
Workgroup: TLS

Internet-Draft:

draft-segers-tls-cert-validation-ext-00

Published: 28 June 2022

Intended Status: Standards Track

Expires: 30 December 2022

Authors: R. Segers

Federal Aviation Administration

A. Kopman

Concepts Beyond

Transport Layer Security (TLS) Extension: Validation Request

Abstract

This document describes the Path Validation extension to the

Transport Layer Security (TLS) and Datagram Transport Layer Security

(DTLS) protocols.

The Path Validation Extension provides a new protocol for TLS/DTLS

allowing inclusion of certificate path validation information in the

TLS/DTLS handshake.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 30 December 2022.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

1.1. Requirements Language

2. Validation Request Extension

3. Path Validation Request

3.1. SCVP Validation Request

3.1.1. Responder URIs

3.1.2. Trust Anchors

3.1.3. Validation Extensions

3.1.4. TLS Server CVRequest

4. Path Validation Response

4.1. SCVP Validation Response

4.1.1. SCVP Response Processing by TLS Server

4.1.2. SCVP Response Processing by TLS Client

4.2. Path Validation Cache

5. Error Alerts

6. IANA Considerations

6.1. Reference for TLS Alerts and ExtensionTypes

7. Security Considerations

7.1. Support for Extension

7.2. Replay Attacks

7.3. Extension Modifications

7.4. Unrelated Path Validation Response

7.5. Trust Anchor Maintenance

8. References

8.1. Normative References

Authors' Addresses

1. Introduction

This document describes an extension to TLS 1.3 [RFC8446] and DTLS

1.3 [RFC9147] for the inclusion of certificate path validation

information in the TLS/DTLS handshake. Specifically, this extension

covers the use of the Server-based Certificate Validation Protocol

(SCVP) [RFC5055] for path validation. However, the extension is

designed to allow for expansion to other path validation protocols.

This extension is defined for TLS and DTLS protocols. For

convenience, the protocol will be referred to as TLS for the rest of

the document. DTLS will only be specifically mentioned in cases

where the protocols differ.

The TLS standard specifies that certificates should always be

verified to ensure proper signing by a trusted Certificate Authority

(CA) in Part Appendix C.2 of TLS 1.3 [RFC8446]. The establishment of

¶

¶

¶

https://rfc-editor.org/rfc/rfc8446#appendix-Appendix%20C.2

trust requires construction and validation of a trust path from the

end-entity certificate to a trust anchor. This validation can be a

complex process of chaining certificates, validating revocation

information, and enforcing organizational policies. Therefore,

constrained clients may wish to delegate certificate path

construction and validation to a trusted server. Additionally, to

ensure that policies are consistently enforced throughout an

ecosystem, centralization of certificate validation may be needed.

Protocols such as Server-based Certificate Validation Protocol

(SCVP) allow simplification of client implementations and consistent

application of validation policies by delegating validation to a

server.

The extension described here allows a TLS client to request that the

TLS server return the certificate path validation corresponding to

its certificate. If the server supports this extension, it performs

the appropriate certificate validation queries and returns it to the

client. The server returns the path validation as an extension to

the Certificate message. Since path building and validation has been

performed, the server can return only the end-entity certificate to

be used for authentication, and does not need to return any

supporting certificates in the chain. This further reduces the

bandwidth consumption. The server can use a previously cached

validation response, but it will need to retrieve it periodically as

described in Section 4.2. The client then examines the returned

validation response and the response signature using a local trust

anchor.

TLS clients and servers MAY use the extension described in this

document. The extension is designed to be backwards compatible,

meaning that TLS clients that support the extension can talk to TLS

servers that do not support the extension, and vice versa.

1.1. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

document are to be interpreted as described in RFC 2119 [RFC2119].

2. Validation Request Extension

A new extension type (validation_request (TBD)) is added to the

extensions used in the client hello and certificate handshake

messages. The extension type is specified as follows.

