
Network Working Group S. Leonard
Internet-Draft Penango, Inc.
Intended status: Standards Track March 13, 2017
Expires: September 14, 2017

Textual Specification for Certificates and Attributes
draft-seantek-certspec-11

Abstract

 Digital certificates are used in many systems and protocols to
 identify and authenticate parties. This document describes a string
 format that identifies certificates, along with optional attributes.
 This string format has been engineered to work without re-encoding in
 a variety of protocol slots.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 14, 2017.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Leonard Expires September 14, 2017 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft certspec March 2017

Table of Contents

1. Introduction . 3
1.1. Requirements Language 3
1.2. Definitions . 3

2. Motivation and Purpose 4
2.1. Static Identification 4
2.2. Relationship with Other Specifications 5

3. Basic Syntax and ABNF . 5
4. certstring Syntax . 5
5. certspec Syntax . 6
5.1. certspec Type and Value 8

6. Standard Certificate Specifications 8
6.1. Cryptographic Hash-Based Specifications 8
6.2. Content-Based Specifications 9
6.3. Element-Based Specifications 10
6.4. Path-Based Specifications 11
6.5. Algorithm for Distinguishing ASN.1 PDUs 14

7. Other Certificate Specifications 16
7.1. DBKEY (Reserved) . 16
7.2. SELECT (Reserved) . 16

8. Multiple certspecs (multispec) 16
9. Attributes (pkcsattrs) 17
9.1. ABNF . 19
9.2. Mandatory Attribute Support 20
9.3. Canonicalization . 21

10. Whitespace . 21
11. Guidelines for Extending certspec 22
12. Use of certspec in Systems 23
13. IANA Considerations . 24
14. Security Considerations 25
15. References . 26
15.1. Normative References 26
15.2. Informative References 27

Appendix A. Mandatory Attribute Descriptors for Distinguished
 Names . 29

Appendix B. Recommended Attribute Descriptors for issuersn
 certspec . 30

Appendix C. Suggested Algorithm for Distinguishing Textual Data 30
Appendix D. Binary Formats for Conveying Certificates with

 Attributes . 31
D.1. PKCS #12 certs-only Profile 31
D.2. CMS SafeContents contentType 33
D.3. SafeContents-to-PKCS#12 BER Adapter 33

Appendix E. Textual Encoding of Attributes 34
 Author's Address . 35

Leonard Expires September 14, 2017 [Page 2]

Internet-Draft certspec March 2017

1. Introduction

 Digital certificates [RFC5280] are used in many systems and protocols
 to identify and authenticate parties. Security considerations
 frequently require that the certificate must be identified with
 certainty, because selecting the wrong certificate will lead to
 validation errors (resulting in denial of service), or in improper
 credential selection (resulting in unwanted disclosure or
 substitution attacks). The goal of this document is to provide a
 uniform syntax for identifying certificates with precision and speed
 without re-encoding in a variety of protocol slots.

 Using this syntax, any protocol or system that refers to a
 certificate in a textual format can unambiguously identify that
 certificate by value or reference. Implementations that parse these
 strings can resolve them into actual certificates. Examples include:

 SHA-1:3ea3f070773971539b9dbf1b98c54be3a4f0f3c8
 ISSUERSN:cn=AcmeIssuingCompany,st=California,c=US;0134F1
 BASE64:MIIBHDCBxaADAgECAgIAmTAJBgcqhkjOPQQBMBAxDjAMBgNVBAMT
 BVNtYWxsMB4XDTEzMTEwNTE5MjUzM1oXDTE2MDgwMjE5MjUzM1ow
 EDEOMAwGA1UEAxMFU21hbGwwWTATBgcqhkjOPQIBBggqhkjOPQMB
 BwNCAAS2kwRQ1thNMBMUq5d/SFdFr1uDidntNjXQrc3D/QpzYWkE
 WDsxeY8xcbl2m0TBO4TJ/2CevdoOX0OMIOaqJ/TNoxAwDjAMBgNV
 HRMBAf8EAjAAMAkGByqGSM49BAEDRwAwRAIgPyF8ok6h2NxMQ4uJ
 OcGcXYcvZ1ua0kB+rIv0omHcfNECICKwpTp3LDIwhlHTQ/DulQDD
 eYn+lnYQVc2Gm1WKAuxp
 /etc/myserver.cer|friendlyName=fluffy the Tomcat
 URI:https://certificates.example.com/acme/BAADF00D.cer

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119.

1.2. Definitions

 The term "certificate" means either a certificate containing a public
 key [RFC5280] or an attribute certificate [RFC5755]. When a
 certificate [RFC5280] alone is to be distinguished, this
 specification may use the term "public key certificate".

 The term "whitespace" means HT, VT, FF, LF, CR, and SP, when
 referring to the ASCII range. An implementation SHOULD also consider
 whitespace beyond the ASCII range, if the implementation supports it,
 e.g., the characters that have the White_Space character property in
 [UNICODE].)

https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc5755
https://datatracker.ietf.org/doc/html/rfc5280

Leonard Expires September 14, 2017 [Page 3]

Internet-Draft certspec March 2017

 The term "entity" means a MIME entity [RFC2045], namely, a fixed
 sequence of octets (i.e., data) with an Internet media type and
 optional parameters.

2. Motivation and Purpose

 Although certificates [RFC5280] have diverse applications, there has
 been no uniform way to refer to a certificate in text. De-facto
 standards such as PEM [RFC1421] and PKIX text encoding [RFC7468] are
 used to include whole certificates in textual formats, but this
 practice is impractical for a variety of use cases. Certificates
 that identify long public keys (e.g., 2048-bit RSA keys) and that
 contain required and recommended PKIX extensions can easily exceed
 many kilobytes in length.

 The purpose of this document is to provide a uniform textual format
 for identifying individual certificates, with human usability as a
 design goal. Certificate specifications, or "certspecs", are not
 designed or intended to provide a search tool or query language to
 match multiple certificates. The goal is to replace data elements
 that would otherwise have to include whole certificates, or that
 employ proprietary reference schemes. For example, certspecs fit
 easily into XML/SGML data, YAML, JSON, and config files and databases
 (e.g., .properties, .ini, and Windows Registry) with minimal required
 escaping.

 To be usable by humans, certspecs are supposed to be amenable to
 copy-and-paste operations. The structure of a certspec is also
 supposed to be plainly visible so that someone glancing at a certspec
 can ascertain the data types that it comprises. This specification
 addresses the "speed" goal by incorporating identifiers that
 implementations typically use as indexes to certificate databases.
 For instance, many implementations index certificates by issuer and
 serial number, or by SHA-1 hash, regardless of how collision
 resistant those pieces of data are at present.

2.1. Static Identification

 Identifying a specific certificate by reference or value allows
 diverse applications to have a common syntax. For example,
 applications can store certspecs as local or shared preferences, so
 that users can edit them without resorting to application-specific
 storage formats or relying on the availability of particular
 protocols represented by URIs (such as http:, ldap: [RFC4516], file:
 [RFC1738], or ni: schemes). When conveyed in protocol, a certspec
 can identify a specific certificate to a client or server using text-
 based formats such as YAML, XML, JSON, and others. The format
 described in this document is intended to be readily reproducible by

https://datatracker.ietf.org/doc/html/rfc2045
https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc1421
https://datatracker.ietf.org/doc/html/rfc7468
https://datatracker.ietf.org/doc/html/rfc4516
https://datatracker.ietf.org/doc/html/rfc1738

Leonard Expires September 14, 2017 [Page 4]

Internet-Draft certspec March 2017

 users using common certificate processing tools, so that users can
 easily create, recognize, compare, and reproduce them at a glance.
 For example, the hash-based identifications use hexadecimal encoding
 so that a user can easily compose or compare an URN with a simple
 copy-and-paste operation.

2.2. Relationship with Other Specifications

 Certspecs and their attendant elements are textual strings, and are
 intended for use with textual protocols. Where possible, certspecs
 are just identifiers from other protocols with minimal syntactic
 sugar to distinguish one type of certspec from another. Several
 certspec productions look like URIs, but are not. To distinguish
 certspec syntax from URI syntax, this Internet-Draft capitalizes the
 "introducer characters" of the various certspec types and does not
 require that they be delimited with a colon, even though these
 productions (mostly) are case-insensitive and (mostly) end with a
 colon. OpenSSL's x509v3_config format inspired this aspect of the
 syntax.

3. Basic Syntax and ABNF

 The bulk of this document defines textual formats for interchange.
 While textual strings in this document can be in any character
 encoding, the delimiter characters in this document are drawn from
 ASCII. Unicode [UNICODE] support at some level (e.g., in attribute
 values that are in LDAP string form) is inevitable, but the general
 premise is that an implementation can convert the production (or
 appropriate parts of the production) to Unicode when it is needed.
 The ABNF in this document is normative, and is drawn from [RFC5234],
 [RFC7405], [I-D.seantek-abnf-more-core-rules], and
 [I-D.seantek-unicode-in-abnf]. The ABNF reuses certain definitions
 from [RFC4512] and [RFC4514], but does not formally reference those
 rules due to notating Unicode characters beyond the ASCII range in a
 more modern way.

