
Workgroup: TLS

Internet-Draft:

draft-segers-tls-cert-validation-ext-00

Published: 24 August 2022

Intended Status: Standards Track

Expires: 25 February 2023

Authors: R. Segers

Federal Aviation Administration

A. Kopman

Concepts Beyond

Transport Layer Security (TLS) Extension: Validation Request

Abstract

This document describes the Server-based Certificate Validation

Protocol (SCVP) Validation Request extension to the Transport Layer

Security (TLS) and Datagram Transport Layer Security (DTLS)

protocols.

The Validation Request Extension provides a new protocol for TLS/

DTLS allowing inclusion of SCVP certificate path validation

information in the TLS/DTLS handshake.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 25 February 2023.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

1.1. Requirements Language

2. Validation Request Extension

2.1. Server Authentication

2.2. Client Authentication

3. SCVP Validation Request

3.1. Responder URIs

3.2. Trust Anchors

3.3. Validation Extensions

3.4. CVRequest

3.4.1. cvRequestVersion

3.4.2. Query

3.4.3. requestorRef

3.4.4. requestNonce

3.4.5. requestorName

3.4.6. responderName

3.4.7. requestExtensions

3.4.8. signatureAlgorithm

3.4.9. hashAlgorithm

3.4.10. requestorText

4. SCVP Validation Response

4.1. SCVP Response Processing by TLS Peer

4.2. SCVP Response Processing by TLS Initiator

4.3. SCVP Validation Response Cache

5. Error Alerts

6. IANA Considerations

6.1. Reference for TLS Alerts and ExtensionTypes

7. Security Considerations

7.1. Support for Extension

7.2. Replay Attacks

7.3. Extension Modifications

7.4. Unrelated SCVP Validation Response

7.5. Trust Anchor Maintenance

8. References

8.1. Normative References

Authors' Addresses

1. Introduction

This document describes an extension to TLS 1.3 [RFC8446] and DTLS

1.3 [RFC9147] for the inclusion of Server-based Certificate

Validation Protocol (SCVP) [RFC5055] certificate path validation

information in the TLS/DTLS handshake.

¶

¶

This extension is defined for TLS and DTLS protocols. For

convenience, the protocol will be referred to as TLS for the rest of

the document. DTLS will only be specifically mentioned in cases

where the protocols differ.

The TLS standard specifies that certificates should always be

verified to ensure proper signing by a trusted Certificate Authority

(CA) in Part Appendix C.2 of TLS 1.3 [RFC8446]. The establishment of

trust requires construction and validation of a trust path from the

end-entity certificate to a trust anchor. This validation can be a

complex process of chaining certificates, validating revocation

information, and enforcing organizational policies. Therefore,

constrained clients may wish to delegate certificate path

construction and validation to a trusted server. Additionally, to

ensure that policies are consistently enforced throughout an

ecosystem, centralization of certificate validation may be needed.

The Server-based Certificate Validation Protocol (SCVP) allows

simplification of client implementations and consistent application

of validation policies by delegating validation to a server.

The extension described here can be used to signal the return of a

SCVP certificate path validation corresponding to the certificate.

Whenever it is sent by the client as a client hello message

extension it indicates a request for SCVP validation of the server

certificate. Whenever it is sent by the server as a certificate

request extension it indicates a request for SCVP validation of the

client certificate. If the peer supports this extension, it performs

the appropriate certificate validation queries and returns the SCVP

response. The response is returned as an extension to the

Certificate message. Since path building and validation has been

performed, only the end-entity certificate is needed for

authentication, no supporting certificates need to be returned. This

further reduces the bandwidth consumption. A previously cached

validation response can be used, but periodic updating of the cached

response will be needed as described in Section 4.3. Upon receipt of

the Certificate message with the path validation extension the

initiator examines the returned validation response and the response

signature using a local trust anchor.

TLS clients and servers MAY use the extension described in this

document. The extension is designed to be backwards compatible,

meaning that TLS clients that support the extension can talk to TLS

servers that do not support the extension, and vice versa.

In the future, extensions may be added to the TLS protocol which

request other forms of certificate validation. Care should be taken

to avoid duplicate validations for the same handshake. If an

equivalent validation is preformed the peer should not also perform

SCVP validation.

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc8446#appendix-Appendix%20C.2

1.1. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

document are to be interpreted as described in RFC 2119 [RFC2119].

2. Validation Request Extension

A new extension type (validation_request (TBD)) is added to the

extensions used in the client hello, certificate and certificate

request handshake messages. The extension type is specified as

follows.

