
Network Working Group S. Leonard
Internet-Draft Penango, Inc.
Intended status: Standards Track June 8, 2016
Expires: December 10, 2016

String Specification for Certificates
draft-seantek-certspec-06

Abstract

 Digital certificates are used in many systems and protocols to
 identify and authenticate parties. This document describes a string
 format that identifies certificates, along with optional attributes.
 This string format has been engineered to work without re-encoding in
 a variety of protocol slots.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on December 10, 2016.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Leonard Expires December 10, 2016 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft certspec June 2016

Table of Contents

1. Introduction . 2
1.1. Requirements Language 3
1.2. Definitions . 3

2. Motivation and Purpose 4
2.1. Static Identification 4
2.2. Relationship with Other Specifications 5

3. certstring Syntax . 6
4. certspec Syntax . 6
4.1. certspec Type and Value 7

5. Standard Certificate Specifications 8
5.1. Cryptographic Hash-Based Specifications 8
5.2. Content-Based Specifications 9
5.3. Element-Based Specifications 10
5.4. Path-Based Specifications 12

6. Other Certificate Specifications 13
6.1. DBKEY (Reserved) . 14
6.2. SELECT (Reserved) . 14

7. Multiple certspecs (multispec) 14
8. Certificate Attributes (certattrs) 14
8.1. ABNF . 16
8.2. Mandatory Attribute Support 16
8.3. Canonicalization . 17

9. Whitespace . 17
10. Guidelines for Extending certspec 18
11. Use of certspec in Systems 19
12. IANA Considerations . 19
13. Security Considerations 19
14. References . 20
14.1. Normative References 20
14.2. Informative References 22

Appendix A. [[Omitted]] . 23
Appendix B. Mandatory Attribute Descriptors for Distinguished

 Names . 23
Appendix C. Recommended Attribute Descriptors for issuersn

 certspec . 25
Appendix D. Algorithm for Distinguishing Between (Public Key)

 Certificates and Attribute Certificates 25
 Author's Address . 27

1. Introduction

 Digital certificates [RFC5280] are used in many systems and protocols
 to identify and authenticate parties. Security considerations
 frequently require that the certificate must be identified with
 certainty, because selecting the wrong certificate will lead to
 validation errors (resulting in denial of service), or in improper

https://datatracker.ietf.org/doc/html/rfc5280

Leonard Expires December 10, 2016 [Page 2]

Internet-Draft certspec June 2016

 credential selection (resulting in unwanted disclosure or
 substitution attacks). The goal of this document is to provide a
 uniform syntax for identifying certificates with precision without
 re-encoding in a variety of protocol slots.

 Using this syntax, any protocol or system that refers to a
 certificate in a textual format can unambiguously identify that
 certificate by value or reference. Implementations that parse these
 strings can resolve them into actual certificates. Examples include:

 SHA-1:3ea3f070773971539b9dbf1b98c54be3a4f0f3c8
 ISSUERSN:cn=AcmeIssuingCompany,st=California,c=US;0134F1
 BASE64:MIIBHDCBxaADAgECAgIAmTAJBgcqhkjOPQQBMBAxDjAMBgNVBAMT
 BVNtYWxsMB4XDTEzMTEwNTE5MjUzM1oXDTE2MDgwMjE5MjUzM1ow
 EDEOMAwGA1UEAxMFU21hbGwwWTATBgcqhkjOPQIBBggqhkjOPQMB
 BwNCAAS2kwRQ1thNMBMUq5d/SFdFr1uDidntNjXQrc3D/QpzYWkE
 WDsxeY8xcbl2m0TBO4TJ/2CevdoOX0OMIOaqJ/TNoxAwDjAMBgNV
 HRMBAf8EAjAAMAkGByqGSM49BAEDRwAwRAIgPyF8ok6h2NxMQ4uJ
 OcGcXYcvZ1ua0kB+rIv0omHcfNECICKwpTp3LDIwhlHTQ/DulQDD
 eYn+lnYQVc2Gm1WKAuxp
 /etc/myserver.cer|friendlyName=fluffy the Tomcat
 URI:https://certificates.example.com/acme/BAADF00D.cer

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119.

1.2. Definitions

 The term "certificate" means either a certificate [RFC5280] or an
 attribute certificate [RFC5755]. When a certificate [RFC5280] alone
 is to be distinguished, this specification may use the term "public
 key certificate".

 The term "whitespace" means HT, VT, FF, LF, CR, and SP, when
 referring to the ASCII range. An implementation SHOULD also consider
 whitespace beyond the ASCII range, if the implementation supports it,
 e.g., the characters that have the White_Space character property in
 [UNICODE].)

 The term "content" means a fixed sequence of octets (i.e., data) with
 an Internet media type and optional parameters.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc5755
https://datatracker.ietf.org/doc/html/rfc5280

Leonard Expires December 10, 2016 [Page 3]

Internet-Draft certspec June 2016

2. Motivation and Purpose

 Although certificates [RFC5280] have diverse applications, there has
 been no uniform way to refer to a certificate in text. De-facto
 standards such as PEM [RFC1421] and PKIX text encoding [RFC7468] are
 used to include whole certificates in textual formats, but this
 practice is impractical for a variety of use cases. Certificates
 that identify long public keys (e.g., 2048-bit RSA keys) and that
 contain required and recommended PKIX extensions can easily exceed
 many kilobytes in length.

 The purpose of this document is to provide a uniform textual format
 for identifying individual certificates, with human usability as a
 design goal. Certificate specifications, or "certspecs", are not
 designed or intended to provide a search tool or query language to
 match multiple certificates. The goal is to replace data elements
 that would otherwise have to include whole certificates, or that
 employ proprietary reference schemes. For example, certspecs fit
 easily into XML/SGML data, YAML, JSON, and config files and databases
 (e.g., .properties, .ini, and Windows Registry) with minimal required
 escaping.

 To be usable by humans, certspecs are supposed to be amenable to
 copy-and-paste operations. The structure of a certspec is also
 supposed to be plainly visible, do that someone glancing at a
 certspec can ascertain the data types that it comprises.

2.1. Static Identification

 Identifying a specific certificate by reference or value allows
 diverse applications to have a common syntax. For example,
 applications can store certspecs as local or shared preferences, so
 that users can edit them without resorting to application-specific
 storage formats or relying on the availability of particular
 protocols represented by URIs (such as http:, ldap: [RFC4516], file:
 [RFC1738], or ni: schemes). When conveyed in protocol, a certspec
 can identify a specific certificate to a client or server using text-
 based formats such as YAML, XML, JSON, and others. The format
 described in this document is intended to be readily reproducible by
 users using common certificate processing tools, so that users can
 easily create, recognize, compare, and reproduce them at a glance.
 For example, the hash-based identifications use hexadecimal encoding
 so that a user can easily compose or compare an URN with a simple
 copy-and-paste operation.

https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc1421
https://datatracker.ietf.org/doc/html/rfc7468
https://datatracker.ietf.org/doc/html/rfc4516
https://datatracker.ietf.org/doc/html/rfc1738

Leonard Expires December 10, 2016 [Page 4]

Internet-Draft certspec June 2016

2.2. Relationship with Other Specifications

 Previous versions of this draft attempted to define certspecs as a
 URN namespace, and then as a family of URI schemes. Certspecs were
 found to be incompatible with these approaches for several
 engineering reasons.

