4.1
https://datatracker.ietf.org/doc/html/rfc5280#section-4.1
https://datatracker.ietf.org/doc/html/rfc5280#section-4.1.2.2
https://datatracker.ietf.org/doc/html/rfc5280#section-4.1.2.2
https://datatracker.ietf.org/doc/html/rfc4514
https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc5750
https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc4517
https://datatracker.ietf.org/doc/html/rfc5280#section-4.2.1.2

Leonard Expires December 31, 2014 [Page 9]

Internet-Draft certspec June 2014

 Lexical equivalence of two ski certspecs SHALL be determined by a
 case-insensitive comparison of certspec-values, or by converting the
 hexadecimal certspec-values to octets and comparing exact equivalence
 of the octets. A conforming implementation MUST reject values that
 contain non-hex digits, such as spaces, tabs, hyphens, percent-
 encoded characters, or anything else.

 A conforming implementation MAY implement this ski spec.

6. Other Certificate Specifications

 The additional certificate specifications in this section are
 provided for applications to use as local identifiers that are
 useful, intuitive, or supportive of legacy systems or overriding
 design goals. These certspecs SHOULD NOT be used for interchange.

6.1. data (Reserved)

 The certspec-type is "data". This document reserves this spec-type
 for future use.

 An implementation may embed the contents of a data URL (data URI)
 into the certspec-value. Specifically:

 ; from RFC 2397
 certspec-value = [mediatype] [";base64"] "," data

 See [RFC2397]. In such a case, the mediatype SHOULD be "application/
 pkix-cert" since the data URL components identify a certificate;
 however, an implementation MAY be able to support other media types
 so long as a single certificate is extractable from the data
 production.

 Data URLs containing certificates generally will not conform to URN
 syntax "as-is". The considerations of stuffing base64-encoded
 content into URNs discussed in Section 5.2.1 apply to this certspec
 as well, bearing in mind that data URLs only contain traditional
 base64 (not base64url)-encoded data, or binary percent-encoded data.

 Because this certspec is content-based, an implementation can
 determine lexical equivalence with other content-based certspecs.

6.2. dbkey (Reserved)

 The spec-type is "dbkey". This document reserves this spec-type for
 future use.

https://datatracker.ietf.org/doc/html/rfc2397
https://datatracker.ietf.org/doc/html/rfc2397

Leonard Expires December 31, 2014 [Page 10]

Internet-Draft certspec June 2014

6.3. subject (Reserved)

 The certspec-type is "subject". The certspec-value is the RFC 4514
 LDAP string encoding of the certificate's subject distinguished name.
 Characters MAY be percent-encoded; implementations MUST process the
 percent-encoded characters in the certspec-value before further LDAP
 string processing. All the considerations of encoding the issuer
 field in Section 5.3.1 apply to this type.

7. Query and Fragment Productions

 [URNBIS] clarifies that the query and fragment productions of
 [RFC3986] apply to URNs. This document provides semantics for these
 productions, as applied to certificates.

 ; query for certspec URN
 certattrs = query ; from RFC 3986
 ; *(pchar / "/" / "?")

 ; fragment for certspec URN
 certpart = "v" / "sn" / "sig" / "issuer" / "notBefore " /
 "notAfter" / "subject" / "spki" /
 "ext" *(":" extoid *(":" extpart)) /
 "sigval" / other-certpart

 extoid = numericoid ; from RFC 4512
 extpart = fragment ; from RFC 3986
 other-certpart = fragment ; from RFC 3986

7.1. Equivalence Unaffected

 As a certspec identifies a single certificate, two certspecs are
 identical lexically or semantically if the NSS parts identify the
 same certificate. The query and fragment productions do not affect
 this equivalence.