4. certstring Syntax

 A certificate string ("certstring") is a string with a single
 certspec (see Section 5) or multiple certspecs (a "multispec", see

Section 8), followed by an optional set of attributes ("pkcsattrs",
 see Section 9). A multispec is a discriminator for a single
 certificate. In contrast, pkcsattrs are optional attributes
 associated with a single certificate. These attributes do not
 participate in selecting a certificate, but might be used to identify
 other things, such as the token on which associated private keying
 material resides. The string has the ABNF:

https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/rfc7405
https://datatracker.ietf.org/doc/html/rfc4512
https://datatracker.ietf.org/doc/html/rfc4514

Leonard Expires September 14, 2017 [Page 5]

Internet-Draft certspec March 2017

 certstring = (certspec / multispec) ["|" pkcsattrs]

 Figure 1: certstring ABNF

5. certspec Syntax

 A certspec is a string that is intended to identify a single
 certificate. A certspec has introducer characters followed by value
 characters; these introducer characters MAY be part of the "value" of
 the identifier. The ABNF is:

 certspec = certspec-hash / certspec-content / certspec-el /
 certspec-path

 certspec-hash = "SHA-1" ":" 40HEXDIG /
 "SHA-256" ":" 64HEXDIG /
 "SHA-384" ":" 96HEXDIG /
 "SHA-512" ":" 128HEXDIG

 ; Proposal: Hash Function Textual Name registry hereby limited
 ; to RFC 3986 scheme characters

 certspec-content = ("HEX" / "BASE16") ":" 1*(2HEXDIG) /
 "BASE64" ":" base64string

 base64char = ALPHA / DIGIT / "+" / "/"
 base64string = 1*(4base64char)
 [3base64char "=" / 2base64char "=="]

 ; based on [RFC4512][RFC4514]
 distinguishedName = [relativeDistinguishedName
 *("," relativeDistinguishedName)]
 relativeDistinguishedName = attributeTypeAndValue
 *("+" attributeTypeAndValue)
 attributeTypeAndValue = attributeType "=" attributeValue
 attributeType = descr / numericoid

 num = "0" / %x31-39 *DIGIT
 descr = ALPHA *(ALPHA / DIGIT / "-")
 numericoid = ("0" / "1" / "2") 1*("." num)

 attributeValue = string / hexstring
 string = [(leadchar / pair) [*(stringchar / pair)
 (trailchar / pair)]]
 ; excl SP " # + , ; < > \
 leadchar = %x01-1F / %x21 / %x24-2A / %x2D-3A /
 %x3D / %x3F-5B / %x5D-7F / BEYONDASCII
 ; excl SP " + , ; < > \

https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc4512

Leonard Expires September 14, 2017 [Page 6]

Internet-Draft certspec March 2017

 trailchar = %x01-1F / %x21 / %x23-2A / %x2D-3A /
 %x3D / %x3F-5B / %x5D-7F / BEYONDASCII
 ; excl " + , ; < > \
 stringchar = %x01-21 / %x23-2A / %x2D-3A /
 %x3D / %x3F-5B / %x5D-7F / BEYONDASCII

 pair = "\" (" " / %x22-23 / %x2B-2C / %x3B-3E / "\" / 2HEXDIG)
 hexstring = "#" 2HEXDIG

 certspec-el = "ISSUERSN" ":" distinguishedName ";" serialNumber /
 "SKI" ":" 1*(2HEXDIG)

 serialNumber = 1*(2HEXDIG)

 certspec-path = certspec-uri / certspec-file / certspec-reg

 ; from RFC3986; RFC 6570
 ; superfluous: URI-reference = URI-reference@[RFC3986]
 URI-Template = URI-Template@[RFC6570]

 certspec-uri = "URI:" URI-Template

 ; see POSIX, etc.
 certspec-file = ("/" / "\" / [A-Z] ":" /
 ("." / "..") ("/" / "\") / "~" / "%" / "$")
 *filepathchar

 ; BEYONDASCII is from draft-seantek-more-core-rules
 filepathchar = %x01-29 / %x2B-3B / "=" / %x40-5B /
 %x5D-7B / %x7D-7F / quoted-fpc / BEYONDASCII

 quoted-fpc = "\" ("*" / "<" / ">" / "?" / "\" / "|")

 ; TODO: validate Windows file path characters

 certspec-reg = reg-hive 1*("\" reg-key)
 ["\\" reg-value-name]

 reg-hive = reg-local-hive / reg-remote-hive
 reg-local-hive = "HKEY_LOCAL_MACHINE" / "HKEY_CURRENT_USER" /
 "HKEY_CLASSES_ROOT" / "HKEY_USERS" /
 "HKEY_CURRENT_CONFIG" /
 "HKLM:" / "HKCU:" / "HKCR:" /
 "HKU:" / "HKCC:"
 ; TODO: better specify computer name; it could be a NETBIOS name...?
 reg-remote-hive = "\\" reg-name@[RFC3986] "\" ("HKLM" / "HKU") ":"

 ; escape < > |. Need to figure out if 7F is ok, also C0, C1, etc.

https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc6570
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc6570
https://datatracker.ietf.org/doc/html/draft-seantek-more-core-rules
https://datatracker.ietf.org/doc/html/rfc3986

Leonard Expires September 14, 2017 [Page 7]

Internet-Draft certspec March 2017

 reg-key = 1*(%x20-3B / %x3D / %x3F-5B %x5D-7B / %x7D.7E /
 "\<" / "\>" / "\|" / BEYONDASCII)
 ; reg-value-name can be empty
 reg-value-name = *(%x20-3B / %x3D / %x3F-7B / %x7D.7E /
 "\<" / "\>" / "\|" / BEYONDASCII)

 Figure 2: certspec ABNF

5.1. certspec Type and Value

 Semantically, a certspec is comprised of its type and value. The
 value is always provided, but the type is either explicitly declared,
 or is inferred from the initial (introducer) characters in the type.
 When types are explicitly provided, they are compared case-
 insensitively. The certspec-value identifies the certificate
 specification value.

 Several certspecs use hexadecimal encodings of octets. Generally: if
 the hex octets are malformed (whether in the source material, such as
 the corresponding certificate element, or in the hex text), the
 certspec is invalid.

6. Standard Certificate Specifications

 Standard certificate specifications are intended for interchange as
 user- and developer-friendly identifiers for individual certificates.
 This section provides four cryptographic hash-based certspecs, two
 content-based certspecs, two element-based certspecs, and three path-
 based certspecs.

6.1. Cryptographic Hash-Based Specifications

 A cryptographic hash or "fingerprint" of a certificate uniquely
 identifies that certificate. For hash-based certspecs, the hash is
 computed over the octets of the DER encoding of the certificate,
 namely, the Certificate type in Section 4.1 of [RFC5280] and the
 AttributeCertificate type in Section 4.1 of [RFC5755]. The certspec-
 value is the hexadecimal encoding of the hash value octets. For
 example, a 256-bit SHA-256 hash is represented by exactly 32 hex
 octets, or 64 hex characters. The hexadecimal encoding is not case
 sensitive.

 A conforming generator SHALL emit only hexadecimal encoded data,
 i.e., the characters A-F (case-insensitive) and 0-9.

 A conforming parser SHALL accept value productions that contain the
 following non-hex digits: whitespace, hyphen, and colon. A
 conforming parser MAY accept values that contain other characters.

https://datatracker.ietf.org/doc/html/rfc5280#section-4.1
https://datatracker.ietf.org/doc/html/rfc5755#section-4.1

Leonard Expires September 14, 2017 [Page 8]

Internet-Draft certspec March 2017

 Conforming implementations to this Internet-Draft MUST process these
 hash-based certspecs, unless security considerations dictate
 otherwise. Acceptable reasons for refusing to process a certspec
 include a) the local policy prohibits use of the hash, or b) the hash
 has known cryptographic weaknesses, such as a preimage attacks, which
 weaken the cryptographic uniqueness guarantees of the hash.

6.1.1. SHA-1

 The introducer production is "SHA-1:". The hash is computed using
 SHA-1 [SHS].

6.1.2. SHA-256

 The introducer production is "SHA-256:". The hash is computed using
 SHA-256 [SHS].

6.1.3. SHA-384

 The introducer production is "SHA-384:". The hash is computed using
 SHA-384 [SHS].

6.1.4. SHA-512

 The introducer production is "SHA-512:". The hash is computed using
 SHA-512 [SHS].

6.2. Content-Based Specifications

 Content-based certspecs identify certificates by their constituent
 octets. For small-to-medium certificates, identifying the
 certificate by embedding it in the certspec will be computationally
 efficient and resistant to denial-of-service attacks (by always being
 available). A conforming implementation MUST implement base64 and
 hex specs.

 The octets of a certificate are the octets of the DER encoding of the
 certificate, namely, the Certificate type in Section 4.1 of [RFC5280]
 and the AttributeCertificate type in Section 4.1 of [RFC5755]. The
 DER encoding includes tag and length octets, so it always starts with
 30h (the tag for SEQUENCE) followed by any octet other than 80h (the
 marker for indefinite length encoding). See also Section 6.5.

 Because users may end up copying and pasting base64 or hex-encoded
 certificates into certspecs, and because these certspecs will
 routinely exceed 72 characters, a production might contain embedded
 whitespace. A conforming generator SHALL emit no whitespace, or

https://datatracker.ietf.org/doc/html/rfc5280#section-4.1
https://datatracker.ietf.org/doc/html/rfc5755#section-4.1

Leonard Expires September 14, 2017 [Page 9]

Internet-Draft certspec March 2017

 SHALL emit a hanging indent, between semantically significant
 characters.

6.2.1. BASE64

 The introducer production is "BASE64:". The value production is the
 BASE64 encoding of the certificate octets (Section 4 of [RFC4648]).

6.2.2. HEX and BASE16

 The introducer production is "HEX:" or "BASE16:". Generators MUST
 generate "HEX:"; parsers MUST accept "HEX:" and "BASE16:". The value
 production is the hexadecimal encoding of the certificate octets.

6.3. Element-Based Specifications

 A certificate may be identified by certain data elements contained
 within it. The following certspecs reflect the traditional reliance
 of PKIX [RFC5280] and CMS [RFC5652] on a certificate's issuer
 distinguished name and serial number, or a certificate's subject key
 identifier.

 Note that distinguished names can contain "|" in attribute value
 strings, but this production is unambiguous with the pkcsattrs
 delimiter because distinguished names are always terminated by ";".

6.3.1. ISSUERSN: Issuer Name and Serial Number

 The introducer production is "ISSUERSN:".

