
Workgroup: TODO Working Group

Internet-Draft:

draft-secure-credential-transfer-01

Published: 21 October 2021

Intended Status: Standards Track

Expires: 24 April 2022

Authors: D. Vinokurov

Apple Inc

M. Byington

Apple Inc

B. Chester

Apple Inc

M. Lerch

Apple Inc

C. Qin

Alphabet Inc

A. Bar-Niv

Alphabet Inc

N. Sha

Alphabet Inc

Secure Credential Transfer

Abstract

This document describes a mechanism to transfer digital credentials

securely between two devices. Secure credentials may represent a

digital key to a hotel room, a digital key to a door lock in a house

or a digital key to a car. Devices that share credentials may belong

to the same or two different platforms (e.g. iOS and Android).

Secure transfer may include one or more write and read operations.

Credential transfer needs to be performed securely due to the

sensitive nature of the information.

Discussion Venues

This note is to be removed before publishing as an RFC.

Source for this draft and an issue tracker can be found at https://

github.com/dimmyvi/secure-credential-transfer.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 24 April 2022.

¶

¶

¶

¶

¶

¶

¶

https://github.com/dimmyvi/secure-credential-transfer
https://github.com/dimmyvi/secure-credential-transfer
https://datatracker.ietf.org/drafts/current/

Copyright Notice

Copyright (c) 2021 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

2. Terminology

3. Credential transfer workflows

3.1. Stateless workflow

3.2. Stateful workflow

4. API connection details

5. HTTP Headers: Mailbox-Correlation-ID

6. HTTP access methods

6.1. CreateMailbox

6.1.1. Endpoint

6.1.2. Request Parameters:

6.1.3. Consumes

6.1.4. Request body

6.1.5. Responses

6.2. UpdateMailbox

6.2.1. Endpoint

6.2.2. Request Parameters

6.2.3. Consumes

6.2.4. Request body

6.2.5. Responses

6.3. DeleteMailbox

6.3.1. Endpoint

6.3.2. Request Parameters

6.3.3. Responses

6.4. ReadDisplayInformationFromMailbox

6.4.1. Endpoint

6.4.2. Request Parameters

6.4.3. Responses

6.5. ReadSecureContentFromMailbox

6.5.1. Endpoint

6.5.2. Request Parameters

6.5.3. Responses

¶

¶

https://trustee.ietf.org/license-info

7. Encryption format

8. Security Considerations

8.1. Sender/Receiver privacy

8.2. Credential's confidentiality and integrity

9. IANA Considerations

10. References

10.1. Normative References

10.2. Informative References

Appendix A. Acknowledgments

Authors' Addresses

1. Introduction

Today, there is no standard way of transferring digital credentials

securely between two devices belonging to the same platform or two

different platforms. This document proposes a solution to this

problem by introducing a Relay server which allows two devices to

exchange encrypted Provisioning Information securely. The Relay

server solves this problem by creating and managing temporary

mailbox storage.

Each mailbox can be referenced by devices using a unique mailbox

identifier in a URL. The URL pointing to encrypted Provisioning

Information is to be passed between devices directly over various

channels (e.g. SMS, email, messaging applications). The Security

Considerations section provides recommendations on passing the URL

and the Secret securely.

This document describes a Hypertext (HTTP) Application Programming

Interface (API) that allows Sender and Receiver devices to interact

with a Relay server in order to perform secure credential transfer.

2. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

General terms:

Relay Server - Web application exposing Secure Credential

Transfer API to devices. It serves to securely transfer

Provisioning Information between two devices (Sender and

Receiver).

Sender device - a device initiating a transfer of Provisioning

Information to a Receiver device so that Receiver can register or

provision this credential.

¶

¶

¶

¶

¶

*

¶

*

¶

Receiver device - a device that receives Provisioning Information

from Sender device and uses it to register or provision

Credential Information.

Provisioning Partner - an entity which facilitates Credential

Information lifecycle on a device. Lifecycle may include

provisioning of credential, credential termination, credential

update. API to Provisioning Partner is out of scope for this

document.

Provisioning Information - a set of data fields, allowing a

device to generate Credential Information or receive it from

Provisioning Partner and install it locally. The entire content

of Provisioning Information is encrypted by Sender or Receiver

device. Therefore, it is not visible to the Relay Server. The

structure of Provisioning Information is specific to Provisioning

Partner or type of Credential and out of the scope of this

document.