¶

¶

¶

¶

¶

enum {

 validation_request(TBD), (65535)

} ExtensionType;

¶

To indicate their desire to receive certificate path validation

information, TLS clients MAY include an extension of type

validation_request in the (extended) client hello. The

extension_data field of the validation_request extension MUST

contain a PathValidationRequest. The PathValidationRequest MUST

consist of a PathValidationType and Request as defined in Section 3.

Servers that receive a client hello containing the

validation_request extension MAY return a suitable certificate path

validation response to the client along with their certificate.

Servers return a certificate path validation response along with

their certificate by adding the validation_request extension to the

extension block of the TLS server certificate. The Certificate

message containing the TLS server end-entity certificate SHOULD

contain the extension with extension_type validation_request and

extension_data of PathValidation. Severs that send the

PathValidation extension data MUST have received a

validation_request in the extended client hello.

Servers that send the PathValidation extension SHOULD only include

the end-entity authentication certificate in the Certificate

message. The server MAY include supporting certificates. The client

MAY ignore supporting certificates if the PathValidation is found to

be satisfactory.

Clients that receive a PathValidation extension without sending a

validation_request extension MUST abort the connection.

Servers that do not support (or are not configured to enable the use

of) this extension SHOULD NOT include the validation_request

extension in the Certificate message.

A server MAY also choose not to send a PathValidation extension,

even if has received a validation_request extension in the client

hello message.

If the client sent a validation_request in the client hello

extension but did not receive a validation_request extension in the

server Certificate message MAY choose to use alternative means to

validate the server certificate or MAY choose to abort the

connection.

Clients requesting a certificate path validation and receiving

validation_request Certificate extension MUST check the

PathValidation message and abort the handshake if the response is

not satisfactory with bad_certificate_validation_response (TBD)

alert. This alert is always fatal.

¶

¶

¶

¶

¶

¶

¶

¶

¶

The PathValidationRequest and PathValidation types are further

defined in Section 3 and Section 4 of this document.

3. Path Validation Request

Deployment of Public Key Infrastructure (PKI) enabled applications

can be simplified by delegating path validation processing to a

server. Additionally, for organizations wishing to centralize

administration of validation policies, delegation to a server

ensures consistent policy validation across clients in an ecosystem.

Constrained clients wishing to delegate path validation also face

challenges such as bandwidth and latency limitations. This extension

allows for such information to be sent in the TLS handshake, saving

roundtrips and resources.

To indicate their desire to receive certificate validation

information, TLS clients MAY include an extension of type

validation_request in the extended client hello. ClientHello

handshake messages containing the validation_request extension SHALL

contain a PathValidationRequest in the extension_data field of this

extension. The PathValidationRequest is defined as follows:

The PathValidationRequest is defined for type Server-based

Certificate Validation Protocol (SCVP) however is designed to be

extendable to other protocols.

3.1. SCVP Validation Request

SCVP provides a standards-based client-server protocol for delegated

path validation defined in RFC 5055 [RFC5055]. Clients wishing to

request the use of SCVP path validation MAY include the

path_validation extension in the client hello handshake with the

PathValidationType of scvp (1) in the PathValidationRequest. If the

PathValidationType is set to scvp, the Request SHALL be an

SCVPValidationRequest.

The SCVPValidationRequest consists of three optional lists: a list

of SCVP responder URIs, a list of trust anchors, and a list of

validation extensions.

¶

¶

¶

¶

struct {

 PathValidationType path_validation_type;

 select (path_validation_type) {

 case scvp: SCVPValidationRequest;

 } request;

} PathValidationRequest;

enum { scvp(1), (255) } PathValidationType;

¶

¶

¶

¶

3.1.1. Responder URIs

The ResponderURIs provides a list of SCVP responders that the client

trusts. A zero-length responder_uri_list sequence has special

meaning that the responders are implicitly known to the server, e.g.

by prior arrangement. The ResponderURIs list is in the client's

preferred order. The TLS server SHOULD process the responder URI

list in order and return a response from the first reachable URI

with an acceptable response. What constitutes an acceptable response

is discussed in Section 4.1.1. The ResponderURIs list is represented

as a DER encoded SEQUENCE OF ASN.1 IA5String objects.