6.3.1.1. Issuer

 The distinguishedName production encodes the certificate's issuer
 distinguished name (DN) field in LDAP string format [RFC4514].
 [RFC4514] no longer separates relative distinguished names (RDNs) by
 semicolons, as required by its predecessor, [RFC2253]. Accordingly,
 ";" is used to separate the issuer's DN from the subject's serial
 number.

6.3.1.2. Serial Number

 The serialNumber production is the hexadecimal encoding the DER-
 encoded contents octets of the CertificateSerialNumber (INTEGER,
 i.e., not the type or length octets) as specified in Section 4.1.2.2
 of [RFC5280].

https://datatracker.ietf.org/doc/html/rfc4648#section-4
https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc5652
https://datatracker.ietf.org/doc/html/rfc4514
https://datatracker.ietf.org/doc/html/rfc4514
https://datatracker.ietf.org/doc/html/rfc2253
https://datatracker.ietf.org/doc/html/rfc5280#section-4.1.2.2
https://datatracker.ietf.org/doc/html/rfc5280#section-4.1.2.2

Leonard Expires September 14, 2017 [Page 10]

Internet-Draft certspec March 2017

6.3.1.3. Conformance

 A conforming implementation SHALL implement the ISSUERSN certspec.
 An implementation MUST process serial numbers up to the same length
 as required by Section 4.1.2.2 of [RFC5280] (20 octets), and MUST
 process distinguished name strings as required by [RFC4514],
 including the table of minimum AttributeType name strings that MUST
 be recognized. Additionally, implementations MUST process attribute
 descriptors specified in [RFC5280] (MUST or SHOULD), and [RFC5750]
 (specifically: E, email, emailAddress). For reference, a complete
 list of required attribute descriptors is provided in Appendix A.
 Implementations are encouraged to recognize additional attribute
 descriptors where possible. A sample list of such attribute
 descriptors is provided in Appendix B. Conforming implementations
 MUST be able to parse all distinguished name attribute types that are
 encoded in OID dotted decimal form, as well as all distinguished name
 attribute values that are encoded in "#" hexadecimal form.

6.3.2. ski: Subject Key Identifier

 The introducer production is "SKI:". The value production is the
 hexadecimal encoding of the certificate's subject key identifier,
 which is recorded in the certificate's Subject Key Identifier
 extension (Section 4.2.1.2 of [RFC5280]). The octets are the DER-
 encoded contents octets of the SubjectKeyIdentifier (OCTET STRING)
 extension value. For a certificate that lacks a subject key
 identifier, an underlying implementation MAY operatively associate a
 subject key identifier with the certificate.

 A conforming generator SHALL emit only hexadecimal encoded data,
 i.e., the characters A-F (case-insensitive) and 0-9.

 A conforming parser SHALL accept value productions that contain the
 following non-hex digits: whitespace (HT, VT, SP, FF, CR, LF),
 hyphen, and colon. A conforming parser MAY accept values that
 contain other characters.

6.4. Path-Based Specifications

 A certificate may be identified by a path to data. A conforming
 parser MUST recognize file path, Registry, and URI specs, although
 conforming implementations merely MAY process them.

 Two common themes among path-based certspecs are that they may refer
 to weakly typed or untyped data, and they have a higher probability
 of referring to data that contains multiple certificates. Therefore,
 a greater degree of content-sniffing is required for interoperability
 than the certspecs above. An implementation that implements these

https://datatracker.ietf.org/doc/html/rfc5280#section-4.1.2.2
https://datatracker.ietf.org/doc/html/rfc4514
https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc5750
https://datatracker.ietf.org/doc/html/rfc5280#section-4.2.1.2

Leonard Expires September 14, 2017 [Page 11]

Internet-Draft certspec March 2017

 path-based certspecs SHALL support the ASN.1 Certificate PDU when
 public key certificates are being retrieved, and the ASN.1
 AttributeCertificate PDU when attribute certificates are being
 retrieved. Additionally, a conforming implementation SHALL support
 the ASN.1 ContentInfo (PKCS #7/CMS SignedData) PDU.

 Untyped binary data may be encoded in a [X.690] transfer syntax,
 which may be BER, CER, or DER; for purposes of this section, these
 are all called "BER-encoded".

6.4.1. File Path

 File paths are identified by their introducer productions / \ [A-Z]:
 ./ ../ .\ ..\ ~ % and $. The characters that follow MUST be valid
 path characters for the system on which the files are being accessed.
 Since the starting character sequences for file paths are fixed and
 determinable, prefixing the file path with a type identifier is
 (thought to be) unnecessary.

 A relative file path begins with "." or "..", and is relative to a
 "current directory". Determining an appropriate "current directory"
 is outside the scope of this specification.

 When the file is read, implementations MUST accept the following,
 regardless of the filename, which SHOULD NOT be the conclusive
 determinant of the type:

 1. Typed data (reported only by a minority of file systems), which
 is treated conclusively as the type

 2. Data that is determined to be textual, which is analyzed
 according to [RFC7468]

 3. Data that is determined to be BER-encoded

 The manner of determining whether data is textual or BER-encoded data
 is not fixed by this specification, but see, e.g., Appendix C.

 File paths may have unexpanded environment variables, such as
 %USERNAME% or ${LOGNAME}; implementations MUST parse these
 environment variable syntaxes, but merely MAY perform environment
 variable substitution as environment, capability, and security
 concerns dictate.

 Note that Unix-oriented file paths can contain "|" in the production
 "\|", but this production is unambiguous with the pkcsattrs
 delimiter. Windows-oriented file paths cannot contain "|".

https://datatracker.ietf.org/doc/html/rfc7468

Leonard Expires September 14, 2017 [Page 12]

Internet-Draft certspec March 2017

6.4.2. Registry

 Certificates can be identified on Windows machines with Registry keys
 and values. The introducer productions for local Registry entries
 are "HKEY_LOCAL_MACHINE\", "HKEY_CURRENT_USER\",
 "HKEY_CLASSES_ROOT\", "HKEY_USERS\", "HKEY_CURRENT_CONFIG\",
 "HKLM:\", "HKCU:\", "HKCR:\", "HKU:\", and "HKCC:\". The introducer
 productions for remote Registry entries are "\\", followed by a
 computer name, followed by either "\HKLM:\" or "\HKU:\".

 Registry key names include any printable character except backslash
 "\"; each key includes what amounts to an associative array of
 values, which are name/type/data tuples. A value name can include
 any printable character, including "<", ">", and "|"; additionally,
 every key has a default value, which has a zero-length name. This
 layout presents a couple of parsing challenges.

 A Registry production is comprised of a key path followed by a value.
 The key path's key names are delimited by "\". In each key name,
 "<", ">", and "|" SHALL be escaped with a preceding "\". The value
 name is delimited from the key name with two backslashes "\\". "<",
 ">", "|", and "\" in the value SHALL be escaped with a preceding "\".
 The default value MAY be identified with or without the two final
 backslashes. Unlike file paths, Registry productions do not
 recognize or substitute unexpanded environment variables.

 Registry values have a type and some data. When the type is REG_SZ
 or REG_EXPAND_SZ, an implementation is to treat the text firstly as a
 recursive certspec or multispec. If it is not a certspec or
 multispec, then an implementation is to analyze the text according to
 [RFC7468]. Text in REG_EXPAND_SZ is subject to environment variable
 substitution. When the type is REG_BINARY, an implementation is to
 determine if the data is BER-encoded, and if so, to analyze it for
 supported ASN.1 PDUs. When the type is REG_LINK, an implementation
 is to follow the symbolic link.

6.4.3. URI

 The introducer production is "URI:". The value is a URI-Template
 production [RFC6570], which is to produce a [RFC3986] conforming URI-
 reference production.

 In the context of URIs, a relative reference conforms to the
 relative-ref production of [RFC3986] and the usage described in

Section 4.2 of [RFC3986]; it is relative to a "base URI".
 Determining an appropriate "base URI" is outside the scope of this
 specification.

https://datatracker.ietf.org/doc/html/rfc7468
https://datatracker.ietf.org/doc/html/rfc6570
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc3986#section-4.2

Leonard Expires September 14, 2017 [Page 13]

Internet-Draft certspec March 2017

 When the URI is dereferenced, implementations MUST accept the
 following, regardless of the path or query productions:

 1. representations that are conclusively public key certificates or
 attribute certificates, such as LDAP URIs [RFC4516] that point to
 or contain userCertificate attributes (2.5.4.36, for public key
 certificates) or attributeCertificate attributes (2.5.4.58, for
 attribute certificates)

 2. application/pkix-cert and application/pkix-attr-cert entities,
 which are conclusively public key certificates or attribute
 certificates, respectively

 3. application/pkcs7-mime and application/cms entities, when the
 body represents a ContentInfo/SignedData containing certificates
 (regardless of the smime-type or encapsulatingContent parameters,
 and regardless of whether or not the SignedData is in a
 degenerate, certs-only format)

 4. text/plain entities, which are analyzed according to [RFC7468]

 5. Arbitrary data and application/octet-stream entities are treated
 as untyped; they are are analyzed for textual or binary [X.690]
 data

 6. Arbitrary text, which is analyzed according to [RFC7468]

 7. Arbitrary BER-encoded data, which is analyzed for supported ASN.1
 PDUs

 The URI certspec can include a fragment identifier. Implementations
 MUST parse fragment identifiers, but merely MAY perform "secondary
 resource" isolation and processing as environment, capability, and
 security concerns dictate.

 The URI certspec can be a URI Template [RFC6570]. Implementations
 MUST parse URI templates, but merely MAY expand them in accordance
 with [RFC6570] as environment, capability, and security concerns
 dictate.

 Note that URI templates can contain "|" in the production "{|".."}",
 but this production is unambiguous with the pkcsattrs delimiter.