7.2. Query (Attributes)

 A certspec URN can have attributes (i.e., metadata) that are
 associated with--but not instrinsic to--the certificate or its
 identifiers. The syntax is intended primarily to convey certificate
 metadata such as attributes found in PKCS #9, PKCS #11, PKCS #12, and
 particular implementations of cryptographic libraries. This document
 does not further define certattrs; the characters of certattrs can be
 any valid query character from [RFC3986].

https://datatracker.ietf.org/doc/html/rfc4514
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc4512
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc3986

Leonard Expires December 31, 2014 [Page 11]

Internet-Draft certspec June 2014

7.3. Fragment

 A certspec can include a fragment that identifies a part of interest
 within the identified certificate. For example, a user agent may
 wish to draw attention to the notAfter time for an expired
 certificate. This document defines the following fragments
 ("certparts"):

 +------------+---+
 | Identifier | Certificate Part (ASN.1 identifier) |
 +------------+---+
 | v | tbsCertificate.version |
 | sn | tbsCertificate.serialNumber |
 | sig | tbsCertificate.signature; also signatureAlgorithm |
 | issuer | tbsCertificate.issuer |
 | notBefore | tbsCertificate.validity.notBefore |
 | notAfter | tbsCertificate.validity.notAfter |
 | subject | tbsCertificate.subject |
 | spki | tbsCertificate.subjectPublicKeyInfo |
 | ext | tbsCertificate.extensions |
 | ext:<OID> | tbsCertificate.extensions |
 | | {Extension matching extoid == extnID}* |
 | sigval | signatureValue |
 +------------+---+

 * The particular extension in the Extensions SEQUENCE is identified
 by OID only; there are no textual identifiers.

 Table 1: certparts

 The certparts defined in the table above are case-insensitive.
 Should additional certparts be required, a future document may
 specify additional certparts that match the other-certpart
 production.

8. Registration Template

 Namespace ID:
 cert

 Registration Information:
 Version: 1
 Date: 2014-06-29

 Declared registrant of the namespace:
 IETF

 Declaration of syntactic structures:

Leonard Expires December 31, 2014 [Page 12]

Internet-Draft certspec June 2014

 The structure of the Namespace Specific String is provided
 above.

 Relevant ancillary documentation:
 Certificates are defined by [RFC5280] and [X.509].

 Identifier uniqueness considerations:
 The certspec-type is assigned by IANA through the IETF
 consensus process, so this process guarantees uniqueness of
 these identifiers. The uniqueness of the certspec-value
 is guaranteed by the definition of the value for
 the certspec-type. For cryptographic hash-based certspecs, the
 cryptographic hash algorithm itself guarantees uniquess.
 For contents-based certspecs, the inclusion
 of the certificate in the URN itself guarantees uniqueness.
 For certspecs that identify certificates by certificate data
 elements, as long as certificate issuers issue
 certificates correctly, and the resolver's database of
 certificates and the resolver's implementation
 of certification path validation [RFC5280 sec. 6] are
 consistent, no cert URN will identify two different
 certificates.

 Identifier persistence considerations:
 A certificate is a permanent digital artifact, irrespective of
 its origin. As the URN records only information that is
 derivable from the certificate itself, such as one of its
 cryptographic hashes, the binding between the URN and the
 certificate is permanent.
 Once the set of cert URNs identify a particular
 certificate, that fact will never change.

 Process of identifiers assignment:
 Generating a certspec (cert URN) does not require that
 a registration authority be contacted.

 Process for identifier resolution:
 This Internet Draft does not specify a resolution service
 for certspecs. However, resolving certificate references
 to actual certificates is a common practice with a wide number
 of offline and online implementations. See for example
 [RFC5280] sec. 4.2.2.1.

 Rules for Lexical Equivalence:
 Certspecs (cert URNs) are lexically equivalent if they both
 have the same certspec-type (compared case-insensitively)
 and the same certspec-value, and therefore impliedly point
 to the same certificate.

https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc5280

Leonard Expires December 31, 2014 [Page 13]

Internet-Draft certspec June 2014

 Comparison of certspec-values depends on the rules of the
 certspec.
 Additionally, the contents-based certspecs, base64 and hex
 (and--if implemented--the data certspec), can be compared for
 lexical equivalence between each other by decoding the
 certspec-value to the underlying DER-encoded certificate
 octets, and comparing these octets for exact equivalence.
 Query ("certattrs") and fragment ("certpart") components
 do not affect certificate identification, and therefore
 do not affect lexical equivalence.