3.1.2. Trust Anchors

Zero or more trust anchors MAY be provided in the

SCVPValidationRequest to specify the trust anchors at which the

certification path must terminate if the path is to be considered

valid. The TrustAnchors type is an ASN.1 SEQUENCE OF PKCReference.

The SCVP Server usage is defined in Section 3.2.4.7 of RFC 5055

[RFC5055]. If a TLS server receives a SCVPValidationRequest which

contains TrustAnchors it SHOULD include the TrustAnchors in the SCVP

Request Validation Policy. A non-zero length TrustAnchors sequence

combined with a zero length Responder URI sequence indicates that

the TLS client wishes to use the TLS server's default SCVP Responder

to construct a certification path which terminates at a specified

certificate. If a non-zero length TrustAnchors is provided and the

TLS Client includes the validation_policy validation extension as

defined in Section 3.1.3, the ValidationPolicy TrustAnchors MUST be

equivalent to the SCVPValidationRequest TrustAnchors.

As defined in RFC 5055, the trust anchor PKCReference MAY be either

an SCVPCertID or a Certificate. To minimize the size of the

SCVPValidationRequest, TrustAnchors SHOULD be included by

SCVPCertID.

3.1.3. Validation Extensions

This document defines nine optional ValidationExtensionTypes. These

validation extensions allow the client to specify values in the CV

Request as described in Section 3.1.4. Inclusion of the validation

extensions will increase the size of the request and response.

Therefore, the extensions should be included only when necessary.

struct {

 ResponderURIs responder_uri_list<0..2^16-1>;

 TrustAnchors trust_anchor_list<0..2^16-1>;

 ValidationExtensions validation_extensions_list<0..2^16-1>;

} SCVPValidationRequest;

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc5055#section-3.2.4.7

The validation_extension_data values are DER-encoded ASN.1 types

that can be directly mapped to the SCVP CVRequest as defined by RFC

5055 [RFC5055].

3.1.4. TLS Server CVRequest

Servers that receive a client hello containing the

validation_request extension MAY return a suitable path validation

response to the client along with their certificate. If SCVP is

requested, the TLS Server SHOULD use the information contained in

the extension when selecting an SCVP responder and Trust Anchor. The

TLS server SHOULD map the validation extension types to the SCVP

request as follows.

Conforming TLS Servers MUST construct a CVRequest with a

cvRequestVersion and query.

3.1.4.1. cvRequestVersion

TLS Servers conforming to RFC 5055 [RFC5055] MUST set the value of

the cvRequestVersion item to one (1).

3.1.4.2. Query

The query item is defined in Section 3.2 of RFC 5055 [RFC5055]

¶

struct {

 ValidationExtensionType validation_extension_type;

 select (validation_extension_type {

 case want_back: WantBack;

 case validation_policy: ValidationPolicy;

 case cached_response: BOOLEAN;

 case query_extensions: Extensions;

 case request_nonce: OCTET STRING;

 case request_extensions: Extensions;

 case signature_algorithm: AlgorithmIdentifier;

 case hash_algorithm: OBJECT IDENTIFIER;

 case requestor_text: UTF8String (SIZE (1..256));

 } validation_extension_data;

} ValidationExtension

¶

¶

want_back : CVRequest.query.wantBack

validation_policy : CVRequest.query.validationPolicy

cached_response : CVRequest.query.responseFlags.cachedResponse

query_extensions : CVRequest.query.queryExtensions

request_nonce : CVRequest.requestNonce

request_extensions : CVRequest.requestExtensions

signature_algorithm : CVRequest.signatureAlgorithm

hash_algorithm : CVRequest.hashAlgorithm

requestor_text : CVRequest.requestorText

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc5055#section-3.2

TLS Servers conforming to RFC 5055 [RFC5055] SHALL include the query

item. For processing the TLS Validation Request the TLS server SHALL

include the queriedCerts, certChecks and validationPolicy fields,

MAY include wantBack, responseFlags, intermediateCerts, revInfos,

and queryExtension fields, SHOULD NOT include producedAt and

serverContextInfo fields, and MUST NOT include the validationTime

field.