6.5. Algorithm for Distinguishing ASN.1 PDUs

 A certspec can identify a public key certificate ("PKC") or an
 attribute certificate ("AC"). When the type of certificate is
 specified unambiguously in the source data, an implementation SHALL

https://datatracker.ietf.org/doc/html/rfc4516
https://datatracker.ietf.org/doc/html/rfc7468
https://datatracker.ietf.org/doc/html/rfc7468
https://datatracker.ietf.org/doc/html/rfc6570
https://datatracker.ietf.org/doc/html/rfc6570

Leonard Expires September 14, 2017 [Page 14]

Internet-Draft certspec March 2017

 follow the specifier in the source data. However, of the certspecs
 listed in this document, only a subset of URIs are capable of
 unambiguous specification (e.g., via Internet media type designation
 of application/pkix-cert or application/pkix-attr-cert). Most other
 certspecs will return a blob of bytes or characters. Therefore, an
 implementation needs to perform some content-sniffing to figure out
 what the data represents. There are two (not entirely orthogonal)
 decisions: is the data textual [RFC7468] or not, and does the data
 represent a PKC or AC? (Note: The content-based certspecs BASE64 and
 HEX always represent one certificate; the encodings MUST NOT encode a
 textual blob or a PKCS #7/CMS PDU.)

 This normative section addresses distinguishing PDU types when
 applications encounter BER-encoded data that is not further typed.
 An implementation MAY use any algorithm it chooses, as long as it
 produces the same results. A suggested algorithm for distinguishing
 textual data is in Appendix C; that algorithm is merely informative.

 The algorithm for distinguishing ASN.1 PDUs is:

 1. Ensure that the first octet is SEQUENCE 30h.

 2. Ensure that the length covers the length of the data, minus the
 tag and length octets. (If the length is indefinite, a check
 that the end of the data has the end-of-contents octets would be
 appropriate.) Extraneous data SHALL be considered erroneous.

 3. If there are 2 elements -> confirm that the first element is
 OBJECT IDENTIFIER 1.2.840.113549.1.7.2 and the second element is
 explicitly tagged (APPLICATION 0, A0). Analyze the PDU as a
 ContentInfo containing SignedData.

 4. Otherwise, ensure that there are 3 elements, and that the first
 element is a SEQUENCE 30h (either AttributeCertificateInfo or
 TBSCertificate).

 5. this SEQUENCE has: 6, 7, or 7+ elements

 6. if 6 elements -> Analyze the PDU as a Certificate (public key
 certificate) with version v1 (ABSENT).

 7. if 7+ elements ->

 1. look at version field (first element)

 2. if INTEGER (UNIVERSAL 2) -> Analyze the PDU as an
 AttributeCertificate (attribute certificate)

https://datatracker.ietf.org/doc/html/rfc7468

Leonard Expires September 14, 2017 [Page 15]

Internet-Draft certspec March 2017

 3. if explicitly tagged (APPLICATION 0, A0) and the contents are
 INTEGER (UNIVERSAL 2) -> Analyze the PDU as a Certificate
 (public key certificate).

7. Other Certificate Specifications

 The additional certificate specifications in this section are
 provided for applications to use as local identifiers that are
 useful, intuitive, or supportive of legacy systems or overriding
 design goals. These certspecs SHOULD NOT be used for interchange.

7.1. DBKEY (Reserved)

 The introducer production is "DBKEY:". The DBKEY certspec is meant
 for an opaque string that serves as the unique key to a certificate
 in an implementation's certificate database. This document reserves
 this introducer sequence for future use.

7.2. SELECT (Reserved)

 The introducer production is "SELECT" (without a colon). The SELECT
 certspec is meant for a valid SQL statement (suitably escaped) that
 retrieves a row representing a certificate. This document reserves
 this introducer sequence for future use.

8. Multiple certspecs (multispec)

 A multispec is a string that contains multiple certspecs, each of
 which is intended to identify the exact same certificate. If
 multiple certificates match a single spec, a single certificate can
 be returned by the multispec access operation, so long as the
 intersection of certificates identified by all of the certspecs in
 the multispec is one. The purpose of multispec is to provide
 multiple access and verification methods. For example, a hash
 algorithm may have known weaknesses, but may be the most efficient
 way to identify a certificate (e.g., because it is the index method).
 Providing additional certspecs (i.e., strong hash algorithms) would
 increase the certainty that the correct certificate is accessed.

 Another example is to provide two URIs for a certificate: one that
 works inside an organizational firewall, and one that works outside
 an organizational firewall. Conforming applications MAY ignore
 individual certspec lookup failures (where the certspec fails to
 return any certificate due to error conditions) as environment,
 capability, and security concerns dictate.

 As the certspecs above make use of almost all other characters in the
 ASCII range, < and > have been chosen to delimit certspecs between

Leonard Expires September 14, 2017 [Page 16]

Internet-Draft certspec March 2017

 each other. (Whitespace can also appear between each < and >
 delimited certspec.) The ABNF of multispec is:

 multispec = 1*("<" certspec ">")

 Figure 3: multispec ABNF

9. Attributes (pkcsattrs)

 This specification defines a textual format for PKCS attributes.
 This format is not limited to certificates: it can be used with other
 PKCS-related data. The syntax is intended primarily to convey
 certificate-related attributes found in PKCS #9 [RFC2985], PKCS #11
 [PKCS11], PKCS #12 [RFC7292], and particular implementations of
 cryptographic libraries. These attributes are syntactically
 identical to, but semantically disjoint from, Directory (X.500/LDAP)
 attributes.

 When pkcsattrs is used with a certspec or multispec, the intent is to
 associate arbitrary metadata with a certificate--metadata that is not
 intrinsic to that certificate. For example, the additional
 attributes may represent preferences. Attributes in this context are
 semantically equivalent to PKCS #12 "bagAttributes", drawn from the
 "PKCS12AttrSet" [RFC7292].

 pkcsattrs are delimited from a certspec or multispec production with
 "|". Each pkcsattr SHALL have a corresponding ASN.1 definition. The
 textual syntax of pkcsattrs is very similar to (in fact, a superset
 of) [RFC4514]: the pkcsattrs production represents the PKCS
 Attributes family of types, which are repeatedly defined in those
 standards, and standards that derive from them, as
 SET SIZE (1..MAX) OF Attribute. E.g., CMS (from PKCS #7) [RFC5652],
 private keys (from PKCS #8) [RFC5958], and PKCS #12 [RFC7292].
 Attributes are semantically unordered. Multiple attributes are
 separated with ",".

 Each attribute has a single attrType (canonically defined as OBJECT
 IDENTIFIER in [RFC5652]), and a SET OF attrValues. The attrType is
 encoded as the string representation of AttributeType (that is,
 either a registered short name (descriptor) [RFC4520], or the dotted-
 decimal encoding, <numericoid> of the OBJECT IDENTIFIER [RFC4512]).

 When an attribute has at least one value, the attrType is followed by
 "=" and the encoding of the attrValues (empty strings are possible).
 Multiple attrValues are separated by "+". When the attribute has no
 values, the attrType MUST NOT be followed by "=".

 An attrValue can have one of several encodings:

https://datatracker.ietf.org/doc/html/rfc2985
https://datatracker.ietf.org/doc/html/rfc7292
https://datatracker.ietf.org/doc/html/rfc7292
https://datatracker.ietf.org/doc/html/rfc4514
https://datatracker.ietf.org/doc/html/rfc5652
https://datatracker.ietf.org/doc/html/rfc5958
https://datatracker.ietf.org/doc/html/rfc7292
https://datatracker.ietf.org/doc/html/rfc5652
https://datatracker.ietf.org/doc/html/rfc4520
https://datatracker.ietf.org/doc/html/rfc4512

Leonard Expires September 14, 2017 [Page 17]

Internet-Draft certspec March 2017

 hex: The attrValue can always be represented by "#" followed by the
 hexadecimal encoding of each of the octets of the BER encoding of
 the attrValue, following paragraph 1 of Section 2.4 of [RFC4514].
 Implementations MUST support this encoding.

 string: If the attrValue has a LDAP-specific string encoding, that
 encoding can be used as the string representation of the value,
 with characters suitably escaped according to paragraph 2 and
 onward of Section 2.4 of [RFC4514]. Implementations SHOULD
 support this encoding for attributes of interest to it.

 XER: The attrValue can be represented by its BASIC-XER encoding
 [X.693] (Clause 8). When in BASIC-XER encoding, the string MUST
 be a complete XML fragment comprising one element, i.e., there
 SHALL NOT be an XML prolog. XER encoding is self-delimiting
 because it has balanced elements; this string always begins with
 "<" and ends with ">". Processing is simplified compared to
 arbitrary XML in that XML processing instructions, XML comments,
 and CDATA sections are prohibited. Implementations MUST support
 parsing through this encoding, but merely MAY support this
 encoding (encoding and decoding between [X.690]) for attributes of
 interest to it.

 ASN.1 value: The attrValue can be represented by its ASN.1 value
 notation [X.680], surrounded by exactly one space (SP) on each
 end. The syntax is precisely defined in Figure 4 so that the
 value itself never begins or ends with ASN.1 "white-space",
 although "white-space" can occur within the value. ASN.1 value
 notation requires a bit of finesse in that <"> can appear inside
 to delimit "cstring" lexical items (see Clause 12.14 and Clause 41
 of [X.680]). A "cstring" starts and ends with <">, and can
 represent <"> internally with a pair of consecutive <">.
 Therefore, <"> is balanced because it always occurs in multiples
 of two. If the value is just a cstring, then the representation
 will have exactly two <"> at the beginning, and two <"> at the
 end, with evenly-balanced <"> pairs inside. Other values that are
 not lists (enclosed with "{" and "}") do not have <"> occur within
 them. Otherwise, the representation must have at least one "{"
 "}" balanced pair at either end, hemming in <"> occurrences to
 within the balanced pairs of "{" and "}". Implementations MUST
 support parsing through this encoding, but merely MAY support this
 encoding (encoding and decoding between [X.690]) for attributes of
 interest to it.