 The definition of URN [I-D.ietf-urnbis-rfc2141bis-urn] changed during
 the course of this draft's development, and as of this publication,
 remains unclear. Overall, URNs are meant to be assigned durably and
 persistently by namespace authorities. An algorithm that identifies
 a datum with high but not absolute precision does not satisfy this
 requirement, because the pigeonhole principle shows that there will
 always be collisions for unbounded data sets, even though finding
 particular collisions may be computationally infeasible. (The other
 specification types are even less precise.)

 URI schemes were also pursued and rejected. URIs have dereferencing
 semantics, which could have significant security implications. When
 a URI is dereferenced, an access mechanism is determined and an
 action is performed on the URI's resource (see Section 1.2.2 of
 [RFC3986]). When the URI scheme identifies an information retrieval
 protocol, such as HTTP, the access mechanisms usually involve
 performing actions on the resource (most commonly, retrieving the
 resource). However, a wide variety of standardized and proprietary
 URI schemes do not correspond to information retrieval protocols;
 instead, these URI schemes serve to launch applications associated
 with the scheme names. The practical effect of dereferencing a
 mailto: URI [RFC6068], for example, is to launch a preferred e-mail
 client from a user agent (e.g., a web browser), so that the user can
 easily send e-mail to a recipient with certain fields pre-populated
 by the contents of a URI. The practical effect of the ymsgr: URI
 [PROVURI] is much more application and vendor-specific: dereferencing
 such a URI is supposed to launch Yahoo! Messenger to send an instant
 message to a designated Yahoo! screen name. The launching semantics
 of URIs are exploited in modern consumer desktop and mobile operating
 systems as a convenient methodology to launch an application from
 another application, as well as to communicate application-specific
 data between applications that otherwise have no privileged
 relationship.

 The arbitrary, misdirected, or outright malicious launching of
 applications to handle certificates has grave security implications.
 These risks are mitigated by avoiding URI schemes for certspecs.

 URI schemes such as ni: [RFC6920] and data: identify resources in a
 similar way as (for example) the hash and data-based spec types,
 although they were not as usable for copy-and-paste operations.

https://datatracker.ietf.org/doc/html/rfc3986#section-1.2.2
https://datatracker.ietf.org/doc/html/rfc3986#section-1.2.2
https://datatracker.ietf.org/doc/html/rfc6068
https://datatracker.ietf.org/doc/html/rfc6920

Leonard Expires December 10, 2016 [Page 5]

Internet-Draft certspec June 2016

 Resistance was encountered when new URI scheme names were proposed
 that did similar things as ni: and data:, but with better usability
 for this use case.

 Nevertheless, this draft allows for specifying a certificate by URI,
 recognizing that an implementation might categorically decline to
 retrieve URI certspecs on security or other grounds.

 To distinguish this syntax from URI syntax, this Internet-Draft
 capitalizes the "introducer characters" of the various certspec types
 and does not require that they be delimited with a colon, even though
 these productions (mostly) are case-insensitive and (mostly) end with
 a colon. OpenSSL's x509v3_config format inspired this aspect of the
 syntax.

3. certstring Syntax

 A certificate string ("certstring") is a string with a single
 certspec (see Section 4) or multiple certspecs (a "multispec", see

Section 7), followed by an optional set of attributes ("certattrs",
 see Section 8). While strings in this document can be in any
 character encoding, the delimiter characters in this document are
 drawn from ASCII; applications MUST support Unicode. The string has
 the ABNF [RFC5234] below (TODO: case-sensitive ABNF, import core
 rules).

 certstring = (certspec / multispec) ["|" certattrs]

 Figure 1: certstring ABNF

4. certspec Syntax

 A certspec is a string that is intended to identify a single
 certificate. A certspec has introducer characters followed by value
 characters; these introducer characters MAY be part of the "value" of
 the identifier. The string has the ABNF [RFC5234] below (TODO: case-
 sensitive ABNF, import core rules).

 certspec = certspec-hash / certspec-content / certspec-el /
 certspec-path

 hexOctet = 2HEXDIG

 certspec-hash = "SHA-1" ":" 20hexOctet /
 "SHA-256" ":" 32hexOctet /
 "SHA-384" ":" 48hexOctet /
 "SHA-512" ":" 64hexOctet /
 certspec-other-hash

https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/rfc5234

Leonard Expires December 10, 2016 [Page 6]

Internet-Draft certspec June 2016

 certspec-other-hash = certspec-hash-type ":" certspec-hash-value
 ; Proposal: Hash Function Textual Name registry hereby limited
 ; to RFC 3986 scheme characters
 certspec-hash-type = scheme
 ; implication is that it must be at least 128 bits
 certspec-hash-value = 16*hexOctet

 certspec-content = ("HEX" / "BASE16") ":" 1*hexOctet /
 "BASE64" ":" base64string

 base64char = ALPHA / DIGIT / "+" / "/"
 base64string = 1*(4base64char)
 [3base64char "=" / 2base64char "=="]

 ; distinguishedName from [RFC4514]
 certspec-el = "ISSUERSN" ":" distinguishedName ";" serialNumber /
 "SKI" ":" 1*(hexOctet)

 serialNumber = 1*hexOctet

 certspec-path = certspec-uri / certspec-filepath

 ; from RFC3986; RFC 6570
 certspec-uri = "URI:" URI-reference / URI-Template

 ; see POSIX, etc.
 certspec-filepath = ("/" / "\" / [A-Z] ":" /
 ("." / "..") ("/" / "\") / "~" / "%" / "$")
 *filepathchar

 ; BEYONDASCII is from draft-seantek-more-core-rules
 filepathchar = %x01-29 / %x2B-3B / "=" / %x40-5B /
 %x5D-7B / %x7D-7F / quoted-fpc / BEYONDASCII

 quoted-fpc = "\" ("*" / "<" / ">" / "?" / "\" / "|")

 ; TODO: validate Windows file path characters

 ; TODO: certattrs

 Figure 2: certspec ABNF

4.1. certspec Type and Value

 Semantically, a certspec is comprised of its type and value. The
 value is always provided, but the type is either explicitly declared,
 or is inferred from the initial (introducer) characters in the type.
 When types are explicitly provided, they are compared case-

https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc4514
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc6570
https://datatracker.ietf.org/doc/html/draft-seantek-more-core-rules

Leonard Expires December 10, 2016 [Page 7]

Internet-Draft certspec June 2016

 insensitively. The certspec-value identifies the certificate
 specification value.

 Several certspecs use hexadecimal encodings of octets. Generally: if
 the hex octets are malformed (whether in the source material, such as
 the corresponding certificate element, or in the hex text), the
 certspec is invalid.

5. Standard Certificate Specifications

 Standard certificate specifications are intended for interchange as
 intuitive (to users and developers) identifiers for individual
 certificates. This section provides four cryptographic hash-based
 certspecs, two content-based certspecs, three element-based
 certspecs, and two path-based certspecs.

5.1. Cryptographic Hash-Based Specifications

 A cryptographic hash or "fingerprint" of a certificate uniquely
 identifies that certificate. For hash-based certspecs, the hash is
 computed over the octets of the DER encoding of the certificate,
 namely, the Certificate type in Section 4.1 of [RFC5280] and the
 AttributeCertificate type in Section 4.1 of [RFC5755]. The certspec-
 value is the hexadecimal encoding of the hash value octets. For
 example, a 256-bit SHA-256 hash is represented by exactly 32 hex
 octets, or 64 hex characters. The hexadecimal encoding is not case
 sensitive.