The TLS Server MUST populate the CertReferences item. The

CertReferences sequence MUST be of length one and specify the

server's X.509v3 TLS Certificate. This certificate MUST correspond

to the TLS Certificate sent by the TLS server to the TLS client in

the Certificate handshake message.

The TLS server MUST populate the CertChecks item. The item MUST be

set to id-stc-build-status-checked-pkc-path (id-stc 3).

The TLS Server SHOULD NOT include want back unless specified by the

TLS Client in the validation extension want_back item. If the TLS

Server receives a SCVPValidationRequest with a want_back validation

extension, the TLS Server MAY set the wantBack item in the CVRequest

to the value of the want_back. Want backs can significantly increase

the size of the CVResponse and should be used only when specifically

required.

The TLS Server MUST include the ValidationPolicy item in the

CVRequest query item as follows:

If the TLS Client specified a validation_policy in the validation

extensions:

The TLS Server SHOULD include that ValidationPolicy in the

CVRequest.

If the TLS Client did not specify a validation_policy

If the ResponderURIs is a zero-length list, indicating that the

TLS server should query a pre-configured SCVP responder, the TLS

Server SHOULD set the ValidationPolicy validationPolRef to either

a pre-configured ValidationPolicy or the default validation

policy OID id-svp-defaultValPolicy (id-svp 1).

If the ResponderURIs is a non-zero-length list, indicating that

the TLS server should query a client specified SCVP responder,

the TLS Server SHOULD set the ValidationPolicy validationPolRef

item to the default validation policy OID id-svp-defaultValPolicy

(id-svp 1).

¶

¶

¶

¶

¶

¶

*

¶

¶

*

¶

*

¶

If the TrustAnchors is a non-zero length list the TLS Server MUST

include the TLS Client provided TrustAnchors in the

ValidationPolicy TrustAnchors.

The TLS Server MAY only include the ResponseFlags item in the

CVRequest if requesting non-default values. If default values are

used for all flags, the responseFlags item MUST NOT be included in

the request. To enable to TLS client to trust the CVResponse, the

TLS Server MUST use the default value for the protectResponse flag

(TRUE). To minimize the size of the CVResponse, the TLS Server

SHOULD use the default values for the response flags

fullRequestInResponse (FALSE) and responseValidationPolicyByRef

(TRUE). If the TLS Client included the cached_response validation

extension with a value of FALSE, the TLS Server SHOULD NOT use its

cache as described in Section 4.1.2 and MAY include the

cachedResponse set to FALSE in the CVRequest responseFlags item. If

the TLS Server sets the cachedResponse flag to FALSE the

request_nonce MUST be set. If the TLS Server received the

request_nonce validation extension, the requestNonce in the

CVRequest MAY be set to the value of the request_nonce extension.

Otherwise, the TLS Server MUST generate and set a requestNonce in

the CVRequest.

The TLS Server SHOULD NOT include the serverContextInfo item in the

CVRequest.

The TLS Server MUST NOT include the validationTime item in the

CVRequest.

The TLS Server MAY include the intermediateCerts item in the

CVRequst to help the SCVP server create a valid certification path

as defined in Section 3.2.8 of RFC 5055 [RFC5055].

The TLS Server MAY include the revInfos item in the CV Request which

MAY be used by the SCVP Server when validating certification paths

as defined in Section 3.2.9 of RFC 5055 [RFC5055].

The TLS Server SHOULD NOT include the producedAt item in the

CVRequest.