 Of the attrValue encodings listed above, only "hex" can reliably
 transfer the underlying BER representation without an implementation
 maintaining specific knowledge of every attribute. Therefore, "hex"
 is RECOMMENDED for open interchange of pkcsattrs. The other

https://datatracker.ietf.org/doc/html/rfc4514#section-2.4
https://datatracker.ietf.org/doc/html/rfc4514#section-2.4

Leonard Expires September 14, 2017 [Page 18]

Internet-Draft certspec March 2017

 representations are really meant for human production and
 consumption.

9.1. ABNF

 The collective ABNF of pkcsattrs is:

 pkcsattrs = pkcsattr ["," pkcsattrs]
 pkcsattr = pkcsattrType ["=" pkcsattrValues]
 pkcsattrType = descr / numericoid
 pkcsattrValues = pkcsattrValue ["+" pkcsAttrValues]
 pkcsattrValue = hexstring / string /
 basic-xer-string / asn1-value-string

 basic-xer-string = xer-element

 ; limited by [X.680][X.693]
 xer-Name = ALPHA *(ALPHA / DIGIT / "_" / "-" / ".")

 ; limited by XML to these four chars
 xW = *(HT / LF / CR / SP)

 xer-element = xer-EmptyElemTag / xer-STag xer-content xer-ETag

 xer-EmptyElemTag = "<" xer-Name xW "/>"

 xer-STag = "<" xer-Name xW ">"

 xer-content = *xer-CharData *((xer-element / xer-Reference)
 *xer-CharData)

 xer-ETag = "</" xer-Name xW ">"

 xer-CharData = HT / LF / CR / %x20-25 / %x27-3B / "=" / %x3F-D7FF /
 %xE000-%xFFFD / %x10000-10FFFF

 xer-Reference = xer-EntityRef / xer-CharRef

 xer-EntityRef = "&" (%s"amp" / %s"lt" / %s"gt") ";"

 xer-CharRef = "&#" (1*DIGIT / %s"x" 1*HEXDIG) ";"

 ; TODO: may want another delimiter--think about it
 ; uses num from above for non-negative integers
 asn1-value-string = SP aValue aW

 ; identifier, Clause 12.3 of [X.680]
 aid = %x61-7A *(["-"] (ALPHA / DIGIT))

Leonard Expires September 14, 2017 [Page 19]

Internet-Draft certspec March 2017

 ; "newline", Clause 12.1.6 of [X.680]
 ; (NEL LS PS omitted)
 aNL = %d10-13
 ; single "white-space" (comment considered matching,
 ; because delimits lexical items), Clause 12.1.6 of [X.680]
 aS = %d9-13 / SP / NBSP / acomment
 aW = *aS

 acomment = "--" *(["-"] (UWSP / %x21-2C / %x2E-7E /
 UVCHARBEYONDASCII / PUACHAR))
 (aNL / "-" (aNL / "-"))

 ; space in unicode: 85 A0 1680 2000-200A 202F 205F 3000
 ; related not-unicode-White_Space-but-whitespace
 ; 180E 200B-200D 2060 FEFF

 ; uses "white-space" above, but "comment" not relevant
 acstring = %x22 *(UWSP / aNL / %x21 / %x22.x22 / %x23-7E /
 UVCHARBEYONDASCII) %x22

 aValue = %s"TRUE" / %s"FALSE" / %s"NULL" / %s"PLUS-INFINITY" /
 %s"MINUS-INFINITY" / %s"NOT-A-NUMBER" /
 "'" *("0" / "1" / aW) "'B" / "'" *(HEXDIG / aW) "'H" /
 %s"CONTAINING" 1*aS aValue /
 aid [aW ":" aW aValue] /
 aNumericRealValue / acstring / "{" aW alist "}"

 ; ObjIdComponents [X.680]
 ; aOIDC
 aObjIdComponents = (num / aid) [aW "(" aW (num/aid) aW ")"]

 ; NumericRealValue [X.680]
 ; TODO: integer part could be 1*DIGIT or num
 aNumericRealValue = ["-" aW] 1*DIGIT ["."] *DIGIT ["e" ["-"] num]

 ; *List values [X.680]
 alist = aValue aW *("," aW aValue aW) /
 aid 1*aS aValue aW *("," aW aid 1*aS aValue aW) /
 ; aOIDC *(1*aS aOIDC) aW
 aObjIdComponents *(1*aS aObjIdComponents) aW

 Figure 4: pkcsattrs ABNF

9.2. Mandatory Attribute Support

Leonard Expires September 14, 2017 [Page 20]

Internet-Draft certspec March 2017

9.2.1. In General

 Attributes related to certificate objects are in the domain of PKCS
 attributes, not Directory name attributes. [I-D.seantek-ldap-pkcs9]
 discusses the problem and registers attributes that are specifically
 designated for PKCS use, rather than Directory use.

 A conforming implementation is expected to recognize the short names
 (descriptors) recorded in the LDAP Parameters: Object Identifier
 Descriptors registry [LDAPDESC] that are designated for PKCS use if
 the implementation processes that attribute. Not all attributes are
 needed by all implementations. For example, a CMS processing
 application that supports pkcsattrs needs to recognize contentType
 and messageDigest, but not extendedCertificateAttributes.

9.2.2. For Certificate Applications

 A conforming implementation that supports pkcsattrs for certificates
 SHALL process the following attributes from PKCS #9 [RFC2985],
 including recognizing the following short names (descriptors) and
 associated LDAP-specific string encodings.

 friendlyName (1.2.840.113549.1.9.20)

 localKeyId (1.2.840.113549.1.9.21)

 signingDescription (1.2.840.113549.1.9.13)

 smimeCapabilities (1.2.840.113549.1.9.15)
 [[NB: smimeCapabilities does not have a SYNTAX with an LDAP-
 specific encoding. ASN.1 value notation is probably the most
 readable alternative, but support for ASN.1 value notation remains
 OPTIONAL.]]

9.3. Canonicalization

 The pkcsattrs production is a textual encoding of the ASN.1
 SET SIZE (1..MAX) OF Attribute. The textual format in this section
 is not intended to be used as any kind of canonical form. The
 canonical form is the DER encoding of the corresponding
 SET SIZE (1..MAX) OF Attribute.

10. Whitespace

 This specification is intended for textual data that may be visible
 to or edited by humans. Whitespace is a key factor in usability, so
 this specification permits whitespace in certain productions.

https://datatracker.ietf.org/doc/html/rfc2985

Leonard Expires September 14, 2017 [Page 21]

Internet-Draft certspec March 2017

 The certspec, multispec, pkcsattrs, and certstring productions are
 ideally emitted as one (long) line. The overall intent is that a
 bare line break (without leading or trailing horizontal space) is
 supposed to delimit these productions from each other.

 If it is desirable to break one of these productions across multiple
 lines, a hanging indent SHALL be used at syntactically appropriate
 places. A hanging indent means a newline production (LF, CRLF, or
 other characters appropriate to the character set, e.g., [[UNICODE]])
 followed by one or more horizontal space characters. The preferred
 horizontal space production is a single SP character.

 Generally, where whitespace is permitted, the whitespace either has
 no semantic meaning and therefore can be collapsed to a zero-length
 substring, i.e., skipped, or can be folded into a single whitespace
 character, i.e., a single SP.

 Productions that represent the hexadecimal (or base64) encodings of
 octets MAY have arbitrary whitespace interspersed between the
 hexadecimal (or base64) characters. The whitespace has no semantic
 meaning, and can be collapsed. Certspec and pkcsattrs parsers that
 parse "#" delimited attribute values in distinguished names and
 certificate attributes MAY accept and collapse whitespace; however,
 such whitespace is not permitted by [RFC4514]. Note that the
 attribute value MUST begin with "#"; there MUST NOT be leading
 whitespace.

 A parser MAY accept whitespace preceding the pkcsattrType production
 in pkcsattrs.

 A parser MAY accept whitespace between each angle-bracket-delimited
 certspec in the multispec production.

 A parser MAY accept whitespace preceding the attributeType production
 in distinguishedName.

 Generally, whitespace characters in values are otherwise considered
 to be semantically meaningful. A generator SHOULD encode such
 characters (e.g., with hexpair [RFC4514]) to avoid ambiguity or
 corruption.

11. Guidelines for Extending certspec

 The certspec definition presented in this document is intended to be
 fairly comprehensive. Nevertheless, there are several points of
 extension for implementors who may want to identify a certificate
 with more than what is presented in this document.

https://datatracker.ietf.org/doc/html/rfc4514
https://datatracker.ietf.org/doc/html/rfc4514

Leonard Expires September 14, 2017 [Page 22]

Internet-Draft certspec March 2017

 Firstly, certspec is naturally extended by supporting additional hash
 algorithms. The hash introducer characters are tied to the Hash
 Function Textual Names Registry; adding a new hash algorithm to that
 registry is necessary for certificates to get identified with that
 hash algorithm under this specification. For security reasons, the
 introducers "MD2" and "MD5" SHALL NOT be generated or parsed. See
 [RFC6149] and [RFC6151].

 Secondly, certspec allows for the full range of "local" identifiers
 (i.e., file paths, which may not actually be local) and "network"
 identifiers (i.e., URIs, which may not actually need the network). A
 certspec implementation that can make use of these facilities can
 naturally be extended by extending the path (e.g., with pipes and
 mount points) or the URI topology (e.g., with novel URI schemes).

 The ISSUERSN, SUBJECTEXP, and HOLDEREXP certspecs provide
 opportunities to identify the issuer, subject, or holder using
 multiple methods. An implementation MAY support other productions
 that equate to issuer certificates, subject identifiers, or holder
 sub-fields.

 Implementations MAY recognize other types of certspecs. However, new
 types intended for open interchange require an update to this
 document.