2.1. Server Authentication

To indicate their desire to receive SCVP certificate path validation

information, TLS clients MAY include an extension of type

validation_request in the (extended) client hello. The

extension_data field of the validation_request extension MUST

contain a SCVPValidationRequest.

Servers that receive a client hello containing the

validation_request extension MAY return a suitable SCVP certificate

path validation response to the client along with their certificate.

Servers return a certificate path validation response along with

their certificate by adding the validation_request extension to the

extension block of the TLS server certificate. The Certificate

message containing the TLS server end-entity certificate SHOULD

contain the extension with extension_type validation_request and

extension_data of SCVPValidationResponse. Severs that send the

SCVPValidationResponse extension data MUST have received a

validation_request in the extended client hello.

Servers that send the SCVPValidationResponse extension SHOULD only

include the end-entity authentication certificate in the Certificate

message. The server MAY include supporting certificates. The client

MAY ignore supporting certificates if the SCVPValidationResponse is

found to be satisfactory.

Clients that receive a SCVPValidationResponse extension without

sending a validation_request extension in the client hello MUST

abort the connection.

¶

¶

enum {

 validation_request(TBD), (65535)

} ExtensionType;

¶

¶

¶

¶

¶

¶

Servers that do not support (or are not configured to enable the use

of) this extension SHOULD NOT include the validation_request

extension in the Certificate message.

A server MAY also choose not to send a SCVPValidationResponse

extension, even if has received a validation_request extension in

the client hello message.

If the client sent a validation_request in the client hello

extension but did not receive a validation_request extension in the

server Certificate message MAY choose to use alternative means to

validate the server certificate or MAY choose to abort the

connection.

Clients requesting a certificate path validation and receiving

validation_request Certificate extension MUST check the

SCVPPValidationResponse message and abort the handshake if the

response is not satisfactory with

bad_certificate_validation_response (TBD) alert. This alert is

always fatal.

2.2. Client Authentication

To indicate their desire to receive SCVP certificate path validation

information, TLS servers MAY include an extension of type

validation_request in the certificate request message. The

extension_data field of the validation_request extension MUST

contain a SCVPValidationRequest.

Clients that receive a certificate request containing the

validation_request extension MAY return a suitable SCVP certificate

path validation response to the server along with their certificate.

Clients return a certificate path validation response along with

their certificate by adding the validation_request extension to the

extension block of the TLS client certificate. The Certificate

message containing the TLS client end-entity certificate SHOULD

contain the extension with extension_type validation_request and

extension_data of SCVPValidationResponse. Clients that send the

SCVPValidationResponse extension data MUST have received a

validation_request in the certificate request.

Clients that send the SCVPValidationResponse extension SHOULD only

include the end-entity authentication certificate in the Certificate

message. The client MAY include supporting certificates. The server

MAY ignore supporting certificates if the SCVPValidationResponse is

found to be satisfactory.

¶

¶

¶

¶

¶

¶

¶

¶

Servers that receive a SCVPValidationResponse extension without

sending a validation_request extension in the certificate request

MUST abort the connection.

Clients that do not support (or are not configured to enable the use

of) this extension SHOULD NOT include the validation_request

extension in the Certificate message.

A client MAY also choose not to send a SCVPValidationResponse

extension, even if has received a validation_request extension in

the certificate request message.

If the server sent a validation_request in the certificate request

but did not receive a validation_request extension in the client

Certificate message MAY choose to use alternative means to validate

the client certificate or MAY choose to abort the connection.

Servers requesting a certificate path validation and receiving

validation_request Certificate extension MUST check the

SCVPPValidationResponse message and abort the handshake if the

response is not satisfactory with

bad_certificate_validation_response (TBD) alert. This alert is

always fatal.

The SCVPValidationRequest and SCVPValidationResponse types are

further defined in Section 3 and Section 4 of this document.

3. SCVP Validation Request

Deployment of Public Key Infrastructure (PKI) enabled applications

can be simplified by delegating path validation processing to a

server. Additionally, for organizations wishing to centralize

administration of validation policies, delegation to a server

ensures consistent policy validation across clients in an ecosystem.

SCVP provides a standards-based client-server protocol for delegated

path construction and validation defined in RFC 5055 [RFC5055].

Constrained clients wishing to delegate path validation also face

challenges such as bandwidth and latency limitations. This extension

allows for such information to be sent in the TLS handshake, saving

round trips and resources.