The TLS Server MAY include the queryExtensions item in the CVRequest

to extend the query. If the TLS Server receives a

SCVPValidationRequest with a query_extensions validation extension,

the TLS Server MAY set the queryExtensions item in the CVRequest to

the value of the query_extension.

3.1.4.3. requestorRef

The TLS Server SHOULD NOT set the requestorRef item in the

CVRequest.

*

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc5055#section-3.2.8
https://rfc-editor.org/rfc/rfc5055#section-3.2.9

3.1.4.4. requestNonce

The TLS Server MAY include the requestNonce item in the CVRequest to

indicate a preference for a non-cached response. If the TLS Server

receives a SCVPValidationRequest with a request_nonce validation

extension, the TLS Server MAY set the requestNonce item in the

CVRequest to the value of the request_nonce validation extension. If

the TLS Server sets the cachedResponse response flag to FALSE but

did not receive the request_nonce validation extension the TLS

Server MUST generate and set a requestNonce in the CVRequest.

3.1.4.5. requestorName

The TLS Server SHOULD NOT include the requestorName item in the

CVRequest.

3.1.4.6. responderName

The TLS Server SHOULD NOT include the responderName item in the

CVRequest.

3.1.4.7. requestExtensions

The TLS Server MAY include the requestExtensions item in the

CVRequest to extend the request. If the TLS Server receives a

SCVPValidationRequest with a request_extensions validation

extension, the TLS Server MAY set the requestExtensions item in the

CVRequest to the value of the request_extension.

3.1.4.8. signatureAlgorithm

The TLS Server SHOULD NOT include the signatureAlgorithm item in the

CVRequest unless specified by the TLS Client in the

signature_algorithm validation extension. If the TLS Server receives

a SCVPValidationRequest with a signature_algorithm validation

extension, the TLS server MAY set the signatureAlgorithm item in the

CVRequest to the value of the signature_algorithm.

To keep the size of the request and response small, it is

recommended that community define the signature algorithm rather

than using the signature_algorithm extension.

3.1.4.9. hashAlgorithm

The TLS Server SHOULD NOT include the hashAlgorithm item in the

CVRequest unless specified by the TLS Client in the hash_algorithm

validation extension. If the TLS Server receives a

SCVPValidationRequest with a hash_algorithm validation extension,

the TLS Server MAY set the hashAlgorithm item in the CVRequest to

the value of the hash_algorithm.

¶

¶

¶

¶

¶

¶

¶

To keep the size of the request and response small, it is

recommended that community define the hash algorithm rather than

using the hash_algorithm extension.

3.1.4.10. requestorText

The TLS Server SHOULD NOT include the requestorText item in the

CVRequest unless specified by the TLS Client in the requestor_text

validation extension. If the TLS Server receives a

SCVPValidationRequest with a requestor_text validation extension,

the TLS Server MAY set the requestorText item in the CVRequest to

the value of the requestor_text.

To keep the size of the request and response small, it is

recommended that the requestor text be used only for debugging

purposes.

4. Path Validation Response

Servers that receive a client hello containing the

validation_request extension MAY return a suitable path validation

response to the client along with their certificate by sending a

PathValidation as an extension to the Certificate message. Like the

PathValidationRequest, the ValidationResponse is defined for type

Server-Based Certificate Validation Protocol (SCVP) however is

designed to be extendable to other protocols.

The PathValidation response is defined as follows:

TLS Servers send the PathValidation response to the client in the

extension_data of the validation_request extension to the TLS server

end-entity certificate in the Certificate message. The

PathValidation data conveys whether the certificate path was

successfully built and validated. Therefore, in most cases, it is

unnecessary for the TLS server to include supporting certificates in

the Certificates message.

¶

¶

¶

¶

¶

struct {

 PathValidationType path_validation_type;

 select (path_validation_type) {

 case scvp: SCVPResponse;

 } response;

} PathValidation;

enum { scvp(1), (255) } PathValidationType;

¶

¶

4.1. SCVP Validation Response

If a TLS server returns a PathValidation message in response to a

PathValidationRequest of type scvp, that PathValidation message MUST

be of type scvp and contain a SCVPResponse as follows.