Credential Information - a set of data fields used to facilitate

registration or provisioning of Credential Information on the

Receiver's device.

Secret - a symmetric encryption key shared by a pair of Sender

and Receiver devices, used to encrypt Provisioning Information

stored on a the Relay server. Secret stays the same for the

entire credential transfer flow (one Secret per complete

transfer). Provisioning Information stored on Relay server is

always encrypted using the Secret. In Stateful flow all

information exchanged by Sender and Receiver devices through

Relay server is encrypted with the same Secret. Thus,

effectively, Secret has a one-to-one relation with the mailbox.

API parameters:

Device Claim - a unique token allowing the caller to read from /

write data to the mailbox. Exactly one Sender device and one

Receiver device SHOULD be able to read from / write secure

payload to the mailbox. Sender device provides a Device Claim in

order to create a mailbox. When the Relay server, having received

a request from the Sender device, creates a mailbox, it binds

this Sender's Device Claim to the mailbox. When the Receiver

device first reads data from the mailbox it presents its Device

Claim to the Relay Server, which binds the mailbox to the given

Receiver device. Thus, both Sender and Receiver devices are bound

to the mailbox (allowed to read from / write to it). Only Sender

and Receiver devices that present valid Device Claims are allowed

to send subsequent read/update/delete calls to the mailbox. The

value SHALL be a UUID [RFC4122].

*

¶

*

¶

*

¶

*

¶

*

¶

¶

*

¶

Notification Token - a short or long-lived unique token stored by

the Sender or Receiver device in a mailbox on the Relay server,

which allows Relay server to send a push notification to the

Sender or Receiver device, informing them of updates in the

mailbox.

MailboxIdentifier - Sender device-defined unique identifier for

the given mailbox. The value \ be a UUID [RFC4122].

3. Credential transfer workflows

We define two flows for credential transfer: 1. Stateless (Relay

server facilitates a single credential data transfer: Sender ->

Relay -> Receiver) and 2. Stateful (Relay facilitates additional

data transfers - there are multiple data transfers in this flow to

prepare credential data for registering or provisioning by

Receiver). The details are provided below.

Both stateless and stateful share the following common steps. The

processes start with a Sender device composing a set of Provisioning

Information, encrypting it with a Secret and storing encrypted

Provisioning Information on a Relay server in a mailbox. A unique

Mailbox Identifier is generated by the Sender device, created using

a good source of entropy (preferably hardware-based entropy). Sender

device generates a unique token - a Sender Device Claim - and stores

it to the mailbox. Device Claim allows the Sender device presenting

it to read and write data to / from the mailbox, thus binding it to

the mailbox.

Sender device sends MailboxIdentifier to the Relay server as a part

of CreateMailbox request. Once a mailbox is created, it has limited

time to live. When expired, the mailbox SHALL be deleted - refer to

DeleteMailbox endpoint. TimeToLive mailbox configuration in the

request is required to use with the CreateMailbox call (refer to

mailboxConfiguration request parameter).

Relay server builds a unique URL link to a mailbox (for example,

"http://relayserver.com/m/1234567890") and returns it to the Sender

device, which sends the link directly to the Receiver device over

communication channel (e.g. SMS, email, iMessage). Please refer to

section "Security Considerations" for more details.

Receiver device, having obtained both the URL link and the Secret,

generates a unique token - a Receiver Device Claim - and passes it

to the Relay server in order to read the encrypted Provisioning

Information from the mailbox.

Relay server now binds a given pair of Sender and Receiver devices

to the mailbox by provided Sender and Receiver Device Claims. Only

*

¶

*

¶

¶

¶

¶

¶

¶

bound devices are allowed to read or write data to the mailbox or to

delete the mailbox.

3.1. Stateless workflow

The stateless workflow completes the common steps described in

"Credential transfer workflows" section, then finishes the transfer

completing the following steps. Receiver device, having read the

encrypted Provisioning Information from the Relay mailbox, decrypts

it with the Secret received from the Sender and starts credential

registering or provisioning process on the device. Once the Receiver

device has successfully provisioned credentials, it deletes the

mailbox by sending a DeleteMailbox call to the Relay server.