 A conforming generator SHALL emit only hexadecimal encoded data,
 i.e., the characters A-F (case-insensitive) and 0-9.

 A conforming parser SHALL accept value productions that contain the
 following non-hex digits: whitespace, hyphen, and colon. A
 conforming parser MAY accept values that contain other characters.

 Conforming implementations to this Internet-Draft MUST process these
 hash-based certspecs, unless security considerations dictate
 otherwise. Acceptable reasons for refusing to process a certspec
 include a) the local policy prohibits use of the hash, or b) the hash
 has known cryptographic weaknesses, such as a preimage attacks, which
 weaken the cryptographic uniqueness guarantees of the hash.

5.1.1. SHA-1

 The introducer production is "SHA-1:". The hash is computed using
 SHA-1 [SHS].

https://datatracker.ietf.org/doc/html/rfc5280#section-4.1
https://datatracker.ietf.org/doc/html/rfc5755#section-4.1

Leonard Expires December 10, 2016 [Page 8]

Internet-Draft certspec June 2016

5.1.2. SHA-256

 The introducer production is "SHA-256:". The hash is computed using
 SHA-256 [SHS].

5.1.3. SHA-384

 The introducer production is "SHA-384:". The hash is computed using
 SHA-384 [SHS].

5.1.4. SHA-512

 The introducer production is "SHA-512:". The hash is computed using
 SHA-512 [SHS].

5.2. Content-Based Specifications

 Content-based certspecs identify certificates by their constituent
 octets. For small-to-medium certificates, identifying the
 certificate by embedding it in the certspec will be computationally
 efficient and resistant to denial-of-service attacks (by always being
 available). A conforming implementation MUST implement base64 and
 hex specs.

 The octets of a certificate are the octets of the DER encoding of the
 certificate, namely, the Certificate type in Section 4.1 of [RFC5280]
 and the AttributeCertificate type in Section 4.1 of [RFC5755]. The
 DER encoding includes tag and length octets, so it always starts with
 30h (the tag for SEQUENCE).

 Because users may end up copying and pasting base64 or hex-encoded
 certificates into certspecs, and because these certspecs will
 routinely exceed 72 characters, a production might contain embedded
 whitespace. A conforming generator SHALL emit no whitespace, or
 SHALL emit a hanging indent, between semantically significant
 characters.

5.2.1. BASE64

 The introducer production is "BASE64:". The value production is the
 BASE64 encoding of the certificate octets (Section 4 of [RFC4648]).

 [[NB: base64url syntax was explicitly considered and rejected for
 this draft. This is because certspecs are no longer URIs.]]

https://datatracker.ietf.org/doc/html/rfc5280#section-4.1
https://datatracker.ietf.org/doc/html/rfc5755#section-4.1
https://datatracker.ietf.org/doc/html/rfc4648#section-4

Leonard Expires December 10, 2016 [Page 9]

Internet-Draft certspec June 2016

5.2.2. HEX and BASE16

 The introducer production is "HEX:" or "BASE16:". Generators MUST
 generate "HEX:"; parsers MUST accept "HEX:" and "BASE16:". The value
 production is the hexadecimal encoding of the certificate octets.

5.3. Element-Based Specifications

 A certificate may be identified by certain data elements contained
 within it. The following certspecs reflect the traditional reliance
 of PKIX [RFC5280] and CMS [RFC5652] on a certificate's issuer
 distinguished name and serial number, a certificate's subject
 distinguished name and expiration, or a certificate's subject key
 identifier.

 Note that distinguished names can contain "|" in attribute value
 strings, but this production is unambiguous with the certattr
 delimiter because distinguished names are always terminated by ";".

5.3.1. ISSUERSN: Issuer Name and Serial Number

 The introducer production is "ISSUERSN:".

5.3.1.1. Issuer

 The distinguishedName production encodes the certificate's issuer
 distinguished name (DN) field in LDAP string format [RFC4514].
 [RFC4514] no longer separates relative distinguished names (RDNs) by
 semicolons, as required by its predecessor, [RFC2253]. Accordingly,
 ";" is used to separate the issuer's DN from the subject's serial
 number.

5.3.1.2. Serial Number

 The serialNumber production is the hexadecimal encoding the DER-
 encoded contents octets of the CertificateSerialNumber (INTEGER,
 i.e., not the type or length octets) as specified in Section 4.1.2.2
 of [RFC5280].

5.3.1.2.1. Conformance

 A conforming implementation SHALL implement the ISSUERSN certspec.
 An implementation MUST process serial numbers up to the same length
 as required by Section 4.1.2.2 of [RFC5280] (20 octets), and MUST
 process distinguished name strings as required by [RFC4514],
 including the table of minimum AttributeType name strings that MUST
 be recognized. Additionally, implementations MUST process attribute
 descriptors specified in [RFC5280] (MUST or SHOULD), and [RFC5750]

https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc5652
https://datatracker.ietf.org/doc/html/rfc4514
https://datatracker.ietf.org/doc/html/rfc4514
https://datatracker.ietf.org/doc/html/rfc2253
https://datatracker.ietf.org/doc/html/rfc5280#section-4.1.2.2
https://datatracker.ietf.org/doc/html/rfc5280#section-4.1.2.2
https://datatracker.ietf.org/doc/html/rfc5280#section-4.1.2.2
https://datatracker.ietf.org/doc/html/rfc4514
https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc5750

Leonard Expires December 10, 2016 [Page 10]

Internet-Draft certspec June 2016

 (specifically: E, email, emailAddress). For reference, a complete
 list of required attribute descriptors is provided in Appendix B.
 Implementations are encouraged to recognize additional attribute
 descriptors where possible. A sample list of such attribute
 descriptors is provided in Appendix C. Conforming implementations
 MUST be able to parse all distinguished name attribute types that are
 encoded in OID dotted decimal form, as well as all distinguished name
 attribute values that are encoded in "#" hexadecimal form.

5.3.1.3. SUBJECTEXP: Subject and Expiration

 The introducer production is "SUBJECTEXP:". The value production is
 the [RFC4514] encoding of the subject distinguished name, followed by
 a semicolon, followed by the certificate expiration expressed in
 standard form [[TODO: ASN.1 text form, or RFC3339 form? Proposal is
 to allow both. ASN.1 text form: GeneralizedTime with four-digit
 years (UTCTime/four-digit years SHALL NOT be used), in accordance
 with Section 4.1.2.5.2 of [RFC5280]. RFC3339 form: The date-time
 production from [RFC3339]. (The production requires the full four-
 digit year, but allows for a time zone offset. Time zone offsets
 MUST be supported on usability grounds.)]] The certificate's
 expiration is the notAfter value of the certificate validity period
 (Section 4.1.2.5 of [RFC5280]).

 A conforming implementation SHALL parse and generate distinguished
 name productions with the same adherence as stated above in

Section 5.3.1.2.1.