To indicate their desire to receive certificate validation

information, TLS clients MAY include an extension of type

validation_request in the extended client hello and TLS servers may

include an extension of type validation_request in the certificate

request. Handshake messages containing the validation_request

extension SHALL contain a SCVPValidationRequest in the

extension_data field of this extension. The TLS client or server

sending the SCVPValidationRequest and receiving the

¶

¶

¶

¶

¶

¶

¶

¶

SCVPValidationResponse is the will be referred to in this document

as the TLS initiator. The TLS client or server that receives the

SCVPValidationRequest and sends the SCVPValidationResponse will be

referred to as the TLS peer.

The SCVPValidationRequest consists of three optional lists: a list

of SCVP responder URIs, a list of trust anchors, and a list of

validation extensions. SCVPValidationRequest is defined as follows:

3.1. Responder URIs

The ResponderURIs provides a list of SCVP responders that the

initiator trusts. A zero-length responder_uri_list sequence has

special meaning that the responders are implicitly known to the

peer, e.g. by prior arrangement. The ResponderURIs list is in the

initiator's preferred order. The peer SHOULD process the responder

URI list in order and return a response from the first reachable URI

with an acceptable response. What constitutes an acceptable response

is discussed in Section 4.1. The ResponderURIs list is represented

as a DER encoded SEQUENCE OF ASN.1 IA5String objects.

3.2. Trust Anchors

Zero or more trust anchors MAY be provided in the

SCVPValidationRequest to specify the trust anchors at which the

certification path must terminate if the path is to be considered

valid. The TrustAnchors type is an ASN.1 SEQUENCE OF PKCReference.

The SCVP Server usage is defined in Section 3.2.4.7 of RFC 5055

[RFC5055]. If a TLS peer receives a SCVPValidationRequest which

contains TrustAnchors it SHOULD include the TrustAnchors in the SCVP

Request Validation Policy. A non-zero length TrustAnchors sequence

combined with a zero length Responder URI sequence indicates that

the peer's default SCVP Responder SHOULD be used to construct a

certification path which terminates at a specified certificate. If a

non-zero length TrustAnchors is provided and the the

validation_policy validation extension is included as defined in

Section 3.3, the ValidationPolicy TrustAnchors MUST be equivalent to

the SCVPValidationRequest TrustAnchors.

As defined in RFC 5055, the trust anchor PKCReference MAY be either

an SCVPCertID or a Certificate. To minimize the size of the

SCVPValidationRequest, TrustAnchors SHOULD be included by

SCVPCertID.

¶

¶

struct {

 ResponderURIs responder_uri_list<0..2^16-1>;

 TrustAnchors trust_anchor_list<0..2^16-1>;

 ValidationExtensions validation_extensions_list<0..2^16-1>;

} SCVPValidationRequest;

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc5055#section-3.2.4.7

3.3. Validation Extensions

This document defines nine optional ValidationExtensionTypes. These

validation extensions allow the initiator to specify values in the

CV Request as described in Section 3.4. Inclusion of the validation

extensions will increase the size of the request and response.

Therefore, the extensions should be included only when necessary.

The validation_extension_data values are DER-encoded ASN.1 types

that can be directly mapped to the SCVP CVRequest as defined by RFC

5055 [RFC5055].

3.4. CVRequest

Peers that receive a client hello or certificate request containing

the validation_request extension MAY return a suitable path

validation response with their certificate. If SCVP is requested,

the TLS peer SHOULD use the information contained in the extension

when selecting an SCVP responder and Trust Anchor. The TLS peer

SHOULD map the validation extension types to the SCVP request as

follows.

Conforming TLS Peers MUST construct a CVRequest with a

cvRequestVersion and query.

¶

¶

struct {

 ValidationExtensionType validation_extension_type;

 select (validation_extension_type {

 case want_back: WantBack;

 case validation_policy: ValidationPolicy;

 case cached_response: BOOLEAN;

 case query_extensions: Extensions;

 case request_nonce: OCTET STRING;

 case request_extensions: Extensions;

 case signature_algorithm: AlgorithmIdentifier;

 case hash_algorithm: OBJECT IDENTIFIER;

 case requestor_text: UTF8String (SIZE (1..256));

 } validation_extension_data;

} ValidationExtension

¶

¶

want_back : CVRequest.query.wantBack

validation_policy : CVRequest.query.validationPolicy

cached_response : CVRequest.query.responseFlags.cachedResponse

query_extensions : CVRequest.query.queryExtensions

request_nonce : CVRequest.requestNonce

request_extensions : CVRequest.requestExtensions

signature_algorithm : CVRequest.signatureAlgorithm

hash_algorithm : CVRequest.hashAlgorithm

requestor_text : CVRequest.requestorText

¶

¶

3.4.1. cvRequestVersion

TLS peers conforming to RFC 5055 [RFC5055] MUST set the value of the

cvRequestVersion item to one (1).