Figure 1: Sample stateless workflow

3.2. Stateful workflow

The stateful workflow completes the common steps described in

"Credential transfer workflows" section, then finishes the transfer

completing the following steps.

Then the Receiver device, having downloaded the encrypted

Provisioning Information from the mailbox by URL and decrypted it

with the Secret, generates a new structure of Provisioning

Information, e.g. a digital key, and encrypts it with the same

Secret, received from the Sender device. It then stores the payload

in the same mailbox on the Relay server. In addition to the

encrypted payload, Receiver stores a Receiver Notification Token in

the given mailbox.

Having received the encrypted Provisioning Information, the Relay

server sends a Notification to the Sender device using the Sender

Notification Token.

¶

¶

 Sender Relay Receiver

 | | |

 Create and encrypt | | |

 Provisioning Info |——---------------->| |

 | CreateMailbox | |

 |<------------------| |

 |URL link to mailbox| |

 Send URL link | | |

 and Secret |-->|

 | | ReadSecureContent FromMailbox |

 | |<------------------------------|

 | | | Decrypt Provisioning Info with Secret

 | |<------------------------------|

 | | DeleteMailbox | Provision credentials

¶

¶

¶

Sender device, having received the notification from the Relay

server, reads secure content from the mailbox and decrypts all using

the same Secret. Sender device generates new Provisioning

Information, encrypts all fields using the Secret and stores all

data in the same mailbox on the Relay server.

Relay server, having stored the data above, sends a notification to

the Receiver device using Receiver Notification Token. Receiver

device, having received the notification, reads the encrypted

Provisioning Information, decrypts the data using the same Secret

and uses this data to finalize credential registration or

provisioning on device.

Once the Receiver device has successfully registered or provisioned

credentials, it deletes the mailbox by sending a DeleteMailbox call

to the Relay server. Sender device may terminate the secure

credential transfer by deleting the mailbox it created at any time.

Deletion of the mailbox on the Relay server stops any on-going

credential transfer process.

Figure 2: Sample stateful workflow

¶

¶

¶

 Sender Relay Receiver

 | | |

 Create and encrypt | CreateMailbox | |

 Provisioning Info 1 |--------------------------->| |

 | encrypted info | |

 |<---------------------------| |

 | URL link to mailbox | |

 | | |

 Send URL link |-->|

 and Secret | |ReadSecureContentFromMailbox|

 | | |

 | |<---------------------------| Decrypt w Secret

 | | encrypted info |

 | | UpdateMailbox | ProvInfo 2 = new Provisioning Info,

 | |<---------------------------| encrypted info =

 |ReadSecureContentFromMailbox| encrypted info | encrypt(ProvInfo2)

 | | | with Secret

 ProvInfo 3 = new |--------------------------->| |

 ProvisioningInfo | encrypted info | |

 encrypted info = | | |

 encrypt(ProvInfo3) |—-----------—-------------->|ReadSecureContentFromMailbox|

 with Secret | encrypted info | |

 | |<---------------------------| Decrypt(ProvInfo3)

 | | encrypted info |

 | |<---------------------------|

 | | DeleteMailbox | Provision or Register credentials

4. API connection details

The Relay server API endpoint MUST be accessed over HTTP using an

https URI [RFC2818] and SHOULD use the default https port. Request

and response bodies SHALL be formatted as either JSON or HTML (based

on the API endpoint). The communication protocol used for all

interfaces SHALL be HTTPs. All Strings SHOULD be UTF-8 encoded

(Unicode Normalization Form C (NFC)). An API version SHOULD be

included in the URI for all interfaces. The version at the time of

this document's latest update is v1. The version SHALL be

incremented by 1 for major API changes or backward incompatible

iterations on existing APIs.

5. HTTP Headers: Mailbox-Correlation-ID

All requests to and from Relay server will have an HTTP header

"Mailbox-Correlation-ID". The corresponding response to the API will

have the same HTTP header, which SHALL echo the value in the request

header. This is used to identify the request associated to the

response for a particular API request and response pair. The value

SHOULD be a UUID [RFC4122]. The request originator SHALL match the

value of this header in the response with the one sent in the

request. If response is not received, caller may retry sending the

request with the same value of "Mailbox-Correlation-ID". Relay

server SHOULD store the value of the last successfully processed

"Mailbox-Correlation-ID" for each device based on the caller's

Device Claim. A key-value pair of "Device Claim" to "Mailbox-

Correlation-ID" is suggested to store the last successfully

processed request for each device. In case of receiving a request

with duplicated "Mailbox-Correlation-ID", Relay SHOULD respond to

the caller with status code 201, ignoring the duplicate request body

content.