 Certspecs are semantically equivalent if they both resolve
 to the same certificate.

 Conformance with URN Syntax:
 The URN of this namespace conforms to URN Syntax
 [URNBIS] and Uniform Resource Identifier (URI): Generic Syntax
 [RFC3986].

 Validation mechanism:
 Each certspec defines the validation mechanism for its respective
 value. It may be appreciated that validation of the URN is a
 completely different process from the Certification Path
 Validation Algorithm [RFC5280] sec. 6, which determines whether
 the *certificate* is valid.

 Scope:
 Global.

9. Use of certspec outside URN

 certspec is useful wherever a system may need to include or refer to
 a certificate. Some implementations may wish to refer to a
 certificate without enabling all of the expressive power (and
 security considerations) of URIs. Accordingly, this section provides
 a uniform method for using a certspec outside of a URN. Examples:

 urn:cert:SHA-1:3ea3f070773971539b9dbf1b98c54be3a4f0f3c8
 urn:cert:issuersn:cn=AcmeIssuingCompany,st=California,c=US;0134F1

 To use certspec outside of a URI (URN) context, simply omit the
 prefix "urn:cert:". All other lexical rules apply, including
 percent-encoding, query (certattrs), and fragment (certparts). Care
 should be taken to process "?" and "#" in particular, since they
 delimit the attributes and parts. A conforming implementation of raw
 certspecs MUST permit the prefix "urn:cert:" in addition to the raw
 certspec. Additionally, this document guarantees that the the
 certspec-types "urn" and "cert" are RESERVED and will never be used.

https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc5280

Leonard Expires December 31, 2014 [Page 14]

Internet-Draft certspec June 2014

 However, implementors must take note that a raw certspec is not a
 valid URI, because certspec-types are not registered URI schemes and
 do not have the same semantics as URIs.

10. IANA Considerations

 This document requests the assignment of formal URN namespace ID
 "cert".

 [[TODO: Consider...This document requests the creation of a registry
 to record specs.]] New certspec types shall be ratified by the IETF
 consensus process. [[Some commenters have suggested the creation of
 a registry for certspec types. This is under consideration. One
 drawback is that it is desirable to limit the certspec types for
 interoperability and recognizability reasons--probably the only
 reason to include more types is for using new hashes as old hash
 algorithms become cryptanalyzed. The current view of the author is
 that no registry should be created.]]

11. Security Considerations

 Digital certificates are important building blocks for
 authentication, integrity, authorization, and (occasionally)
 confidentiality services. Accordingly, identifying digital
 certificates incorrectly can have significant security ramifications.

 When using hash-based certspecs, the cryptographic hash algorithm
 MUST be implemented properly and SHOULD have no known attack vectors.
 For this reason, algorithms that are considered "broken" as of the
 date of this Internet-Draft, such as MD5 [RFC6151], are precluded
 from being valid certspecs. The registration of a particular
 algorithm spec in this namespace does NOT mean that it is acceptable
 or safe for every usage, even though this Internet-Draft requires
 that a conforming implementation MUST implement certain specs.

 When using content-based certspecs, the implementation MUST be
 prepared to process URNs of arbitrary length. As of this writing,
 useful certificates rarely exceed 10KB, and most implementations are
 concerned with keeping certificate sizes down. However, a
 pathological or malicious certificate could easily exceed these
 metrics. If an URN resolver cannot process a URN's full length, it
 MUST reject the certspec.

 When using element-based certspecs, the implementation MUST be
 prepared to deal with multiple found certificates that contain the
 same certificate data, but are not the same certificate. In such a
 case, the implementation MUST segregate these certificates so that it
 only resolves the URN to certificates that it considers valid or

https://datatracker.ietf.org/doc/html/rfc6151

Leonard Expires December 31, 2014 [Page 15]

Internet-Draft certspec June 2014

 trustworthy (as discussed further below). If, despite this
 segregation, multiple valid or trustworthy certificates match the
 certspec, the certspec MUST be rejected, because a certspec is meant
 to identify exactly one certificate (not a family of certificates).