A signed_cv_response contains a complete, DER-encoded CMS SignedData

object as defined in RFC 5652 [RFC5652] with an EncapsulatedContent

of type CVResponse as defined in RFC 5055 [RFC5055]. Only one SCVP

response may be sent.

The TLS Server SHOULD include the list of validation extensions from

the SCVPValidationRequest that were used in the CVRequest to

indicate to the TLS Client which validation extensions were honored.

If the TLS Server did not use a validation extension in the

CVRequest, it MUST NOT be included in the SCVPResponse. The

SCVPResponse MUST NOT include validation extensions that were not

present in the SCVPValidationRequest.

Section 9 of RFC 5055 [RFC5055] asserts that clients MUST verify

that the response matches their original request and outlines the

steps necessary to perform this verification. For this extension,

the client responsibility of divided between the TLS server and the

TLS client. Certain values are only known by the TLS server whereas

other values require verification at the final end-point, the TLS

client. The following two sections specify the verification of the

SCVP response at the TLS server Section 4.1.1 and at the TLS client

Section 4.1.2.

4.1.1. SCVP Response Processing by TLS Server

The TLS Server MUST verify the response from the SCVP server. If the

TLS Server finds the response unacceptable, it MAY query another

SCVP server (from the ResponderURIs or a pre-configured list) or MAY

send a bad_path_validation_response alert notifying to close the

connection.

The TLS server MUST verify that the response is a protected response

consisting of a CVResponse encapsulated in CMS SignedData.

The TLS server SHOULD verify that the SignedData Message Digest is a

hash of the received CVResponse.

¶

struct {

 opaque signed_cv_response

 ValidationExtensions validation_extensions_list<0..2^16-1>;

} SCVPResponse;

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc5055#section-9

The TLS server MAY verify the certificate of the SCVP responder used

for signing the response. In some environments, it may be left to

the TLS client to validate.

As an SCVP client, the TLS server MUST process the CVResponse as

defined by RFC 5055 [RFC5055].

The TLS server SHOULD verify the responseStatus code. If the code

does not indicate okay(0), the TLS server MAY choose to query

another SCVP server from the Responder URIs.

As stated in RFC 5055, the requestRef item allows the SCVP client to

determine that the request was not maliciously altered. The TLS

Server creates the CVRequest and is therefore the only place where

the full CVRequst is known. The TLS Server SHOULD compare the

returned requestRef to the CVRequest.

If the TLS server generated a requestNonce it SHOULD verify that the

requestNonce in the response matches the value in the request.

4.1.2. SCVP Response Processing by TLS Client

On receipt of a SCVPResponse, the TLS client MUST verify that the

response indicates a successful path validation and can be trusted.

The TLS Client MUST verify that the CVResponse is encapsulated in a

CMS SignedData object and validate the digital signature on the

response to ensure that the expected SCVP server generated the

response. The TLS Client MUST verify that the SignedData Message

Digest matches a hash of the received CVResponse.

The CVResponse CertReply item MUST contain a single certificate

matching the TLS Server certificate sent in the TLS Certificate

Handshake message. If the CertReply does not meet this requirement

the TLS client MUST abort the connection with a

bad_path_validation_response.

The TLS Client MUST verify that the CVResponse indicates success. A

CVResponse is successful if: the responseStatus is CVStatusCode

okay(0) and the CertReply item containing the TLS Server's

certificate has a replyStatus of success (0). If these conditions

are not met the TLS client MUST abort the connection with a

bad_path_validation_response.

The TLS Client should check the SCVPResponse validation_extensions

against the validation_extensions sent in the SCVPValidationRequest.