6. HTTP access methods

6.1. CreateMailbox

An application running on a remote device can invoke this API on

Relay Server to create a mailbox and store secure data content to it

(encrypted data specific to a provisioning partner).

6.1.1. Endpoint

POST /{version}/m

¶

¶

¶

¶

6.1.2. Request Parameters:

Path parameters

version (String, Required) - the version of the API. At the time

of writing this document, "v1".

Header parameters

deviceAttestation (String, Optional) - optional remote device-

specific attestation data.

deviceClaim (String, UUID, Required) - Device Claim (refer to

Terminology).

6.1.3. Consumes

This API call consumes the following media types via the Content-

Type request header: application/json

6.1.4. Request body

Request body is a complex structure, including the following fields:

mailboxIdentifier (String, Required) - MailboxIdentifier (refer

to Terminology).

payload (Object, Required) - for the purposes of Secure

Credential Transfer API, this is a data structure, describing

Provisioning Information specific to Credential Provider. It

consists of the following 2 key-value pairs:

"type": "AES128" (refer to Encryption Format section).

"data": BASE64-encoded binary value of ciphertext.

displayInformation (String, Required) - for the purposes of the

Secure Credential Transfer API, this is a JSON data blob. It

allows an application running on a receiving device to build a

visual representation of the credential to show to user. The data

structure contains the following fields:

title - a String with the title of the credential (e.g. "Car

Key")

description - a String with brief description of the

credential (e.g. "a key to my personal car")

imageURL - a link to a picture representing the credential

visually.

¶

*

¶

¶

*

¶

*

¶

¶

¶

*

¶

*

¶

1. ¶

2. ¶

*

¶

1.

¶

2.

¶

3.

¶

notificationToken (Object, Optional) - optional notification

token used to notify an appropriate remote device that the

mailbox data has been updated. Data structure includes the

following:

type (String, Required) - notification token name. Used to

define which Push Notification System to be used to notify

appropriate remote device of a mailbox data update. (E.g.

"com.apple.apns" for APNS)

tokenData (String, Required) - notification token data (Hex

or Base64 encoded based on the concrete implementation) -

application-specific - refer to appropriate Push

Notification System specification.

mailboxConfiguration (Object, Optional) - optional mailbox

configuration, defines access rights to the mailbox, mailbox

expirationTime. Required at the time of the mailbox creation.

Data structure includes the following:

accessRights (String, Optional) - optional access rights to

the mailbox for Sender and Receiver devices. Default access

to the mailbox is Read and Delete. Value is defined as a

combination of the following values: "R" - for read access,

"W" - for write access, "D" - for delete access. Example"

"RD" - allows to read from the mailbox and delete it.

timeToLive (String, required) - Mailbox time to live in

seconds. E.g. "8640" for 24 hours. Mailbox has a limited

time to live. Once expired, it SHALL be deleted - refer to

DeleteMailbox endpoint.

Figure 3: Apple Push Token Example

*

¶

1.

¶

2.

¶

*

¶

1.

¶

2.

¶

{

 "notificationToken": {

 "name":"com.apple.apns",

 "tokenData":"APNS1234...QW"

 }

}

Figure 4: Create Mailbox Request Example

6.1.5. Responses

200 Status: "200" (OK)

ResponseBody: - urlLink (String, Required) - a full URL link to the

mailbox including fully qualified domain name and mailbox

Identifier.

Figure 5: Create Mailbox Response Example

201 Status: "201" (Created) - response to a duplicated request

(duplicated "Mailbox-Correlation-Id"). Relay server SHALL respond to

duplicated requests with 201 without creation of a new mailbox.