 Certificates identified by certspecs should only be used with an
 analysis of their validity, such as by computing the Certification
 Path Validation Algorithm ([RFC5280] sec. 6) or by other means. For
 example, if a certificate database contains a set of certificates
 that it considers inherently trustworthy, then the inclusion of a
 certificate in that set makes it trustworthy, regardless of the
 results of the Certification Path Validation Algorithm. Such a
 database is frequently used for "Root CA" lists.

12. References

12.1. Normative References

 [LDAPDESC]
 IANA, "LDAP Parameters: Object Identifier Descriptors",
 <http://www.iana.org/assignments/

ldap-parameters#ldap-parameters-3>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2141] Moats, R., "URN Syntax", RFC 2141, May 1997.

 [RFC2397] Masinter, L., "The "data" URL scheme", RFC 2397, August
 1998.

 [RFC3406] Daigle, L., van Gulik, D., Iannella, R., and P. Faltstrom,
 "Uniform Resource Names (URN) Namespace Definition
 Mechanisms", BCP 66, RFC 3406, October 2002.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66, RFC

3986, January 2005.

 [RFC4512] Zeilenga, K., "Lightweight Directory Access Protocol
 (LDAP): Directory Information Models", RFC 4512, June
 2006.

 [RFC4514] Zeilenga, K., "Lightweight Directory Access Protocol
 (LDAP): String Representation of Distinguished Names", RFC

4514, June 2006.

https://datatracker.ietf.org/doc/html/rfc5280
http://www.iana.org/assignments/ldap-parameters#ldap-parameters-3
http://www.iana.org/assignments/ldap-parameters#ldap-parameters-3
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2141
https://datatracker.ietf.org/doc/html/rfc2397
https://datatracker.ietf.org/doc/html/bcp66
https://datatracker.ietf.org/doc/html/rfc3406
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc4512
https://datatracker.ietf.org/doc/html/rfc4514
https://datatracker.ietf.org/doc/html/rfc4514

Leonard Expires December 31, 2014 [Page 16]

Internet-Draft certspec June 2014

 [RFC4517] Legg, S., "Lightweight Directory Access Protocol (LDAP):
 Syntaxes and Matching Rules", RFC 4517, June 2006.

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, October 2006.

 [RFC5234] Crocker, D. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234, January 2008.

 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, May 2008.

 [RFC5750] Ramsdell, B. and S. Turner, "Secure/Multipurpose Internet
 Mail Extensions (S/MIME) Version 3.2 Certificate
 Handling", RFC 5750, January 2010.

 [SHS] National Institute of Standards and Technology, "Secure
 Hash Standard", Federal Information Processing Standard
 (FIPS) 180-4, March 2012,
 <http://csrc.nist.gov/publications/fips/fips180-4/

fips-180-4.pdf>.

 [URNBIS] Saint-Andre, P., "Uniform Resource Name (URN) Syntax",
draft-ietf-urnbis-rfc2141bis-urn-07 (work in progress),

 January 2014.

12.2. Informative References

 [PT] Josefsson, S. and S. Leonard, "Text Encodings of PKIX and
 CMS Structures", draft-josefsson-pkix-textual-02 (work in
 progress), April 2014.

 [RFC1421] Linn, J., "Privacy Enhancement for Internet Electronic
 Mail: Part I: Message Encryption and Authentication
 Procedures", RFC 1421, February 1993.

 [RFC2253] Wahl, M., Kille, S., and T. Howes, "Lightweight Directory
 Access Protocol (v3): UTF-8 String Representation of
 Distinguished Names", RFC 2253, December 1997.

 [RFC5652] Housley, R., "Cryptographic Message Syntax (CMS)", STD 70,
RFC 5652, September 2009.