3.4.2. Query

The query item is defined in Section 3.2 of RFC 5055 [RFC5055]

TLS peers conforming to RFC 5055 [RFC5055] SHALL include the query

item. For processing the TLS Validation Request the TLS peer SHALL

include the queriedCerts, certChecks and validationPolicy fields,

MAY include wantBack, responseFlags, intermediateCerts, revInfos,

and queryExtension fields, SHOULD NOT include producedAt and

serverContextInfo fields, and MUST NOT include the validationTime

field.

The TLS peer MUST populate the CertReferences item. The

CertReferences sequence MUST be of length one and specify the TLS

peer's X.509v3 Certificate. This certificate MUST correspond to the

TLS Certificate sent in the Certificate handshake message.

The TLS peer MUST populate the CertChecks item. The item MUST be set

to id-stc-build-status-checked-pkc-path (id-stc 3).

The TLS peer SHOULD NOT include want back unless specified in the

validation extension want_back item. If the TLS peer receives a

SCVPValidationRequest with a want_back validation extension, the TLS

peer MAY set the wantBack item in the CVRequest to the value of the

want_back. Want backs can significantly increase the size of the

CVResponse and should be used only when specifically required.

The TLS peer MUST include the ValidationPolicy item in the CVRequest

query item as follows:

If a validation_policy was specified in the SCVPValidationRequest

validation extensions:

The TLS peer SHOULD include that ValidationPolicy in the

CVRequest.

If a a validation_policy was not specified in the

SCVPValidaitonRequest validation extensions:

If the ResponderURIs is a zero-length list, indicating that the

TLS peer should query a pre-configured SCVP responder, the TLS

peer SHOULD set the ValidationPolicy validationPolRef to either a

pre-configured ValidationPolicy or the default validation policy

OID id-svp-defaultValPolicy (id-svp 1).

¶

¶

¶

¶

¶

¶

¶

¶

*

¶

¶

*

¶

https://rfc-editor.org/rfc/rfc5055#section-3.2

If the ResponderURIs is a non-zero-length list, indicating that

the TLS peer should query a specified SCVP responder, the TLS

peer SHOULD set the ValidationPolicy validationPolRef item to the

default validation policy OID id-svp-defaultValPolicy (id-svp 1).

If the TrustAnchors is a non-zero length list the TLS peer MUST

include the provided TrustAnchors in the ValidationPolicy

TrustAnchors.

The TLS peer MAY only include the ResponseFlags item in the

CVRequest if requesting non-default values. If default values are

used for all flags, the responseFlags item MUST NOT be included in

the request. To enable the initiator to trust the CVResponse, the

TLS peer MUST use the default value for the protectResponse flag

(TRUE). To minimize the size of the CVResponse, the TLS peer SHOULD

use the default values for the response flags fullRequestInResponse

(FALSE) and responseValidationPolicyByRef (TRUE). If the TLS peer

included the cached_response validation extension with a value of

FALSE, the TLS peer SHOULD NOT use its cache as described in Section

4.2 and MAY include the cachedResponse set to FALSE in the CVRequest

responseFlags item. If the TLS peer sets the cachedResponse flag to

FALSE the request_nonce MUST be set. If the TLS peer received the

request_nonce validation extension, the requestNonce in the

CVRequest MAY be set to the value of the request_nonce extension.

Otherwise, the TLS peer MUST generate and set a requestNonce in the

CVRequest.

The TLS peer SHOULD NOT include the serverContextInfo item in the

CVRequest.

The TLS peer MUST NOT include the validationTime item in the

CVRequest.

The TLS peer MAY include the intermediateCerts item in the CVRequst

to help the SCVP server create a valid certification path as defined

in Section 3.2.8 of RFC 5055 [RFC5055].

The TLS peer MAY include the revInfos item in the CV Request which

MAY be used by the SCVP Server when validating certification paths

as defined in Section 3.2.9 of RFC 5055 [RFC5055].

The TLS peer SHOULD NOT include the producedAt item in the

CVRequest.