"Mailbox-Correlation-Id" passed in the first CreateMailbox request's

header SHOULD be stored by the Relay server and compared to the same

value in the subsequent requests to identify duplicated requests. If

duplicate is found, Relay SHALL not create a new mailbox, but

respond with 201 instead. The value of "Mailbox-Correlation-Id" of

the last successfully completed request SHOULD be stored based on

the Device Claim passed by the caller.

{ "mailboxIdentifier" : "12345678-9...A-BCD",

 "displayInformation" : {

 "title" : "Hotel Pass",

 "description" : "Some Hotel Pass",

 "imageURL" : "https://hotel.com/sharingImage"

 },

 "payload" : {

 "type": "AES128",

 "data": "FDEC...987654321"

 },

 "notificationToken" : {

 "type" : "com.apple.apns",

 "tokenData" : “APNS...1234"

 },

 "mailboxConfiguration" : {

 "accessRights" : "RWD",

 "timeToLive" : "8640”

 }

}

¶

¶

{

 "urlLink":"relayserver.com/m/12345678-9...A-BCD"

}

¶

ResponseBody: - urlLink (String, Required) - a full URL link to the

mailbox including fully qualified domain name and mailbox

Identifier.

400 Bad Request - invalid request has been passed (can not parse or

required fields missing).

401 Unauthorized - calling device is not authorized to create a

mailbox. E.g. a device presented the incorrect deviceClaim or

mailbox with the provided mailboxIdentifier already exists.

6.2. UpdateMailbox

An application running on a remote device can invoke this API on

Relay Server to update secure data content in an existing mailbox

(encrypted data specific to a Provisioning Partner). The update

effectively overwrites the secure payload previously stored in the

mailbox.

6.2.1. Endpoint

PUT /{version}/m/{mailboxIdentifier}

6.2.2. Request Parameters

Path parameters:

version (String, Required) - the version of the API. At the time

of writing this document, "v1".

mailboxIdentifier(String, Required) - MailboxIdentifier (refer to

Terminology).

Header parameters:

deviceAttestation (String, Optional) - optional remote device-

specific attestation data.

deviceClaim (String, UUID, Required) - Device Claim (refer to

Terminology).

6.2.3. Consumes

This API call consumes the following media types via the Content-

Type request header: application/json

¶

¶

¶

¶

¶

¶

*

¶

*

¶

¶

*

¶

*

¶

¶

6.2.4. Request body

Request body is a complex structure, including the following fields:

payload (String, Required) - for the purposes of Secure

Credential Transfer API, this is a JSON metadata blob, describing

Provisioning Information specific to Credential Provider.

notificationToken (Object, Required) - Mandatory notification

token used to notify an appropriate remote device that the

mailbox data has been updated. Data structure includes the

following: - type (String, Required) - notification token name.

Used to define which Push Notification System to be used to

notify appropriate remote device of a mailbox data update. (E.g.

"com.apple.apns" for APNS) - tokenData (String, Required) -

notification token data (Hex or Base64 encoded based on the

concrete implementation) - application-specific - refer to

appropriate Push Notification System specification

Figure 6: Update Mailbox Request Example

6.2.5. Responses

200 Status: "200" (OK)

201 Status: "201" (Created) - response to a duplicated request

(duplicated "Mailbox-Correlation-Id"). Relay server SHALL respond to

duplicted requests with 201 without performing mailbox update.

"Mailbox-Correlation-Id" passed in the first UpdateMailbox request's

header SHOULD be stored by the Relay server and compared to the same

value in the subsequent requests to identify duplicated requests. If

duplicate is found, Relay SHALL not perform mailbox update, but

respond with 201 instead. The value of "Mailbox-Correlation-Id" of

the last successfully completed request SHOULD be stored based on

the Device Claim passed by the caller.

400 Bad Request - invalid request has been passed (can not parse or

required fields missing).

¶

*

¶

*

¶

{

 "payload" : {

 "type": "AES128",

 "data": "FDEC...987654321"

 },

 "notificationToken":{

 "type" : "com.apple.apns",

 "tokenData" : “APNS...1234"

 }

}

¶

¶

¶

401 Unauthorized - calling device is not authorized to update the

mailbox. E.g. a device presented the incorrect deviceClaim.

404 Not Found - mailbox with provided mailboxIdentifier not found.

6.3. DeleteMailbox

An application running on a remote device can invoke this API on

Relay Server to close the existing mailbox after it served its

purpose. Receiver or Sender device needs to present a deviceClaim in

order to close the mailbox.