If the SCVPResponse validation_extensions list does not match the

list of sent validation_extensions, the TLS client MAY abort the

connection.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

If the client set validation extensions in the

SCVPValidationRequest, the TLS client SHOULD verify that the

CVResponse appropriately reflects those validation extensions. For

example, if the request_nonce validation extension was set the

client SHOULD verify that the CVResponse respNonce contains the same

value.

4.2. Path Validation Cache

To improve performance and survive path validation service outages

the TLS server MAY cache PathValidation responses. On receipt of a

client hello with a validation_request extension the TLS Server MAY

check a local cache for a PathValidation response matching the TLS

client's settings. If a matching response is found the server MAY

use this response rather than generating a fresh response.

If the validation_request is of type scvp, the server should check

if the client has set validation extensions before returning a

cached response. If the cached_response validation extension is set

to FALSE or the request_nonce validation extension is set. The TLS

server SHOULD NOT return a cached response.

The TLS server SHOULD place a time limit on cached responses and

generate a fresh PathValidation response after that time has

elapsed. To improve performance, the TLS server MAY proactively

refresh cached responses before the cache time limit has been

reached. Path validation servers may also perform caching to

optimize response times. Timestamps may be included in the path

validation response that MAY be used by the TLS server to determine

when a fresh response will be available from the path validation

server. In the case of SCVP, this information can optionally be

communicated in the nextUpdate wantBack value.

5. Error Alerts

On receipt of a PathValidation response the TLS client MUST validate

that the response indicates a successful path validation as

described in Section 4. If the PathValidation response does not

indicate that the server certificate was successfully validated the

TLS client MUST abort the connection with a

bad_path_validation_response as follows.

¶

¶

¶

¶

¶

enum {

 bad_path_validation_response(TBD),

 (255)

} AlertDescription;

¶

6. IANA Considerations

IANA considerations for TLS extensions and the creation of a

registry are covered in Section 11 of RFC 8446 [RFC8446].

6.1. Reference for TLS Alerts and ExtensionTypes

The following values in the TLS Alert Registry have been updated to

reference this document:

TBD bad_path_validation_response

The following ExtensionType values have been updated to reference

this document:

TBD validation_request

7. Security Considerations

General security considerations for TLS extensions are covered in

TLS 1.3 RFC 8446 [RFC8446].

For security considerations specific to the Cryptographic Message

Syntax message formats, see RFC 5652 [RFC5652]. For security

considerations specific to the process of PKI certification path

validation, see RFC 5280 [RFC5280]. For security considerations

specific to SCVP, see RFC 5055 [RFC5055].

This section summarizes some of the more important security aspects

specific to the TLS validation_request extension, though there are

many security-relevant details in the remainder of this document.

7.1. Support for Extension

If a client requests a path validation response, it must consider

that an attacker's server could (and probably would) pretend not to

support the extension. In this case, a client that requires path

validation of certificates SHOULD either contact the validation

server directly or abort the handshake.

7.2. Replay Attacks

Use of the optional SCVP cached response flag and request nonce

items by either the TLS client in the validation extensions or by

the TLS server may improve security against attacks that attempt to

replay SCVP responses. However, use of these properties must be

balanced with the performance impact of requiring generation of a

fresh SCVP response.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc8446#section-11

[RFC2119]

[RFC5055]

7.3. Extension Modifications

Values in the client hello validation_request extension and

PathValidationRequest are passed between the TLS client to the TLS

server unprotected. This makes the values vulnerable to

modification. An attacker might try to influence the handshake

exchange in multiple ways including to increase latency, cause

parties to abort the connection or to create trust in an untrusted

server.

The SCVP type of this extension is made further vulnerable by the

inclusion of validation extensions in the SCVPValidationRequest.