 [RFC6151] Turner, S. and L. Chen, "Updated Security Considerations
 for the MD5 Message-Digest and the HMAC-MD5 Algorithms",

RFC 6151, March 2011.

https://datatracker.ietf.org/doc/html/rfc4517
https://datatracker.ietf.org/doc/html/rfc4648
https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc5750
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
https://datatracker.ietf.org/doc/html/draft-ietf-urnbis-rfc2141bis-urn-07
https://datatracker.ietf.org/doc/html/draft-josefsson-pkix-textual-02
https://datatracker.ietf.org/doc/html/rfc1421
https://datatracker.ietf.org/doc/html/rfc2253
https://datatracker.ietf.org/doc/html/rfc5652
https://datatracker.ietf.org/doc/html/rfc6151

Leonard Expires December 31, 2014 [Page 17]

Internet-Draft certspec June 2014

 [RFC6920] Farrell, S., Kutscher, D., Dannewitz, C., Ohlman, B.,
 Keranen, A., and P. Hallam-Baker, "Naming Things with
 Hashes", RFC 6920, April 2013.

Appendix A. Relaxed Processing for Issuer Distinguished Name

 If human input is anticipated, an application may relax its
 processing of the issuer distinguished name in the issuersn spec.
 The following techniques will not produce a strictly conforming
 certspec URN, but may prove useful in mapping borderline inputs to
 valid URNs (and therefore, to specific certificates). Most of these
 techniques are reflected in the distinguishedNameUCrelaxed
 production.

 A real-world LDAP string will likely contain spaces, such as between
 words. Parsers SHOULD accept spaces when parsing this certspec;
 generators MAY emit spaces when strict conformance to URN syntax is
 less important than human readability (for example, when the URN is
 rendered for display, or in cases where the URN is expected to be
 handled by humans).

 Distinguished name attribute values may include Unicode characters
 outside of the US-ASCII range (0x00-0x7F), as well as characters that
 need to be escaped with [RFC4514] rules. The interaction between
 URNs, LDAP strings, and human usability allows for multiple
 representations of these characters, two of which are strictly
 conformant and one of which should be anticipated for human input.

 At the LDAP string level, a non-ASCII character can be a UTF-8
 sequence, or can be escaped with "\" followed by two hex digits for
 each UTF-8 octet in the sequence. At the URN level, a UTF-8 sequence
 must be converted to "%" followed by two hex digits for each UTF-8
 octet in the sequence; if the characters are already escaped, "\"
 must be converted to %5C.

 Example Attribute:

 Name: sn
 Value: E. Mu1oz$el<Toro?
 <1> is actually U+00F1 Latin Small Letter N With Tilde,
 UTF-8 encoded as octets 0xC3 0xB1.
 $ is sub-delim; it may appear in a URN assigned-name.
 < is required to be escaped per LDAP string rules.
 ? is gen-delim; it may not appear in a URN assigned-name.

 Conformant LDAP Strings:

https://datatracker.ietf.org/doc/html/rfc6920
https://datatracker.ietf.org/doc/html/rfc4514

Leonard Expires December 31, 2014 [Page 18]

Internet-Draft certspec June 2014

 sn=E. Mu1oz$el\<Toro?
 sn=E. Mu\C3\B1oz$el\<Toro?

 Conformant URN Productions:

 urn:cert:issuersn:sn=E.%20Mu%C3%B1oz$el%5C%3CToro%3F;22
 urn:cert:issuersn:sn=E.%20Mu%5CC3%5CB1oz$el%5C%3CToro%3F;22

 Humans will likely supply (and UIs will likely display) characters
 without the requisite escaping. Therefore, a parser that accepts
 human input SHOULD be prepared to accept raw UTF-8 characters and
 reserved characters that are not percent-encoded per URN rules.
 However, such a parser SHOULD strictly reject sequences that do not
 conform to LDAP string [RFC4514] rules:

 urn:cert:issuersn:sn=E. Mu1oz$el\%3CToro%3F;22

 In the example above, " " is not percent-encoded, 1 (n with tilde) is
 neither LDAP-escaped nor percent-encoded, and \ is not percent-
 encoded. Contextually, however, the intent is obvious. In contrast,
 the escape character \ (whether or not percent-encoded) SHOULD
 precede < because without it, the string does not conform to
 [RFC4514]. The ? character SHOULD remain percent-encoded as %3F
 because otherwise the suffix ;22 would be interpreted as the query
 component.