6.3.1. Endpoint

DELETE /{version}/m/{mailboxIdentifier}

6.3.2. Request Parameters

Path parameters:

version (String, Required) - the version of the API. At the time

of writing this document, "v1".

mailboxIdentifier(String, Required) - MailboxIdentifier (refer to

Terminology).

Header parameters:

deviceAttestation (String, Optional) - optional remote device-

specific attestation data.

deviceClaim (String, UUID, Required) - Device Claim (refer to

Terminology).

6.3.3. Responses

200 Status: "200" (OK)

401 Unauthorized - calling device is not authorized to delete a

mailbox. E.g. a device presented the incorrect deviceClaim.

404 Not Found - mailbox with provided mailboxIdentifier not found.

Relay server may respond with 404 if the Mailbox Identifier passed

by the caller is invalid or mailbox has already been deleted (as a

result of duplicate DeleteMailbox request).

6.4. ReadDisplayInformationFromMailbox

An application running on a remote device can invoke this API on

Relay Server to retrieve public display information content from a

¶

¶

¶

¶

¶

*

¶

*

¶

¶

*

¶

*

¶

¶

¶

¶

mailbox. Display Information shall be returned in OpenGraph format

(please refer to https://ogp.me for details).

6.4.1. Endpoint

GET /{version}/m/{mailboxIdentifier}

6.4.2. Request Parameters

Path parameters:

version (String, Required)- the version of the API. At the time

of writing this document, "v1".

mailboxIdentifier(String, Required) - MailboxIdentifier (refer to

Terminology).

6.4.3. Responses

200 Status: "200" (OK)

ResponseBody :

displayInformation (String, Required) - visual representation of

digital credential in OpenGraph format (please refer to https://

ogp.me for details).

Figure 7: Read Display Information Response Example

401 Unauthorized - calling device is not authorized to create a

mailbox. E.g. a device presented the incorrect deviceClaim.

404 Not Found - mailbox with provided mailboxIdentifier not found.

¶

¶

¶

*

¶

*

¶

¶

¶

*

¶

 "<html prefix="og: https://ogp.me/ns#">

 <head>

 <title>Hotel Pass</title>

 <meta property="og:title" content="Hotel Pass" />

 <meta property="og:type" content="image/jpeg" />

 <meta property="og:description" content="Some Hotel Pass" />

 <meta property="og:url" content="share://" />

 <meta property="og:image" content="https://website.com/photos/photo.jpg" />

 <meta property="og:image:width" content="612" />

 <meta property="og:image:height" content="408" /></head>

 </html>"

¶

¶

6.5. ReadSecureContentFromMailbox

An application running on a remote device can invoke this API on

Relay Server to retrieve secure payload content from a mailbox

(encrypted data specific to a Provisioning Information Provider).

6.5.1. Endpoint

POST /{version}/m/{mailboxIdentifier}

6.5.2. Request Parameters

Path parameters:

version (String, Required) - the version of the API. At the time

of writing this document, "v1".

mailboxIdentifier(String, Required) - MailboxIdentifier (refer to

Terminology).

Header parameters:

deviceAttestation (String, Optional) - optional remote device-

specific attestation data.

deviceClaim (String, UUID, Required) - Device Claim (refer to

Terminology).

6.5.3. Responses

200 Status: "200" (OK)

ResponseBody :

payload (String, Required) - for the purposes of Secure

Credential Transfer API, this is a JSON metadata blob, describing

Provisioning Information specific to Credential Provider.

displayInformation (String, Required) - for the purposes of the

Secure Credential Transfer API, this is a JSON data blob. It

allows an application running on a receiving device to build a

visual representation of the credential to show to user. Specific

to Credential Provider.

¶

¶

¶

*

¶

*

¶

¶

*

¶

*

¶

¶

¶

*

¶

*

¶

Figure 8: Read Secure Content Response Example

401 Unauthorized - calling device is not authorized to create a

mailbox. E.g. a device presented the incorrect deviceClaim.

404 Not Found - mailbox with provided mailboxIdentifier not found.

7. Encryption format

The encrypted payload (Provisioning Information) should be a data

structure having the following key-value pairs: "type", which

defines the encryption algorithm and mode used and "data", which

contains BASE-64 encoded binary value of ciphertext.