 A new certspec SHALL satisfy the following criteria:

 1. The type is identified by a keyword, followed by ":", or, the
 type is identified by very short sequences of characters that
 unambiguously signal the type of the certspec value (as file
 paths and Registry keys and values currently do). The
 specification MUST state whether the introducer characters are
 case-sensitive.

 2. The characters "<", ">", and "|" need to be distinguishable from
 their uses in multispec and pkcsattrs (certstring) using a
 context-free grammar, e.g., ABNF.

 3. [[TODO: further elaborate, or remove.]] If internal whitespace
 (including line-breaking) is permitted, the internal whitespace
 is consistent with this specification.

12. Use of certspec in Systems

 certspec is useful wherever a system may need to include or refer to
 a certificate. Some systems may wish to refer to a certificate
 without enabling all of the expressive power (and security
 considerations) of all strings in this specification. Accordingly,

https://datatracker.ietf.org/doc/html/rfc6149
https://datatracker.ietf.org/doc/html/rfc6151

Leonard Expires September 14, 2017 [Page 23]

Internet-Draft certspec March 2017

 those systems and specifications SHOULD develop profiles of this
 specification.

 This document guarantees that the introducer characters "URN:" and
 "CERT:" are RESERVED and will never be used. Implementors MUST take
 note that a raw certspec is not a valid URI: certspec-types are not
 registered URI schemes, have a broader character repertoire than
 permitted by [RFC3986], and do not have the same semantics as URIs.

13. IANA Considerations

Appendix D proposes modifications to the application/pkcs12 media
 type to support labeling a degenerate syntax that only contains
 certificates and certificate revocation lists. IANA is asked to
 update the fields of the application/pkcs12 registration as follows:

 Optional parameters:
 profile: A profile of PKCS #12 for particular applications.
 When this parameter has value "certs-only", then it conforms
 to the profile in Appendix E of [[RFC Ed: this document]].
 If a filename is supplied, the file extension is to be .p12c;
 appropriate description strings (in US-English) might be
 "PKCS #12 Certificate Store" or
 "PKCS #12 Certificate Data with Attributes", among others.
 It would be inappropriate to imply that such content
 contains keys or other secret materials.

 This parameter is case sensitive.

 Published specification:
 PKCS #12 v1.0, June 1999; PKCS #12 v1.1 (RFC 7292), July 2014
 [[RFC Ed: add reference to this document.]]

 Additional information:

 Deprecated alias names for this type: N/A
 Magic number(s): None.
 File extension(s): .p12 or .pfx; .p12c (in profile=certs-only case)
 Macintosh file type code(s): N/A

 Figure 5: application/pkcs12 Media Type Registration

Appendix D proposes modifications to the application/cms media type
 to support SafeContents as a CMS inner content type. IANA is asked
 to update the CMS Inner Content Types sub-registry by adding an
 identifier "safeContents" with the object identifier listed in

Appendix D. IANA is further asked to update the application/cms
 media type registration template accordingly.

https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc7292

Leonard Expires September 14, 2017 [Page 24]

Internet-Draft certspec March 2017

14. Security Considerations

 Digital certificates are important building blocks for
 authentication, integrity, authorization, and (occasionally)
 confidentiality services. Accordingly, identifying digital
 certificates incorrectly can have significant security ramifications.

 When using hash-based certspecs, the cryptographic hash algorithm
 MUST be implemented properly and SHOULD have no known attack vectors.
 For this reason, algorithms that are considered "broken" as of the
 date of this Internet-Draft, such as MD2 [RFC6149] and MD5 [RFC6151],
 are precluded from being valid certspecs. The registration of a
 particular algorithm spec in this namespace does NOT mean that it is
 acceptable or safe for every usage, even though this Internet-Draft
 requires that a conforming implementation MUST implement certain
 specs.

 When using content-based certspecs, the implementation MUST be
 prepared to process strings of arbitrary length. As of this writing,
 useful certificates rarely exceed 10KB, and most implementations are
 concerned with keeping certificate sizes down. However, a
 pathological or malicious certificate could easily exceed these
 metrics.

 When using element-based certspecs, the implementation MUST be
 prepared to deal with multiple found certificates that contain the
 same certificate data, but are not the same certificate. In such a
 case, the implementation MUST segregate these certificates so that
 the implementation only continues with certificates that it considers
 valid or trustworthy (as discussed further below). If, despite this
 segregation, multiple valid or trustworthy certificates match the
 certspec, the certspec (not in a multispec) MUST be rejected, because
 a certspec is meant to identify exactly one certificate (not a family
 of certificates).

 Certificates identified by certspecs should only be used with an
 analysis of their validity, such as by computing the Certification
 Path Validation Algorithm (Section 6 of [RFC5280]) or by other means.
 For example, if a certificate database contains a set of certificates
 that it considers inherently trustworthy, then the inclusion of a
 certificate in that set makes it trustworthy, regardless of the
 results of the Certification Path Validation Algorithm. Such a
 database is frequently used for "Root CA" lists.

 Conveying PKCS attributes with certificates will likely have security
 effects. For example, some implementations display the friendlyName
 attribute to a user on par with or in lieu of data derived from the
 certificate itself. Other implementations allow certificates to be

https://datatracker.ietf.org/doc/html/rfc6149
https://datatracker.ietf.org/doc/html/rfc6151
https://datatracker.ietf.org/doc/html/rfc5280#section-6

Leonard Expires September 14, 2017 [Page 25]

Internet-Draft certspec March 2017

 identified by this friendlyName attribute. Therefore, blind
 acceptance of PKCS attributes without considering the source or
 content can result in security compromises.

15. References

15.1. Normative References

 [I-D.seantek-abnf-more-core-rules]
 Leonard, S., "Comprehensive Core Rules and References for
 ABNF", draft-seantek-abnf-more-core-rules-06 (work in
 progress), September 2016.

 [I-D.seantek-ldap-pkcs9]
 Leonard, S., "Lightweight Directory Access Protocol (LDAP)
 Registrations for PKCS #9", draft-seantek-ldap-pkcs9-05
 (work in progress), June 2016.

 [I-D.seantek-unicode-in-abnf]
 Leonard, S. and P. Kyzivat, "Unicode in ABNF", draft-

seantek-unicode-in-abnf-00 (work in progress), September
 2016.

 [LDAPDESC]
 IANA, "LDAP Parameters: Object Identifier Descriptors",
 <http://www.iana.org/assignments/

ldap-parameters#ldap-parameters-3>.

 [RFC2045] Freed, N. and N. Borenstein, "Multipurpose Internet Mail
 Extensions (MIME) Part One: Format of Internet Message
 Bodies", RFC 2045, DOI 10.17487/RFC2045, November 1996,
 <http://www.rfc-editor.org/info/rfc2045>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66, RFC

3986, January 2005.

 [RFC4512] Zeilenga, K., "Lightweight Directory Access Protocol
 (LDAP): Directory Information Models", RFC 4512, June
 2006.

 [RFC4514] Zeilenga, K., "Lightweight Directory Access Protocol
 (LDAP): String Representation of Distinguished Names", RFC

4514, June 2006.

https://datatracker.ietf.org/doc/html/draft-seantek-abnf-more-core-rules-06
https://datatracker.ietf.org/doc/html/draft-seantek-ldap-pkcs9-05
https://datatracker.ietf.org/doc/html/draft-seantek-unicode-in-abnf-00
https://datatracker.ietf.org/doc/html/draft-seantek-unicode-in-abnf-00
http://www.iana.org/assignments/ldap-parameters#ldap-parameters-3
http://www.iana.org/assignments/ldap-parameters#ldap-parameters-3
https://datatracker.ietf.org/doc/html/rfc2045
http://www.rfc-editor.org/info/rfc2045
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc4512
https://datatracker.ietf.org/doc/html/rfc4514
https://datatracker.ietf.org/doc/html/rfc4514

Leonard Expires September 14, 2017 [Page 26]

Internet-Draft certspec March 2017

 [RFC4520] Zeilenga, K., "Internet Assigned Numbers Authority (IANA)
 Considerations for the Lightweight Directory Access
 Protocol (LDAP)", BCP 64, RFC 4520, DOI 10.17487/RFC4520,
 June 2006, <http://www.rfc-editor.org/info/rfc4520>.

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, October 2006.

 [RFC5234] Crocker, D. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234, January 2008.

 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, May 2008.

 [RFC5750] Ramsdell, B. and S. Turner, "Secure/Multipurpose Internet
 Mail Extensions (S/MIME) Version 3.2 Certificate
 Handling", RFC 5750, January 2010.

 [RFC5755] Farrell, S., Housley, R., and S. Turner, "An Internet
 Attribute Certificate Profile for Authorization", RFC

5755, January 2010.

 [RFC6570] Gregorio, J., Fielding, R., Hadley, M., Nottingham, M.,
 and D. Orchard, "URI Template", RFC 6570, DOI 10.17487/

RFC6570, March 2012,
 <http://www.rfc-editor.org/info/rfc6570>.

 [RFC7405] Kyzivat, P., "Case-Sensitive String Support in ABNF", RFC
7405, DOI 10.17487/RFC7405, December 2014,

 <http://www.rfc-editor.org/info/rfc7405>.

 [RFC7468] Josefsson, S. and S. Leonard, "Textual Encodings of PKIX,
 PKCS, and CMS Structures", RFC 7468, DOI 10.17487/RFC7468,
 April 2015, <http://www.rfc-editor.org/info/rfc7468>.

 [SHS] National Institute of Standards and Technology, "Secure
 Hash Standard", Federal Information Processing Standard
 (FIPS) 180-4, March 2012,
 <http://csrc.nist.gov/publications/fips/fips180-4/

fips-180-4.pdf>.