5.3.1.4. ski: Subject Key Identifier

 The introducer production is "SKI:". The value production is the
 hexadecimal encoding of the certificate's subject key identifier,
 which is recorded in the certificate's Subject Key Identifier
 extension (Section 4.2.1.2 of [RFC5280]). The octets are the DER-
 encoded contents octets of the SubjectKeyIdentifier (OCTET STRING)
 extension value. For a certificate that lacks a subject key
 identifier, an underlying implementation MAY operatively associate a
 subject key identifier with the certificate.

 A conforming generator SHALL emit only hexadecimal encoded data,
 i.e., the characters A-F (case-insensitive) and 0-9.

 A conforming parser SHALL accept value productions that contain the
 following non-hex digits: whitespace (HT, VT, SP, FF, CR, LF),
 hyphen, and colon. A conforming parser MAY accept values that
 contain other characters.

https://datatracker.ietf.org/doc/html/rfc4514
https://datatracker.ietf.org/doc/html/rfc3339
https://datatracker.ietf.org/doc/html/rfc5280#section-4.1.2.5.2
https://datatracker.ietf.org/doc/html/rfc3339
https://datatracker.ietf.org/doc/html/rfc3339
https://datatracker.ietf.org/doc/html/rfc5280#section-4.1.2.5
https://datatracker.ietf.org/doc/html/rfc5280#section-4.2.1.2

Leonard Expires December 10, 2016 [Page 11]

Internet-Draft certspec June 2016

5.4. Path-Based Specifications

 A certificate may be identified by a path to file or content data. A
 conforming parser MUST recognize file path and URI specs, although
 conforming implementations merely MAY process them.

5.4.1. File Path

 File paths are identified by their introducer productions / \ [A-Z]:
 ./ ../ .\ ..\ ~ % and $. The characters that follow MUST be valid
 path characters for the system on which the files are being accessed.
 Since the starting character sequences for file paths are fixed and
 determinable, prefixing the file path with a type identifier is
 (thought to be) unnecessary.

 A relative file path begins with "." or "..", and is relative to a
 "current directory". Determining an appropriate "current directory"
 is outside the scope of this specification.

 When the file is read, implementations MUST accept the following,
 regardless of filename:

 1. Textual data, which is analyzed as if it were text/plain content
 (below)

 2. Raw octet-oriented data, which is analyzed as if it were
 application/octet-stream content (below)

 File paths may have unexpanded environment variables, such as
 %USERNAME% or ${LOGNAME}; implementations MUST parse these
 environment variable syntaxes, but merely MAY perform environment
 variable substitution as environment, capability, and security
 concerns dictate.

 Note that Unix-oriented file paths can contain "|" in the production
 "\|", but this production is unambiguous with the certattr delimiter.

5.4.2. URI

 The introducer production is "URI:". The value is a [RFC3986]
 conforming URI-reference or [RFC6570] conforming URI-Template.

 In the context of URIs, a relative reference conforms to the
 relative-ref production of [RFC3986] and the usage described in

Section 4.2 of [RFC3986], it is relative to a "base URI".
 Determining an appropriate "base URI" is outside the scope of this
 specification.

https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc6570
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc3986#section-4.2

Leonard Expires December 10, 2016 [Page 12]

Internet-Draft certspec June 2016

 When the URI is dereferenced, implementations MUST accept the
 following, regardless of the path or query productions:

 1. Content with media type application/pkix-cert and application/
 pkix-attr-cert

 2. Content with media type application/pkcs7-mime and application/
 cms, when the content represents a SignedData containing
 certificates (regardless of the smime-type or
 encapsulatingContent parameters, and regardless of whether or not
 the SignedData is in a degenerate, certs-only format)

 3. Content with media type text/plain, which is analyzed according
 to [RFC7468] for "CERTIFICATE" and "ATTRIBUTE CERTIFICATE"
 textual encodings

 4. Content with media type application/octet-stream, which is
 analyzed for textual or [X.690] data

 5. Raw textual data, which is analyzed as if it were text/plain

 6. Raw octet-oriented data, which is analyzed as if it were
 application/octet-stream

 The URI certspec can include a fragment identifier. Implementations
 MUST parse fragment identifiers, but merely MAY perform "secondary
 resource" isolation and processing as environment, capability, and
 security concerns dictate.

 The URI certspec can be a URI Template [RFC6570]. Implementations
 MUST parse URI templates, but merely MAY expand them in accordance
 with [RFC6570] as environment, capability, and security concerns
 dictate.

 Note that URI templates can contain "|" in the production "{|".."}",
 but this production is unambiguous with the certattr delimiter.

6. Other Certificate Specifications

 The additional certificate specifications in this section are
 provided for applications to use as local identifiers that are
 useful, intuitive, or supportive of legacy systems or overriding
 design goals. These certspecs SHOULD NOT be used for interchange.

https://datatracker.ietf.org/doc/html/rfc7468
https://datatracker.ietf.org/doc/html/rfc6570
https://datatracker.ietf.org/doc/html/rfc6570

Leonard Expires December 10, 2016 [Page 13]

Internet-Draft certspec June 2016

6.1. DBKEY (Reserved)

 The introducer production is "DBKEY:". The DBKEY certspec is meant
 for an opaque string that serves as the unique key to a certificate
 in an implementation's certificate database. This document reserves
 this introducer sequence for future use.

6.2. SELECT (Reserved)

 The introducer production is "SELECT" (without a colon). The SELECT
 certspec is meant for a valid SQL statement (suitably escaped) that
 retrieves a row representing a certificate. This document reserves
 this introducer sequence for future use.

7. Multiple certspecs (multispec)

 A multispec is a string that contains multiple certspecs, each of
 which is intended to identify the exact same certificate. If
 multiple certificates match a single spec, a single certificate can
 be returned by the access operation, so long as the intersection of
 certificates identified by all of the certspecs in the multispec is
 one. The purpose of multispec is to provide multiple access and
 verification methods. For example, a hash algorithm may have known
 weaknesses, but may be the most efficient way to identify a
 certificate (e.g., because it is the index method). Providing
 additional certspecs (i.e., strong hash algorithms) would increase
 the certainty that the correct certificate is accessed.

 As the certspecs above make use of almost all other characters in the
 ASCII range, < and > have been chosen to delimit certspecs between
 each other. (Whitespace can also appear between each < and >
 delimited certspec.) The ABNF of multispec is:

 multispec = 1*("<" certspec ">")

 Figure 3: multispec ABNF

8. Certificate Attributes (certattrs)

 A certificate can have additional attributes (i.e., metadata)
 operatively associated with--but not intrinsic to--it. For example,
 the additional attributes may represent preferences. The syntax is
 intended primarily to convey certificate metadata such as attributes
 found in PKCS #9 [RFC2985], PKCS #11 [PKCS11], PKCS #12 [RFC7292],
 and particular implementations of cryptographic libraries.

 Certattrs are delimited from a certspec or multispec production with
 "|". Each certattr SHALL have a corresponding ASN.1 definition. The

https://datatracker.ietf.org/doc/html/rfc2985
https://datatracker.ietf.org/doc/html/rfc7292

Leonard Expires December 10, 2016 [Page 14]

Internet-Draft certspec June 2016

 textual syntax of certattrs is very similar to (in fact, a superset
 of) [RFC4514]: the certattrs production represents the PKCS
 Attributes family of types, which are repeatedly defined in those
 standards, and standards that derive from them, as
 SET SIZE (1..MAX) OF Attribute. E.g., CMS (from PKCS #7) [RFC5652],
 private keys (from PKCS #8) [RFC5958], and PKCS #12 [RFC7292].
 Attributes are semantically unordered. Multiple attributes are
 separated with ",".