Currently proposed "type" includes the following algorithm and mode:

"AES128": AES symmetric encryption algorithm with key length 128

bits, in GCM mode with no padding. Initialization Vector (IV) has

the length of 96 bits randomly generated and tag length of 128

bits. The IV shall be prepended to the payload, and the tag shall

be appended to the payload before sending (the resulting format

is IV || encrypted payload || tag). Please refer to [NIST-

SP800-38D] for the details of the encryption algorithm.

"AES256": AES symmetric encryption algorithm with key length 256

bits, in GCM mode with no padding. Initialization Vector (IV) has

the length of 96 bits randomly generated and tag length of 128

bits. The IV shall be prepended to the payload, and the tag shall

be appended to the payload before sending (the resulting format

is IV || encrypted payload || tag). Please refer to [NIST-

SP800-38D] for the details of the encryption algorithm.

{

 “displayInformation" : {

 "title" : "Hotel Pass",

 "description" : "Some Hotel Pass",

 "imageURL" : "https://hotel.com/sharingImage"

 },

 "payload" : {

 "type": "AES128",

 "data": "FDEC...987654321"

 }

}

¶

¶

¶

¶

*

¶

*

¶

{

 "type" : "AES128",

 "data" : "IV ciphertext tag"

}

Figure 9: Secure Payload Format example

8. Security Considerations

The following threats and mitigations have been considered: - Sender

shares with the wrong receiver - Sender SHOULD be encouraged to

share Secret over a channel allowing authentication of the receiver

(e.g. voice). - Provisioning Partners SHALL allow senders to cancel

existing shares. - Malicious receiver forwards the share to 3rd

party without redeeming it or the Receiver's device is compromised.

- No mitigation, the Sender SHOULD only share with receivers they

trust. - Malicious receiver attempts re-use share - Provisioning

Partners SHALL ensure that the Provisioning Information of a share

can only be redeemed once. - Share URL accidental disclosure. (e.g.

share URL sent as a message which gets displayed on a locked screen)

- Knowledge of Secret is required to access Provisioning Information

and it SHOULD have been sent in a separate channel. - Device Claim

is required (if sender and receiver have already both contacted the

Relay server) - Network attacks - Machine-in-the-middle - Relay

server SHALL only allow TLS connections - URLs displayed to user

SHOULD include the https scheme - MailboxIdentifier guessing - The

MailboxIdentifier is a version 4 UUID [RFC4122] which SHOULD contain

122-bits of cryptographic entropy, making brute-force attacks

impractical

8.1. Sender/Receiver privacy

At no time Relay server SHALL store or track the identities of

both Sender and Receiver devices.

The value of the Notification Token shall not contain information

allowing the identification of the device providing it. It SHOULD

also be different for every new share to prevent the Relay server

from correlating different sharing.

Notification token SHOULD only inform the corresponding device

that there has been a data update on the mailbox associated to it

(by Device Claim). Each device SHOULD keep track of all mailboxes

associated with it and make read calls to appropriate mailboxes.

Both Sender and Receiver devices SHOULD store the URL of the

Relay server they use for an active act of credential transfer.

The value of DeviceAttestation header parameter SHALL not contain

information allowing the identification of the device providing

it. It SHOULD also be different for every new share to prevent

the Relay server from correlating different sharing.

¶

*

¶

*

¶

*

¶

*

¶

*

¶

[NIST-SP800-38D]

Display Information is not encrypted, therefore, it SHOULD not

contain any information allowing to identify Sender or Receiver

devices.

8.2. Credential's confidentiality and integrity

Content of the mailbox SHALL be only visible to devices having

Secret.

It is recommended to send URL to the mailbox and the Secret over

different channels (out-of-band) from Sender device to Receiver

device (e.g. send URL over SMS and Secret over iMessage).

Relay server MUST not receive the Secret with the

MailboxIdentifier at any time.

Content of the mailbox MUST guaranty it's integrity with

cryptographic checksum (e.g. MAC, AES-GCM tag).

Relay server SHALL periodically check and delete expired

mailboxes (refer to timeToLive parameter in the CreateMailbox

request).