15.2. Informative References

 [PKCS11] RSA Laboratories, "PKCS #11 v2.30: Cryptographic Token
 Interface Standard", PKCS 11, April 2009.

https://datatracker.ietf.org/doc/html/bcp64
https://datatracker.ietf.org/doc/html/rfc4520
http://www.rfc-editor.org/info/rfc4520
https://datatracker.ietf.org/doc/html/rfc4648
https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc5750
https://datatracker.ietf.org/doc/html/rfc5755
https://datatracker.ietf.org/doc/html/rfc5755
https://datatracker.ietf.org/doc/html/rfc6570
https://datatracker.ietf.org/doc/html/rfc6570
http://www.rfc-editor.org/info/rfc6570
https://datatracker.ietf.org/doc/html/rfc7405
https://datatracker.ietf.org/doc/html/rfc7405
http://www.rfc-editor.org/info/rfc7405
https://datatracker.ietf.org/doc/html/rfc7468
http://www.rfc-editor.org/info/rfc7468
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf

Leonard Expires September 14, 2017 [Page 27]

Internet-Draft certspec March 2017

 [RFC1421] Linn, J., "Privacy Enhancement for Internet Electronic
 Mail: Part I: Message Encryption and Authentication
 Procedures", RFC 1421, February 1993.

 [RFC1738] Berners-Lee, T., Masinter, L., and M. McCahill, "Uniform
 Resource Locators (URL)", RFC 1738, December 1994.

 [RFC2253] Wahl, M., Kille, S., and T. Howes, "Lightweight Directory
 Access Protocol (v3): UTF-8 String Representation of
 Distinguished Names", RFC 2253, December 1997.

 [RFC2985] Nystrom, M. and B. Kaliski, "PKCS #9: Selected Object
 Classes and Attribute Types Version 2.0", RFC 2985,
 November 2000.

 [RFC4516] Smith, M. and T. Howes, "Lightweight Directory Access
 Protocol (LDAP): Uniform Resource Locator", RFC 4516, June
 2006.

 [RFC5652] Housley, R., "Cryptographic Message Syntax (CMS)", STD 70,
RFC 5652, September 2009.

 [RFC5958] Turner, S., "Asymmetric Key Packages", RFC 5958, August
 2010.

 [RFC6149] Turner, S. and L. Chen, "MD2 to Historic Status", RFC
6149, DOI 10.17487/RFC6149, March 2011,

 <http://www.rfc-editor.org/info/rfc6149>.

 [RFC6151] Turner, S. and L. Chen, "Updated Security Considerations
 for the MD5 Message-Digest and the HMAC-MD5 Algorithms",

RFC 6151, March 2011.

 [RFC7292] Moriarty, K., Nystrom, M., Parkinson, S., Rusch, A., and
 M. Scott, "PKCS #12: Personal Information Exchange Syntax
 v1.1", RFC 7292, July 2014.

 [UNICODE] The Unicode Consortium, "The Unicode Standard, Version
 8.0.0", ISBN 978-1-936213-10-8, August 2015.

 Mountain View, CA: The Unicode Consortium.

 [X.501] International Telecommunication Union, "Information
 technology - Open Systems Interconnection - The Directory:
 Models", ITU-T Recommendation X.501, ISO/IEC 9594-2,
 October 2012, <https://itu.int/ITU-T/X.501>.

https://datatracker.ietf.org/doc/html/rfc1421
https://datatracker.ietf.org/doc/html/rfc1738
https://datatracker.ietf.org/doc/html/rfc2253
https://datatracker.ietf.org/doc/html/rfc2985
https://datatracker.ietf.org/doc/html/rfc4516
https://datatracker.ietf.org/doc/html/rfc5652
https://datatracker.ietf.org/doc/html/rfc5958
https://datatracker.ietf.org/doc/html/rfc6149
https://datatracker.ietf.org/doc/html/rfc6149
http://www.rfc-editor.org/info/rfc6149
https://datatracker.ietf.org/doc/html/rfc6151
https://datatracker.ietf.org/doc/html/rfc7292
https://itu.int/ITU-T/X.501

Leonard Expires September 14, 2017 [Page 28]

Internet-Draft certspec March 2017

 [X.680] International Telecommunication Union, "Information
 technology - Abstract Syntax Notation One (ASN.1):
 Specification of basic notation", ITU-T Recommendation
 X.680, ISO/IEC 8824-1, August 2015, <https://itu.int/ITU-

T/X.680>.

 [X.690] International Telecommunication Union, "Information
 technology - ASN.1 encoding rules: Specification of Basic
 Encoding Rules (BER), Canonical Encoding Rules (CER) and
 Distinguished Encoding Rules (DER)", ITU-T Recommendation
 X.690, ISO/IEC 8825-1, August 2015, <https://itu.int/ITU-

T/X.690>.

 [X.693] International Telecommunication Union, "Information
 technology - ASN.1 encoding rules: XML Encoding Rules
 (XER)", ITU-T Recommendation X.693, ISO/IEC 8825-4, August
 2015, <https://itu.int/ITU-T/X.693>.

Appendix A. Mandatory Attribute Descriptors for Distinguished Names

 As per [RFC4514], attribute descriptors case-insensitive. A
 conformant implementation MUST recognize the attributes in the table
 below when parsing certspecs containing distinguished names, both by
 the OIDs and by the names recorded in the LDAP Parameters: Object
 Identifier Descriptors registry [LDAPDESC]. A conforming generator
 SHOULD emit these attribute descriptors in lieu of their dotted
 decimal representations.

 +----------------------------+-------------------------------+------+
 | OID | Names | RFC |
 +----------------------------+-------------------------------+------+
2.5.4.3	cn (CN)	4514
	commonName	
2.5.4.7	l (L)	4514
	localityName	
2.5.4.8	st (ST)	4514
	(S)*	
	stateOrProvinceName	
2.5.4.10	o (O)	4514
	organizationName	
2.5.4.11	ou (OU)	4514
	organizationalUnitName	
2.5.4.6	c (C)	4514
	countryName	
2.5.4.9	street (STREET)	4514
	streetAddress	
0.9.2342.19200300.100.1.25	dc (DC)	4514
	domainComponent	

https://itu.int/ITU-T/X.680
https://itu.int/ITU-T/X.680
https://itu.int/ITU-T/X.690
https://itu.int/ITU-T/X.690
https://itu.int/ITU-T/X.693
https://datatracker.ietf.org/doc/html/rfc4514

Leonard Expires September 14, 2017 [Page 29]

Internet-Draft certspec March 2017

0.9.2342.19200300.100.1.1	uid (UID)	4514
	userId	
2.5.4.5	serialNumber (SERIALNUMBER)	5280
2.5.4.46	dnQualifier (DNQUALIFIER)	5280
2.5.4.4	sn (SN)	5280
	surname	
2.5.4.42	gn (GN)**	5280
	givenName	
2.5.4.12	(T)*	5280
	title	
2.5.4.43	(I)*	5280
	initials	
2.5.4.44	(GENQUALIFIER)*	5280
	generationQualifier	
	(GENERATIONQUALIFIER)	
2.5.4.65	(PNYM)*	5280
	pseudonym (PSEUDONYM)	
1.2.840.113549.1.9.1	(E)*	5750
	emailAddress	
	email	
 +----------------------------+-------------------------------+------+

 Names in parentheses are variations that are not assigned as such in
 [LDAPDESC]. Implementations MAY parse these names, but SHOULD NOT
 generate them.
 Names in ALL-CAPS may be emitted by some certificate-processing
 applications; these names are compatible with lowercase or mixed-case
 variations due to case-insensitivity.
 * Name may appear in some implementations, but is not in [LDAPDESC].
 ** Name commonly appears in implementations, but is RESERVED in
 [LDAPDESC]. Conforming implementations MAY generate this name from
 2.5.4.42 and MUST parse this name as 2.5.4.42, despite its RESERVED
 status.

 Table 1: Attribute Descriptors

Appendix B. Recommended Attribute Descriptors for issuersn certspec

 As per [RFC4514], attribute descriptors are case-insensitive.
 [[TODO: complete. Probably date of birth, place of birth, gender,
 etc. are already defined elsewhere. Also jurisdictionLocalityName,
 etc. from CABForum.]]

Appendix C. Suggested Algorithm for Distinguishing Textual Data

 This appendix provides an informative algorithm that implementations
 MAY use to content-sniff textual data. This appendix is a companion
 to Section 6.5.

https://datatracker.ietf.org/doc/html/rfc4514

Leonard Expires September 14, 2017 [Page 30]

Internet-Draft certspec March 2017

 Some certspecs will return arbitrary data, which might be textual in
 nature. This is especially true of the file path and URI specs.
 There are historical reasons for this, mostly boiling down to "DER"
 vs. "PEM" output options in popular cryptographic software packages,
 without clear guidance on file extensions.

 The only BER-encoded PDUs that are mandated by this spec are
 Certificate [RFC5280], AttributeCertificate [RFC5755], and
 ContentInfo (containing SignedData) [RFC5652]. Before trying to do
 charset-sniffing, it is reasonable to probe for BER decoding first to
 see what happens. The (normative) algorithm in Section 6.5 is a
 sufficient test. At the very least, an implementation ought to check
 for the presence of the SEQUENCE octet (30h), a valid length that
 covers the length of the data, minus the tag and length octets, and
 two or three validly-encoded tag-length-value elements (Clause 8.1.1
 of [X.690]) inside the SEQUENCE.

 Although an implementation can ingest arbitrary text containing
 certificates, this specification only requires [RFC7468], which
 requires the presence of encapsulation boundaries. An implementation
 ought to look for Unicode byte order marks first; failing that, it
 ought to consider ASCII, basically ignoring invalid byte sequences
 that do not appear in [RFC7468] productions. Regardless of the
 charset(s) chosen, an implementation can hunt for the minimum string
 "-----BEGIN " followed somewhere by "-----END ", since those strings
 are required for [RFC7468] conformance.