 Each attribute has a single attrType (canonically defined as OBJECT
 IDENTIFIER in [RFC5652]), and a SET OF attrValues. The attrType is
 encoded as the string representation of AttributeType (that is,
 either a registered short name (descriptor) [RFC4520], or the dotted-
 decimal encoding, <numericoid> of the OBJECT IDENTIFIER [RFC4512]).

 When an attribute has at least one value, the attrType is followed by
 "=" and the encoding of the attrValues (empty strings are possible).
 Multiple attrValues are separated by "+". When the attribute has no
 values, the attrType MUST NOT be followed by "=".

 An attrValue can have one of several encodings:

 hex: The attrValue can always be represented by "#" followed by the
 hexadecimal encoding of each of the octets of the BER encoding of the
 attrValue, following paragraph 1 of Section 2.4 of [RFC4514].
 Implementations MUST support this encoding.

 string: If the attrValue has a LDAP-specific string encoding, that
 encoding can be used as the string representation of the value, with
 characters suitably escaped according to paragraph 2 and onward of

Section 2.4 of [RFC4514]. Implementations SHOULD support this
 encoding for attributes of interest to it.

 XER: The attrValue can be represented by its BASIC-XER encoding
 [X.693] (Clause 8). When in BASIC-XER encoding, the string MUST be a
 complete XML fragment comprising one element, i.e., there SHALL NOT
 be an XML prolog. XER encoding is self-delimiting because it has
 balanced elements; this string always begins with "<" and ends with
 ">". Processing is simplified compared to arbitrary XML in that XML
 processing instructions, XML comments, and CDATA sections are
 prohibited. Implementations MAY support this encoding.

 ASN.1 value: The attrValue can be represented by its ASN.1 value
 notation [X.680], enclosed in quotation marks <"> on both ends.
 [[NB: per RFC 4514, a leading space might also be unambiguous.]]
 ASN.1 value notation requires a bit of finesse in that <"> can appear
 inside to delimit "cstring" lexical items (see Clause 12.14 and
 Clause 41 of [X.680]). A "cstring" starts and ends with <">, and can

https://datatracker.ietf.org/doc/html/rfc4514
https://datatracker.ietf.org/doc/html/rfc5652
https://datatracker.ietf.org/doc/html/rfc5958
https://datatracker.ietf.org/doc/html/rfc7292
https://datatracker.ietf.org/doc/html/rfc5652
https://datatracker.ietf.org/doc/html/rfc4520
https://datatracker.ietf.org/doc/html/rfc4512
https://datatracker.ietf.org/doc/html/rfc4514#section-2.4
https://datatracker.ietf.org/doc/html/rfc4514#section-2.4
https://datatracker.ietf.org/doc/html/rfc4514

Leonard Expires December 10, 2016 [Page 15]

Internet-Draft certspec June 2016

 represent <"> internally with a pair of consecutive <">. Therefore,
 <"> is balanced because it always occurs in multiples of two. If the
 value is just a cstring, then the representation will have exactly
 two <"> at the beginning, and two <"> at the end, with evenly-
 balanced <"> pairs inside. Other values that are not composites
 (enclosed with "{" and "}") do not have <"> occur within them.
 Otherwise, the representation must have at least one "{" "}" balanced
 pair at either end, hemming in <"> occurrences to within the balanced
 pairs of "{" and "}". Implementations MAY support this encoding.

 Of the attrValue encodings listed above, only "hex" can reliably
 transfer the underlying BER representation without an implementation
 maintaining specific knowledge of every attribute. Therefore, "hex"
 is RECOMMENDED for open interchange of certattrs.

8.1. ABNF

 The collective ABNF of certattrs is:

 certattrs = certattr ["," certattrs]
 certattr = certattrType ["=" certattrValues]
 ; descr, numericoid from RFC 4512
 certattrType = descr / numericoid
 certattrValues = certattrValue ["+" certAttrValues]
 ; string, hexstring from RFC 4514
 certattrValue = hexstring / string /
 basic-xer-string / asn1-value-string
 ; TODO: complete basic-xer-string, asn1-value-string
 basic-xer-string = "<" <balanced tags> ">"
 ; TODO: may also distinguish with leading space " "--think about it
 asn1-value-string = %x22 <balanced quotation marks> %x22

 Figure 4: certattrs ABNF

8.2. Mandatory Attribute Support

 [[NB: attributes related to certificate objects are in the domain of
 CMS attributes, NOT distinguished name attributes. Therefore,
 referring to the LDAP Object Identifier Descriptors subregistry may
 actually be inappropriate, since it's pretty much filled with
 attributes that one would encounter for distinguished names. The
 "CMS attributes" encompass things like friendlyName and
 smimeCapabilities from PKCS #9; they are a disjoint set from
 distinguished name attributes. "CMS attributes" also encompass
 things like signingTime and messageDigest; these attributes are not
 interesting with respect to certificate objects.]]

https://datatracker.ietf.org/doc/html/rfc4512
https://datatracker.ietf.org/doc/html/rfc4514

Leonard Expires December 10, 2016 [Page 16]

Internet-Draft certspec June 2016

 A conforming implementation that supports certattrs SHALL process the
 following attributes, including recognizing the following short names
 (descriptors) and associated LDAP-specific string encodings.

 friendlyName (1.2.840.113549.1.9.20) from PKCS #9 [RFC2985]

 localKeyId (1.2.840.113549.1.9.21) from PKCS #9 [RFC2985]

 signingDescription (1.2.840.113549.1.9.13) from PKCS #9 [RFC2985]

 smimeCapabilities (1.2.840.113549.1.9.15) from PKCS #9 [RFC2985]
 [[NB: smimeCapabilities does not have a SYNTAX with an LDAP-specific
 encoding. ASN.1 value notation is probably the most readable
 alternative, but support for ASN.1 value notation remains OPTIONAL.]]

8.3. Canonicalization

 The certattrs production is a textual encoding of the ASN.1
 SET SIZE (1..MAX) OF Attribute. The textual format in this section
 is not intended to be used as any kind of canonical form. The
 canonical form is the DER encoding of the corresponding
 SET SIZE (1..MAX) OF Attribute.

9. Whitespace

 This specification is intended for textual data that may be visible
 to or edited by humans. Whitespace is a key factor in usability, so
 this specification permits whitespace in certain productions.

 The certspec, multispec, certattrs, and certstring productions are
 ideally emitted as one (long) line. The overall intent is that a
 bare line break (without leading or trailing horizontal space) is
 supposed to delimit these productions from each other.

 If it is desirable to break one of these productions across multiple
 lines, a hanging indent SHALL be used at syntactically appropriate
 places. A hanging indent means a newline production (LF, CRLF, or
 other characters appropriate to the character set, e.g., [[UNICODE]])
 followed by one or more horizontal space characters. The preferred
 horizontal space production is a single SP character.

 Generally, where whitespace is permitted, the whitespace either has
 no semantic meaning and therefore can be collapsed to a zero-length
 substring, i.e., skipped, or can be folded into a single whitespace
 character, i.e., a single SP.