If the Sender device sends both URL and the Secret over the same

channel as a single URL, the Sender MUST append the Secret as URI

fragment [RFC3986], so that the resulting URL shall look as in

the example below. Receiver device, upon receipt of such URL,

MUST remove the Fragment (Secret) before calling the Relay server

API.

Figure 10: Example of URL with Secret as URI Fragment

9. IANA Considerations

This document has no IANA actions.

10. References

10.1. Normative References

Dworkin, M., "NIST Special Publication 800-38D.

Recommendation for Block Cipher Modes of Operation:

Galois/Counter Mode (GCM) and GMAC", November 2007,

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

“http://relayserver.com/v1/{mailboxIdentifier}#{Secret}”

¶

[RFC2119]

[RFC3986]

[RFC4122]

[RFC8174]

[RFC2818]

<http://nvlpubs.nist.gov/nistpubs/legacy/sp/

nistspecialpublication800-38d.pdf>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/rfc/

rfc2119>.

Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform

Resource Identifier (URI): Generic Syntax", STD 66, RFC

3986, DOI 10.17487/RFC3986, January 2005, <https://

www.rfc-editor.org/rfc/rfc3986>.

Leach, P., Mealling, M., and R. Salz, "A Universally

Unique IDentifier (UUID) URN Namespace", RFC 4122, DOI

10.17487/RFC4122, July 2005, <https://www.rfc-editor.org/

rfc/rfc4122>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

10.2. Informative References

Rescorla, E., "HTTP Over TLS", RFC 2818, DOI 10.17487/

RFC2818, May 2000, <https://www.rfc-editor.org/rfc/

rfc2818>.

Appendix A. Acknowledgments

TODO acknowledge.

Authors' Addresses

Dmitry Vinokurov

Apple Inc

Email: dvinokurov@apple.com

Matt Byington

Apple Inc

Email: mbyington@apple.com

Ben Chester

Apple Inc

Email: bchester@apple.com

Matthias Lerch

¶

http://nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-38d.pdf
http://nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-38d.pdf
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc3986
https://www.rfc-editor.org/rfc/rfc3986
https://www.rfc-editor.org/rfc/rfc4122
https://www.rfc-editor.org/rfc/rfc4122
https://www.rfc-editor.org/rfc/rfc8174
https://www.rfc-editor.org/rfc/rfc2818
https://www.rfc-editor.org/rfc/rfc2818
mailto:dvinokurov@apple.com
mailto:mbyington@apple.com
mailto:bchester@apple.com

Apple Inc

Email: mlerch@apple.com

Crystal Qin

Alphabet Inc

Email: crystalyq@google.com

Adam Bar-Niv

Alphabet Inc

Email: adambn@google.com

Nick Sha

Alphabet Inc

Email: nicksha@google.com

mailto:mlerch@apple.com
mailto:crystalyq@google.com
mailto:adambn@google.com
mailto:nicksha@google.com

	Secure Credential Transfer
	Abstract
	Discussion Venues
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Terminology
	3. Credential transfer workflows
	3.1. Stateless workflow
	3.2. Stateful workflow

	4. API connection details
	5. HTTP Headers: Mailbox-Correlation-ID
	6. HTTP access methods
	6.1. CreateMailbox
	6.1.1. Endpoint
	6.1.2. Request Parameters:
	6.1.3. Consumes
	6.1.4. Request body
	6.1.5. Responses

	6.2. UpdateMailbox
	6.2.1. Endpoint
	6.2.2. Request Parameters
	6.2.3. Consumes
	6.2.4. Request body
	6.2.5. Responses

	6.3. DeleteMailbox
	6.3.1. Endpoint
	6.3.2. Request Parameters
	6.3.3. Responses

	6.4. ReadDisplayInformationFromMailbox
	6.4.1. Endpoint
	6.4.2. Request Parameters
	6.4.3. Responses

	6.5. ReadSecureContentFromMailbox
	6.5.1. Endpoint
	6.5.2. Request Parameters
	6.5.3. Responses

	7. Encryption format
	8. Security Considerations
	8.1. Sender/Receiver privacy
	8.2. Credential's confidentiality and integrity

	9. IANA Considerations
	10. References
	10.1. Normative References
	10.2. Informative References

	Appendix A. Acknowledgments
	Authors' Addresses