These validation extensions have been included to support

flexibility. However, to mitigate the vulnerability to modification,

domains should consider limiting use of validation extensions and

instead use preconfigured domain specific values. TLS client and

server verification of values returned in the signed CVResponse as

described in Section 4.1 should also be used to protect against

these attacks and detect attempts to modify these values

7.4. Unrelated Path Validation Response

The received PathValidation response could contain information

unrelated to the request. A path for an end-entity certificate other

than the TLS server certificate could be returned. The first

certificate in the certificate path could not match any of the

client provided trust anchors. Or the SCVP responder signing the

response could be unknown to the client. If any such unrelated

PathValidation response is received, it MUST be discarded and the

TLS client MAY choose to use alternative means to validate the

server certificate or MAY choose to abort the connection.

7.5. Trust Anchor Maintenance

The TLS client relies on a locally known trust anchor to verify the

signed PathValidation response. The trust anchor may change or

expire periodically. TLS clients using this specification MUST

implement a secure mechanism to keep their trust anchors up to date.

8. References

8.1. Normative References

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Freeman, T., Housley, R., Malpani, A., Cooper, D., and W.

Polk, "Server-Based Certificate Validation Protocol

¶

¶

¶

¶

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119

[RFC5280]

[RFC5652]

[RFC8446]

[RFC9147]

(SCVP)", RFC 5055, DOI 10.17487/RFC5055, December 2007,

<https://www.rfc-editor.org/info/rfc5055>.

Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,

Housley, R., and W. Polk, "Internet X.509 Public Key

Infrastructure Certificate and Certificate Revocation

List (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May

2008, <https://www.rfc-editor.org/info/rfc5280>.

Housley, R., "Cryptographic Message Syntax (CMS)", STD

70, RFC 5652, DOI 10.17487/RFC5652, September 2009,

<https://www.rfc-editor.org/info/rfc5652>.

Rescorla, E., "The Transport Layer Security (TLS)

Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446,

August 2018, <https://www.rfc-editor.org/info/rfc8446>.

Rescorla, E., Tschofenig, H., and N. Modadugu, "The

Datagram Transport Layer Security (DTLS) Protocol Version

1.3", RFC 9147, DOI 10.17487/RFC9147, April 2022,

<https://www.rfc-editor.org/info/rfc9147>.

Authors' Addresses

Robert Segers

Federal Aviation Administration

800 Independence Ave. SW

Washington, DC 20591

United States of America

Email: Robert.Segers@faa.gov

Ashley Kopman

Concepts Beyond

1155 F St NW

Washington, DC 20004

United States of America

Email: akopman@conceptsbeyond.com

https://www.rfc-editor.org/info/rfc5055
https://www.rfc-editor.org/info/rfc5280
https://www.rfc-editor.org/info/rfc5652
https://www.rfc-editor.org/info/rfc8446
https://www.rfc-editor.org/info/rfc9147
mailto:Robert.Segers@faa.gov
mailto:akopman@conceptsbeyond.com

	Transport Layer Security (TLS) Extension: Validation Request
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Requirements Language

	2. Validation Request Extension
	3. Path Validation Request
	3.1. SCVP Validation Request
	3.1.1. Responder URIs
	3.1.2. Trust Anchors
	3.1.3. Validation Extensions
	3.1.4. TLS Server CVRequest
	3.1.4.1. cvRequestVersion
	3.1.4.2. Query
	3.1.4.3. requestorRef
	3.1.4.4. requestNonce
	3.1.4.5. requestorName
	3.1.4.6. responderName
	3.1.4.7. requestExtensions
	3.1.4.8. signatureAlgorithm
	3.1.4.9. hashAlgorithm
	3.1.4.10. requestorText

	4. Path Validation Response
	4.1. SCVP Validation Response
	4.1.1. SCVP Response Processing by TLS Server
	4.1.2. SCVP Response Processing by TLS Client

	4.2. Path Validation Cache

	5. Error Alerts
	6. IANA Considerations
	6.1. Reference for TLS Alerts and ExtensionTypes

	7. Security Considerations
	7.1. Support for Extension
	7.2. Replay Attacks
	7.3. Extension Modifications
	7.4. Unrelated Path Validation Response
	7.5. Trust Anchor Maintenance

	8. References
	8.1. Normative References

	Authors' Addresses