 Productions that represent the hexadecimal (or base64) encodings of
 octets MAY have arbitrary whitespace interspersed between the

https://datatracker.ietf.org/doc/html/rfc2985
https://datatracker.ietf.org/doc/html/rfc2985
https://datatracker.ietf.org/doc/html/rfc2985
https://datatracker.ietf.org/doc/html/rfc2985

Leonard Expires December 10, 2016 [Page 17]

Internet-Draft certspec June 2016

 hexadecimal (or base64) characters. The whitespace has no semantic
 meaning, and can be collapsed. Certspec and certattrs parsers that
 parse "#" delimited attribute values in distinguished names and
 certificate attributes MAY accept and collapse whitespace; however,
 such whitespace is not permitted by [RFC4514]. Note that the
 attribute value MUST begin with "#"; there MUST NOT be leading
 whitespace.

 A parser MAY accept whitespace preceding the certattrType production
 in certattrs.

 A parser MAY accept whitespace between each angle-bracket-delimited
 certspec in the multispec production.

 A parser MAY accept whitespace preceding the attributeType production
 in distinguishedName.

 Generally, whitespace characters in values are otherwise considered
 to be semantically meaningful. A generator SHOULD encode such
 characters (e.g., with hexpair [RFC4514]) to avoid ambiguity or
 corruption.

10. Guidelines for Extending certspec

 The certspec definition presented in this document is intended to be
 fairly comprehensive. Nevertheless, there are several points of
 extension for implementors who may want to identify a certificate
 with more than what is presented in this document.

 Firstly, certspec is naturally extended by supporting additional hash
 algorithms. The hash introducer characters are tied to the Hash
 Function Textual Names Registry; adding a new hash algorithm to that
 registry is necessary for certificates to get identified with that
 hash algorithm under this specification. However, for security
 reasons, the introducers "MD2" and "MD5" SHALL NOT be generated or
 parsed.

 Secondly, certspec allows for the full range of "local" identifiers
 (i.e., file paths, which may not actually be local) and "network"
 identifiers (i.e., URIs, which may not actually need the network). A
 certspec implementation that can make use of these facilities can
 naturally be extended by extending the path (e.g., with pipes and
 mount points) or the URI topology (e.g., with novel URI schemes).

 Implementations MAY recognize other types of certspecs. However, new
 types intended for open interchange require an update to this
 document.

https://datatracker.ietf.org/doc/html/rfc4514
https://datatracker.ietf.org/doc/html/rfc4514

Leonard Expires December 10, 2016 [Page 18]

Internet-Draft certspec June 2016

 A new certspec SHALL satisfy the following criteria:

 1. The type is identified by a keyword, followed by ":", or, the
 type is identified by very short sequences of characters that
 unambiguously signal the type of the certspec value (as file
 paths currently do). The specification MUST state whether the
 introducer characters are case-sensitive.

 2. The characters "<", ">", and "|" need to be distinguishable from
 their uses in multispec and certattrs (certstring) using a
 context-free grammar, e.g., ABNF.

 3. [[TODO: further elaborate, or remove.]] If internal whitespace
 (including line-breaking) is permitted, the internal whitespace
 is consistent with this specification.

11. Use of certspec in Systems

 certspec is useful wherever a system may need to include or refer to
 a certificate. Some systems may wish to refer to a certificate
 without enabling all of the expressive power (and security
 considerations) of all strings in this specification. Accordingly,
 those systems and specifications SHOULD develop profiles of this
 specification.

 This document guarantees that the introducer characters "URN:" and
 "CERT:" are RESERVED and will never be used. Implementors MUST take
 note that a raw certspec is not a valid URI: certspec-types are not
 registered URI schemes, have a broader character repertoire than
 permitted by [RFC3986], and do not have the same semantics as URIs.

12. IANA Considerations

 This document implies no IANA considerations.

13. Security Considerations

 Digital certificates are important building blocks for
 authentication, integrity, authorization, and (occasionally)
 confidentiality services. Accordingly, identifying digital
 certificates incorrectly can have significant security ramifications.

 When using hash-based certspecs, the cryptographic hash algorithm
 MUST be implemented properly and SHOULD have no known attack vectors.
 For this reason, algorithms that are considered "broken" as of the
 date of this Internet-Draft, such as MD5 [RFC6151], are precluded
 from being valid certspecs. The registration of a particular
 algorithm spec in this namespace does NOT mean that it is acceptable

https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc6151

Leonard Expires December 10, 2016 [Page 19]

Internet-Draft certspec June 2016

 or safe for every usage, even though this Internet-Draft requires
 that a conforming implementation MUST implement certain specs.

 When using content-based certspecs, the implementation MUST be
 prepared to process strings of arbitrary length. As of this writing,
 useful certificates rarely exceed 10KB, and most implementations are
 concerned with keeping certificate sizes down. However, a
 pathological or malicious certificate could easily exceed these
 metrics.

 When using element-based certspecs, the implementation MUST be
 prepared to deal with multiple found certificates that contain the
 same certificate data, but are not the same certificate. In such a
 case, the implementation MUST segregate these certificates so that
 the implementation only continues with certificates that it considers
 valid or trustworthy (as discussed further below). If, despite this
 segregation, multiple valid or trustworthy certificates match the
 certspec, the certspec (not in a multispec) MUST be rejected, because
 a certspec is meant to identify exactly one certificate (not a family
 of certificates).

 Certificates identified by certspecs should only be used with an
 analysis of their validity, such as by computing the Certification
 Path Validation Algorithm (Section 6 of [RFC5280]) or by other means.
 For example, if a certificate database contains a set of certificates
 that it considers inherently trustworthy, then the inclusion of a
 certificate in that set makes it trustworthy, regardless of the
 results of the Certification Path Validation Algorithm. Such a
 database is frequently used for "Root CA" lists.

14. References

14.1. Normative References

 [LDAPDESC]
 IANA, "LDAP Parameters: Object Identifier Descriptors",
 <http://www.iana.org/assignments/

ldap-parameters#ldap-parameters-3>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2585] Housley, R. and P. Hoffman, "Internet X.509 Public Key
 Infrastructure Operational Protocols: FTP and HTTP", RFC

2585, May 1999.

https://datatracker.ietf.org/doc/html/rfc5280#section-6
http://www.iana.org/assignments/ldap-parameters#ldap-parameters-3
http://www.iana.org/assignments/ldap-parameters#ldap-parameters-3
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2585
https://datatracker.ietf.org/doc/html/rfc2585

Leonard Expires December 10, 2016 [Page 20]

Internet-Draft certspec June 2016

 [RFC3339] Klyne, G. and C. Newman, "Date and Time on the Internet:
 Timestamps", RFC 3339, DOI 10.17487/RFC3339, July 2002,
 <http://www.rfc-editor.org/info/rfc3339>.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66, RFC

3986, January 2005.

 [RFC4512] Zeilenga, K., "Lightweight Directory Access Protocol
 (LDAP): Directory Information Models", RFC 4512, June
 2006.

 [RFC4514] Zeilenga, K., "Lightweight Directory Access Protocol
 (LDAP): String Representation of Distinguished Names", RFC

4514, June 2006.

 [RFC4517] Legg, S., "Lightweight Directory Access Protocol (LDAP):
 Syntaxes and Matching Rules", RFC 4517, June 2006.