 URNs supplied by human input may include ";" as a delimiter between
 attributes, or if escaped, within attribute values. A strictly
 conformant certspec parser will reject such inputs. However, a
 parser specifically designed to process issuer distinguished names
 MAY distinguish these semicolons from the serial number separator by
 searching backwards in the string, skipping any query or fragment
 components. The last semicolon would be treated as the separator,
 while other semicolons would be treated as parts of the issuer LDAP
 string.

Appendix B. Mandatory Attribute Descriptors for issuersn certspec

 As per [RFC4514], attribute descriptors case-insensitive. A
 conformant implementation MUST recognize the attributes in the table
 below, both by the OIDs and by the names recorded in the LDAP
 Parameters: Object Identifier Descriptors registry [LDAPDESC].

 +----------------------------+-------------------------------+------+
 | OID | Names | RFC |
 +----------------------------+-------------------------------+------+
 | 2.5.4.3 | cn (CN) | 4514 |
 | | commonName | |

https://datatracker.ietf.org/doc/html/rfc4514
https://datatracker.ietf.org/doc/html/rfc4514
https://datatracker.ietf.org/doc/html/rfc4514

Leonard Expires December 31, 2014 [Page 19]

Internet-Draft certspec June 2014

2.5.4.7	l (L)	4514
	localityName	
2.5.4.8	st (ST)	4514
	(S)*	
	stateOrProvinceName	
2.5.4.10	o (O)	4514
	organizationName	
2.5.4.11	ou (OU)	4514
	organizationalUnitName	
2.5.4.6	c (C)	4514
	countryName	
2.5.4.9	street (STREET)	4514
	streetAddress	
0.9.2342.19200300.100.1.25	dc (DC)	4514
	domainComponent	
0.9.2342.19200300.100.1.1	uid (UID)	4514
	userId	
2.5.4.5	serialNumber (SERIALNUMBER)	5280
2.5.4.46	dnQualifier (DNQUALIFIER)	5280
2.5.4.4	sn (SN)	5280
	surname	
2.5.4.42	gn (GN)**	5280
	givenName	
2.5.4.12	(T)*	5280
	title	
2.5.4.43	(I)*	5280
	initials	
2.5.4.44	(GENQUALIFIER)*	5280
	generationQualifier	
	(GENERATIONQUALIFIER)	
2.5.4.65	(PNYM)*	5280
	pseudonym (PSEUDONYM)	
1.2.840.113549.1.9.1	(E)*	5750
	emailAddress	
	email	
 +----------------------------+-------------------------------+------+

 Names in parentheses are variations that are not assigned as such in
 [LDAPDESC]. Implementations MAY parse these names, but SHOULD NOT
 generate them.
 Names in ALL-CAPS may be emitted by some certificate-processing
 applications; these names are compatible with lowercase or mixed-case
 variations due to case-insensitivity.
 * Name may appear in some implementations, but is not in [LDAPDESC].
 ** Name commonly appears in implementations, but is RESERVED in
 [LDAPDESC].

 Table 2: Attribute Descriptors

Leonard Expires December 31, 2014 [Page 20]

Internet-Draft certspec June 2014

Appendix C. Recommended Attribute Descriptors for issuersn certspec

 As per [RFC4514], attribute descriptors case-insensitive. [[TODO:
 complete.]]

Author's Address

 Sean Leonard
 Penango, Inc.
 5900 Wilshire Boulevard
 21st Floor
 Los Angeles, CA 90036
 USA

 Email: dev+ietf@seantek.com
 URI: http://www.penango.com/

https://datatracker.ietf.org/doc/html/rfc4514
http://www.penango.com/

Leonard Expires December 31, 2014 [Page 21]