Appendix D. Binary Formats for Conveying Certificates with Attributes

 During the development of this document, the author noted that there
 is a lack of standardization around conveying attributes with
 certificates. The bulk of this specification can be used to convey
 such attributes in text; however, a binary format is also desirable.
 Because the attributes in Section 9 are semantically equivalent to
 PKCS #12 "bagAttributes", it makes sense to reuse this structure of
 PKCS #12, if possible.

D.1. PKCS #12 certs-only Profile

 Predecessors to PKCS #12 have been criticized for being too obtuse
 and cumbersome to implement. This section proposes a profile of PKCS
 #12 for a degenerate case of the syntax that only conveys
 certificates and certificate revocation lists. It is analogous to
 the degenerate case of SignedData in CMS [RFC5652]. The overall
 usability goal is to convey certificates with attributes without
 requiring user input of secret or private material (i.e., a password
 or private key) to receive the data. The data MAY be signed for

https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc5755
https://datatracker.ietf.org/doc/html/rfc5652
https://datatracker.ietf.org/doc/html/rfc7468
https://datatracker.ietf.org/doc/html/rfc7468
https://datatracker.ietf.org/doc/html/rfc7468
https://datatracker.ietf.org/doc/html/rfc5652

Leonard Expires September 14, 2017 [Page 31]

Internet-Draft certspec March 2017

 integrity protection, so long as verifying the signature does not
 require user input of secret or private material.

 To compose the degenerate case, the following structures in the "PFX"
 structure are limited:

 1. authSafe has contentType id-data or id-signedData (if signed),
 containing an AuthenticatedSafe.

 2. The AuthenticatedSafe SHALL contain exactly one ContentInfo,
 which has contentType id-data, containing a SafeContents.

 3. The SafeContents can contain any number of SafeBags.

 4. Each SafeBag can only contain a certificate (via certBag) or a
 certificate revocation list (via crlBag).

 5. macData SHALL be "ABSENT".

 [RFC7292] does not have an identifier for attribute certificates in
 the CertBag. The ASN.1 module is hereby modified to support
 attribute certificates:

 attributeCertificate BAG-TYPE ::=
 {OCTET STRING IDENTIFIED BY {certTypes 3}} -- 3 is TBD
 -- DER-encoded attribute certificate stored in OCTET STRING

 CertTypes BAG-TYPE ::= {
 x509Certificate |
 sdsiCertificate,
 ...,
 attributeCertificate,
 ... }

 Figure 6: PKCS #12 ASN.1 Module Modification

 Implementations MUST parse through certBag elements containing
 attribute certificates (MUST NOT fail parsing), but actually
 processing attribute certificates is OPTIONAL if an implementation
 has no need for them. (The same remarks apply to certificate
 revocation lists.) Because this profile does not use encryption or
 key derivation functions, conforming implementations do not need to
 support such algorithms, which should greatly simplify
 implementations.

 It is desirable to convey this degenerate PKCS #12 data in MIME
 entities and files. Since this format has very different usability
 properties from full-featured PKCS #12, it is not to be labeled as

Leonard Expires September 14, 2017 [Page 32]

Internet-Draft certspec March 2017

 standard PKCS #12. A new "profile" optional parameter with value
 "certs-only" is proposed for the application/pkcs12 media type, as
 well as a new file extension .p12c. See Section 13 for the modified
 registration template.

D.2. CMS SafeContents contentType

 Some applications will not want to bother with the PFX PDU of PKCS
 #12 at all. For those applications, it is possible to transmit
 SafeContents directly as CMS (PKCS #7) content.

 The CMS (TBD: or PKCS #12?) ASN.1 module is hereby enhanced to
 include an object identifier for SafeContents as a content type:

 IMPORTS
 SafeContents, bagtypes
 FROM PKCS-12 {1 2 840 113549 1 pkcs-12(12) modules(0) pkcs-12(1)}

 ContentSet CONTENT-TYPE ::= {
 -- Define the set of content types to be recognized.
 ct-Data | ct-SignedData | ct-EncryptedData | ct-EnvelopedData |
 ct-AuthenticatedData | ct-DigestedData | ct-SafeContents, ... }

 ct-SafeContents CONTENT-TYPE ::=
 { SafeContents IDENTIFIED BY id-safeContents }

 -- could be 1.2.840.113549.1.12.10.1.6 existing safeContentsBag OID,
 -- or a new 1.2.840.113549.1.12.10.2,
 -- or a new 1.2.840.113549.7.9 from PKCS #7,
 -- or a new 1.2.840.113549.1.9.16.1.37 from pkcs-9 smime ct
 id-safeContents OBJECT IDENTIFIER ::= {bagtypes 6}

 Figure 7: CMS ASN.1 Module Modification

 SafeContents is registered as a CMS Inner Content Type (ICT) with the
 identifier "safeContents". See Section 13 for the relevant
 registration and application/cms modification.

 Using this technique allows SafeContents directly in CMS content.
 Any kind of SafeBag is permitted inside; unlike Appendix D.1, this
 format is not further profiled.

D.3. SafeContents-to-PKCS#12 BER Adapter

 An application that processes a SafeContents PDU directly may find it
 expedient to adapt it to a PFX PDU for ingestion into legacy code
 that only processes PKCS #12 data. The following adapter can be used

Leonard Expires September 14, 2017 [Page 33]

Internet-Draft certspec March 2017

 for that purpose. Octets are listed in hexadecimal. Place the BER
 encoding of SafeContents in the position marked "(SafeContents)".
 The placeholders "LEN-" are [X.690] length octets, which are to be
 computed as follows:

 LEN-SC: The length in octets of the SafeContents.

 LEN-2: LEN-SC plus the length in octets of LEN-SC itself, plus 1.

 LEN-3: LEN-2 plus the length in octets of LEN-2 itself, plus 20.

 LEN-4: LEN-3 plus the length in octets of LEN-3 itself, plus 1.

 30 80 02 01 03 30 80 06092A864886F70D010701 A0 LEN-4 04 LEN-3
 30 80 30 80 06092A864886F70D010701 A0 LEN-2 04 LEN-SC
 (SafeContents)
 0000 0000 0000 0000

 Figure 8: BER Adapter

Appendix E. Textual Encoding of Attributes

 [[TODO: Consider removing this appendix; Section 9 is clearer.]]

 From time to time, it is desirable to convey attributes independently
 of other PKIX, PKCS, or CMS structures. This appendix defines a
 textual encoding [RFC7468] format for attributes.

 Attributes are encoded using the "ATTRIBUTES" label. The encoded
 data MUST be a BER (DER strongly preferred; see Appendix B of
 [RFC7468]) encoded ASN.1 "SET OF Attribute", or, in rare cases,
 "SEQUENCE OF Attribute" structure as described throughout Directory,
 PKIX, PKCS, and CMS standards. Unless the collection is specifically
 ordered, emitting the "SET OF Attribute" variant is RECOMMENDED.

 No IETF document formally discusses what an attribute is (although
 [RFC4512] comes close). Workable definitions can be gleaned from
 [X.501] and [RFC4512]:

 Each attribute [in the Directory] provides a piece of information
 about, or describes a particular characteristic of, the object to
 which the entry corresponds. --Clause 8.2 of [X.501]

 An attribute consists of an _attribute type_, which identifies the
 class of information given by an attribute, and the corresponding
 attribute values, which are the particular instances of that
 class of information appearing in the attribute within the entry.
 --Clause 8.2 of [X.501]

https://datatracker.ietf.org/doc/html/rfc7468
https://datatracker.ietf.org/doc/html/rfc7468#appendix-B
https://datatracker.ietf.org/doc/html/rfc7468#appendix-B
https://datatracker.ietf.org/doc/html/rfc4512
https://datatracker.ietf.org/doc/html/rfc4512

Leonard Expires September 14, 2017 [Page 34]

Internet-Draft certspec March 2017

 An entry [in the Directory] consists of a set of attributes that
 hold information about the object that the entry represents.
 --Section 2.2 of [RFC4512]

 An attribute is an attribute description (a type and zero or more
 options) with one or more associated values. An attribute is
 often referred to by its attribute description. --Section 2.2 of
 [RFC4512]

 An attribute is comprised of a type and a SET OF values. The
 collection of values is always unordered. Collections of attributes
 are almost always unordered, and are almost always stored in a
 "SET OF Attribute". A few protocols store attributes in a
 "SEQUENCE OF Attribute", but for nearly all cases, the ordering is
 stated to be irrelevant by the relevant standard document.

 The attribute type is a widely shared protocol element in LDAP/
 Directory, PKIX, PKCS, and CMS standards. However, the collections
 of relevant attributes to particular occurrences of the structure (as
 represented by a table constraint on an occurence) are largely
 disjoint from one another. CMS attribute collections (e.g.,
 "SignedAttributes", "UnsignedAttributes", "UnprotectedAttributes")
 share no common semantics with Directory attributes, for instance.
 The textual encoding provided in this section is appropriate for any
 collection of attributes, but only context can determine what kinds
 of attributes are appropriate, as well as the identity of the
 corresponding object. Figure 9 provides an example of the textual
 encoding, along with its corresponding Section 9 format.

localKeyId=#0402534C,friendlyName=Chubby\F0\9F\90\B0
-----BEGIN ATTRIBUTES-----
MTQwEQYJKoZIhvcNAQkVMQQEAlNMMB8GCSqGSIb3DQEJFDESHhAAQwBoAHUAYgBi
AHnYPdww
-----END ATTRIBUTES-----

 Figure 9: Attributes Example

Author's Address

 Sean Leonard
 Penango, Inc.
 5900 Wilshire Boulevard
 21st Floor
 Los Angeles, CA 90036
 USA

 Email: dev+ietf@seantek.com
 URI: http://www.penango.com/

https://datatracker.ietf.org/doc/html/rfc4512#section-2.2
https://datatracker.ietf.org/doc/html/rfc4512#section-2.2
https://datatracker.ietf.org/doc/html/rfc4512#section-2.2
http://www.penango.com/

Leonard Expires September 14, 2017 [Page 35]