 [RFC4520] Zeilenga, K., "Internet Assigned Numbers Authority (IANA)
 Considerations for the Lightweight Directory Access
 Protocol (LDAP)", BCP 64, RFC 4520, DOI 10.17487/RFC4520,
 June 2006, <http://www.rfc-editor.org/info/rfc4520>.

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, October 2006.

 [RFC5234] Crocker, D. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234, January 2008.

 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, May 2008.

 [RFC5750] Ramsdell, B. and S. Turner, "Secure/Multipurpose Internet
 Mail Extensions (S/MIME) Version 3.2 Certificate
 Handling", RFC 5750, January 2010.

 [RFC5755] Farrell, S., Housley, R., and S. Turner, "An Internet
 Attribute Certificate Profile for Authorization", RFC

5755, January 2010.

 [RFC6570] Gregorio, J., Fielding, R., Hadley, M., Nottingham, M.,
 and D. Orchard, "URI Template", RFC 6570, DOI 10.17487/

RFC6570, March 2012,
 <http://www.rfc-editor.org/info/rfc6570>.

https://datatracker.ietf.org/doc/html/rfc3339
http://www.rfc-editor.org/info/rfc3339
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc4512
https://datatracker.ietf.org/doc/html/rfc4514
https://datatracker.ietf.org/doc/html/rfc4514
https://datatracker.ietf.org/doc/html/rfc4517
https://datatracker.ietf.org/doc/html/bcp64
https://datatracker.ietf.org/doc/html/rfc4520
http://www.rfc-editor.org/info/rfc4520
https://datatracker.ietf.org/doc/html/rfc4648
https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc5750
https://datatracker.ietf.org/doc/html/rfc5755
https://datatracker.ietf.org/doc/html/rfc5755
https://datatracker.ietf.org/doc/html/rfc6570
https://datatracker.ietf.org/doc/html/rfc6570
http://www.rfc-editor.org/info/rfc6570

Leonard Expires December 10, 2016 [Page 21]

Internet-Draft certspec June 2016

 [RFC7468] Josefsson, S. and S. Leonard, "Textual Encodings of PKIX,
 PKCS, and CMS Structures", RFC 7468, DOI 10.17487/RFC7468,
 April 2015, <http://www.rfc-editor.org/info/rfc7468>.

 [SHS] National Institute of Standards and Technology, "Secure
 Hash Standard", Federal Information Processing Standard
 (FIPS) 180-4, March 2012,
 <http://csrc.nist.gov/publications/fips/fips180-4/

fips-180-4.pdf>.

14.2. Informative References

 [I-D.ietf-urnbis-rfc2141bis-urn]
 Saint-Andre, P. and J. Klensin, "Uniform Resource Names
 (URNs)", draft-ietf-urnbis-rfc2141bis-urn-16 (work in
 progress), April 2016.

 [PKCS11] RSA Laboratories, "PKCS #11 v2.30: Cryptographic Token
 Interface Standard", PKCS 11, April 2009.

 [PROVURI] IANA, "Uniform Resource Identifier (URI) Schemes:
 Provisional URI Schemes",
 <http://www.iana.org/assignments/uri-schemes/

uri-schemes.xml#uri-schemes-2>.

 [RFC1421] Linn, J., "Privacy Enhancement for Internet Electronic
 Mail: Part I: Message Encryption and Authentication
 Procedures", RFC 1421, February 1993.

 [RFC1738] Berners-Lee, T., Masinter, L., and M. McCahill, "Uniform
 Resource Locators (URL)", RFC 1738, December 1994.

 [RFC2253] Wahl, M., Kille, S., and T. Howes, "Lightweight Directory
 Access Protocol (v3): UTF-8 String Representation of
 Distinguished Names", RFC 2253, December 1997.

 [RFC2985] Nystrom, M. and B. Kaliski, "PKCS #9: Selected Object
 Classes and Attribute Types Version 2.0", RFC 2985,
 November 2000.

 [RFC4516] Smith, M. and T. Howes, "Lightweight Directory Access
 Protocol (LDAP): Uniform Resource Locator", RFC 4516, June
 2006.

 [RFC5652] Housley, R., "Cryptographic Message Syntax (CMS)", STD 70,
RFC 5652, September 2009.

https://datatracker.ietf.org/doc/html/rfc7468
http://www.rfc-editor.org/info/rfc7468
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
https://datatracker.ietf.org/doc/html/draft-ietf-urnbis-rfc2141bis-urn-16
http://www.iana.org/assignments/uri-schemes/uri-schemes.xml#uri-schemes-2
http://www.iana.org/assignments/uri-schemes/uri-schemes.xml#uri-schemes-2
https://datatracker.ietf.org/doc/html/rfc1421
https://datatracker.ietf.org/doc/html/rfc1738
https://datatracker.ietf.org/doc/html/rfc2253
https://datatracker.ietf.org/doc/html/rfc2985
https://datatracker.ietf.org/doc/html/rfc4516
https://datatracker.ietf.org/doc/html/rfc5652

Leonard Expires December 10, 2016 [Page 22]

Internet-Draft certspec June 2016

 [RFC5958] Turner, S., "Asymmetric Key Packages", RFC 5958, August
 2010.

 [RFC6068] Duerst, M., Masinter, L., and J. Zawinski, "The 'mailto'
 URI Scheme", RFC 6068, October 2010.

 [RFC6151] Turner, S. and L. Chen, "Updated Security Considerations
 for the MD5 Message-Digest and the HMAC-MD5 Algorithms",

RFC 6151, March 2011.

 [RFC6920] Farrell, S., Kutscher, D., Dannewitz, C., Ohlman, B.,
 Keranen, A., and P. Hallam-Baker, "Naming Things with
 Hashes", RFC 6920, April 2013.

 [RFC7292] Moriarty, K., Nystrom, M., Parkinson, S., Rusch, A., and
 M. Scott, "PKCS #12: Personal Information Exchange Syntax
 v1.1", RFC 7292, July 2014.

 [UNICODE] The Unicode Consortium, "The Unicode Standard, Version
 8.0.0", ISBN 978-1-936213-10-8, August 2015.

 Mountain View, CA: The Unicode Consortium.

 [X.680] International Telecommunications Union, "Abstract Syntax
 Notation One (ASN.1): Specification of basic notation",
 ITU-T Recommendation X.680, August 2015, <https://itu.int/

ITU-T/X.680>.

 [X.690] International Telecommunications Union, "ASN.1 encoding
 rules: Specification of basic encoding Rules (BER),
 Canonical encoding rules (CER) and Distinguished encoding
 rules (DER)", ITU-T Recommendation X.690, August 2015,
 <https://itu.int/ITU-T/X.690>.

 [X.693] International Telecommunications Union, "ASN.1 encoding
 rules: XML Encoding Rules (XER)", ITU-T Recommendation
 X.693, August 2015, <https://itu.int/ITU-T/X.693>.

Appendix A. [[Omitted]]

 [[Omitted in this draft.]]

Appendix B. Mandatory Attribute Descriptors for Distinguished Names

 As per [RFC4514], attribute descriptors case-insensitive. A
 conformant implementation MUST recognize the attributes in the table
 below when parsing certspecs containing distinguished names, both by
 the OIDs and by the names recorded in the LDAP Parameters: Object

https://datatracker.ietf.org/doc/html/rfc5958
https://datatracker.ietf.org/doc/html/rfc6068
https://datatracker.ietf.org/doc/html/rfc6151
https://datatracker.ietf.org/doc/html/rfc6920
https://datatracker.ietf.org/doc/html/rfc7292
https://itu.int/ITU-T/X.680
https://itu.int/ITU-T/X.680
https://itu.int/ITU-T/X.690
https://itu.int/ITU-T/X.693
https://datatracker.ietf.org/doc/html/rfc4514

Leonard Expires December 10, 2016 [Page 23]

Internet-Draft certspec June 2016

 Identifier Descriptors registry [LDAPDESC]. A conforming generator
 SHOULD emit these attribute descriptors in lieu of their dotted
 decimal representations.

 +----------------------------+-------------------------------+------+
 | OID | Names | RFC |
 +----------------------------+-------------------------------+------+
2.5.4.3	cn (CN)	4514
	commonName	
2.5.4.7	l (L)	4514
	localityName	
2.5.4.8	st (ST)	4514
	(S)*	
	stateOrProvinceName	
2.5.4.10	o (O)	4514
	organizationName	
2.5.4.11	ou (OU)	4514
	organizationalUnitName	
2.5.4.6	c (C)	4514
	countryName	
2.5.4.9	street (STREET)	4514
	streetAddress	
0.9.2342.19200300.100.1.25	dc (DC)	4514
	domainComponent	
0.9.2342.19200300.100.1.1	uid (UID)	4514
	userId	
2.5.4.5	serialNumber (SERIALNUMBER)	5280
2.5.4.46	dnQualifier (DNQUALIFIER)	5280
2.5.4.4	sn (SN)	5280
	surname	
2.5.4.42	gn (GN)**	5280
	givenName	
2.5.4.12	(T)*	5280
	title	
2.5.4.43	(I)*	5280
	initials	
2.5.4.44	(GENQUALIFIER)*	5280
	generationQualifier	
	(GENERATIONQUALIFIER)	
2.5.4.65	(PNYM)*	5280
	pseudonym (PSEUDONYM)	
1.2.840.113549.1.9.1	(E)*	5750
	emailAddress	
	email	
 +----------------------------+-------------------------------+------+

Leonard Expires December 10, 2016 [Page 24]

Internet-Draft certspec June 2016

 Names in parentheses are variations that are not assigned as such in
 [LDAPDESC]. Implementations MAY parse these names, but SHOULD NOT
 generate them.
 Names in ALL-CAPS may be emitted by some certificate-processing
 applications; these names are compatible with lowercase or mixed-case
 variations due to case-insensitivity.
 * Name may appear in some implementations, but is not in [LDAPDESC].
 ** Name commonly appears in implementations, but is RESERVED in
 [LDAPDESC]. Conforming implementations MAY generate this name from
 2.5.4.42 and MUST parse this name as 2.5.4.42, despite its RESERVED
 status.

 Table 1: Attribute Descriptors

Appendix C. Recommended Attribute Descriptors for issuersn certspec

 As per [RFC4514], attribute descriptors case-insensitive. [[TODO:
 complete. Probably date of birth, place of birth, gender, etc.
 already defined elsewhere.]]

Appendix D. Algorithm for Distinguishing Between (Public Key)
 Certificates and Attribute Certificates

 A certspec can identify a (public key) certificate ("PKC") or an
 attribute certificate ("AC"). When the type of certificate is
 specified unambiguously in the source data, an implementation SHOULD
 follow specifier in the source data. However, of the certspecs
 listed in this document, only a subset of URIs are capable of
 unambiguous specification (e.g., via Internet media type designation
 of application/pkix-cert or application/pkix-attr-cert). (The file
 extension ought not be considered a reliable indicator of the type.)
 Most other certspecs will return a blob of bytes or characters.
 Therefore, an implementation needs to implement some content-sniffing
 to figure out what the data represents. There are two (not entirely
 orthogonal) decisions: is the data textual [RFC7468] or binary (i.e.,
 DER-encoded), and does the data represent a PKC or AC? (Note: The
 data-based certspecs BASE64 and HEX, always represent one DER-encoded
 certificate or ContentInfo/SignedData; the encodings MUST NOT encode
 a textual blob.)

 This appendix provides an informative algorithm that implementations
 MAY use to do such content-sniffing.

 Ensure that the first octet is SEQUENCE 30h.

 If there are 2 elements -> confirm that the first element is OBJECT
 IDENTIFIER 1.2.840.113549.1.7.2 and the second element is explicitly

https://datatracker.ietf.org/doc/html/rfc4514
https://datatracker.ietf.org/doc/html/rfc7468

Leonard Expires December 10, 2016 [Page 25]

Internet-Draft certspec June 2016

 tagged (APPLICATION 0, A0). This is a ContentInfo containing
 SignedData.

 Otherwise, ensure that there are 3 elements, and that the first
 element is a SEQUENCE 30h (either AttributeCertificateInfo or
 TBSCertificate).

 this SEQUENCE has: 6, 7, or 7+ elements

 if 6 elements -> V1 certificate

 if 7+ elements ->

 look at version filed (first element)

 if INTEGER (UNIVERSAL 2), it's an attribute certificate

 if explicitly tagged (APPLICATION 0, A0) and the contents are INTEGER
 (UNIVERSAL 2), it's a public key certificate.

 otherwise -> malformed, not in DER.

 END

 If DER (or DER-like material, i.e., BER that an application chooses
 to accept as if it were DER anyway) is found, the complete
 certificate SHOULD be the only PDU in the data blob, and SHOULD
 occupy the entirety of the data blob. Pathological cases may exist,
 however, where data is appended to the end of the blob, that is not
 part of the certificate. An implementation has three choices: a)
 ignore the data, b) attempt to parse the data for additional
 certificates, c) reject the entire data blob as malformed (thus,
 rejecting at least the initial identified certificate). c) is valid
 behavior. a) depends on the nature of the identification (e.g., if
 the certspec is a hash, the application MUST confirm that the hash is
 computed over the actual certificate octets, and does not include the
 jetsam past the end of the certificate). If b) is attempted, the
 implementation MUST verify that the first certificate matches the
 identification (see comment on a)), and that subsequent
 certificates, if found, match the identification as well.

 If the data blob is found not to contain DER (or DER-like material,
 see above), the data may be textual. [RFC7468] outlines the
 possibilities of PKIX structures that could be present in such text.
 After determining one or more appropriate encoding possibilities, an
 implementation MUST scan the entire textual blob and handle the
 possibility that multiple certificates might be present. The
 implementation MUST NOT stop at parsing the first one, the last one,

https://datatracker.ietf.org/doc/html/rfc7468

Leonard Expires December 10, 2016 [Page 26]

Internet-Draft certspec June 2016

 or some middle one after it "tires out". Parsers SHOULD [[NB: or
 MUST, or MUST NOT??]] treat the label on a textually encoded item as
 definitive; therefore, parsers SHOULD NOT need to [[NB: or MUST NOT,
 or MUST??]] process all textually encoded items. [[NB: compare with
 Content-Type, which this document considers definitive: mislabeled
 contents get punished.]]

Author's Address

 Sean Leonard
 Penango, Inc.
 5900 Wilshire Boulevard
 21st Floor
 Los Angeles, CA 90036
 USA

 Email: dev+ietf@seantek.com
 URI: http://www.penango.com/

http://www.penango.com/

Leonard Expires December 10, 2016 [Page 27]