The TLS peer MAY include the queryExtensions item in the CVRequest

to extend the query. If the TLS peer receives a

SCVPValidationRequest with a query_extensions validation extension,

the TLS peer MAY set the queryExtensions item in the CVRequest to

the value of the query_extension.

*

¶

*

¶

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc5055#section-3.2.8
https://rfc-editor.org/rfc/rfc5055#section-3.2.9

3.4.3. requestorRef

The TLS peer SHOULD NOT set the requestorRef item in the CVRequest.

3.4.4. requestNonce

The TLS peer MAY include the requestNonce item in the CVRequest to

indicate a preference for a non-cached response. If the TLS peer

receives a SCVPValidationRequest with a request_nonce validation

extension, the TLS peer MAY set the requestNonce item in the

CVRequest to the value of the request_nonce validation extension. If

the TLS peer sets the cachedResponse response flag to FALSE but did

not receive the request_nonce validation extension the TLS peer MUST

generate and set a requestNonce in the CVRequest.

3.4.5. requestorName

The TLS peer SHOULD NOT include the requestorName item in the

CVRequest.

3.4.6. responderName

The TLS peer SHOULD NOT include the responderName item in the

CVRequest.

3.4.7. requestExtensions

The TLS peer MAY include the requestExtensions item in the CVRequest

to extend the request. If the TLS peer receives a

SCVPValidationRequest with a request_extensions validation

extension, the TLS peer MAY set the requestExtensions item in the

CVRequest to the value of the request_extension.

3.4.8. signatureAlgorithm

The TLS peer SHOULD NOT include the signatureAlgorithm item in the

CVRequest unless specified in the SCVPValidationRequest

signature_algorithm validation extension. If the TLS peer receives a

SCVPValidationRequest with a signature_algorithm validation

extension, the TLS peer MAY set the signatureAlgorithm item in the

CVRequest to the value of the signature_algorithm.

To keep the size of the request and response small, it is

recommended that community define the signature algorithm rather

than using the signature_algorithm extension.

3.4.9. hashAlgorithm

The TLS peer SHOULD NOT include the hashAlgorithm item in the

CVRequest unless specified in the SCVPValidationRequest

¶

¶

¶

¶

¶

¶

¶

hash_algorithm validation extension. If the TLS peer receives a

SCVPValidationRequest with a hash_algorithm validation extension,

the TLS peer MAY set the hashAlgorithm item in the CVRequest to the

value of the hash_algorithm.

To keep the size of the request and response small, it is

recommended that community define the hash algorithm rather than

using the hash_algorithm extension.

3.4.10. requestorText

The TLS peer SHOULD NOT include the requestorText item in the

CVRequest unless specified in the SCVPValidationRequest

requestor_text validation extension. If the TLS peer receives a

SCVPValidationRequest with a requestor_text validation extension,

the TLS peer MAY set the requestorText item in the CVRequest to the

value of the requestor_text.

To keep the size of the request and response small, it is

recommended that the requestor text be used only for debugging

purposes.

4. SCVP Validation Response

Servers that receive a client hello containing the

validation_request extension and Clients that receive a certificate

request containing the validation_request extension MAY return a

suitable path validation response along with their certificate by

sending a SCVPValidationResponse as an extension to the Certificate

message.

TLS peers send the SCVPValidationResponse in the extension_data of

the validation_request extension to the end-entity certificate in

the Certificate message. The SCVPValidationResponse data conveys

whether the certificate path was successfully built and validated.

Therefore, in most cases, it is unnecessary for the TLS peer to

include supporting certificates in the Certificates message.

The SCVPValidationResponse is defined as follows.

A signed_cv_response contains a complete, DER-encoded CMS SignedData

object as defined in RFC 5652 [RFC5652] with an EncapsulatedContent

of type CVResponse as defined in RFC 5055 [RFC5055]. Only one SCVP

response may be sent.

¶

¶

¶

¶

¶

¶

¶

struct {

 opaque signed_cv_response

 ValidationExtensions validation_extensions_list<0..2^16-1>;

} SCVPValidationResponse;

¶

¶

The TLS peer SHOULD include the list of validation extensions from

the SCVPValidationRequest that were used in the CVRequest to

indicate which validation extensions were honored. If the TLS peer

did not use a validation extension in the CVRequest, it MUST NOT be

included in the SCVPValidationResponse. The SCVPValidationResponse

MUST NOT include validation extensions that were not present in the

SCVPValidationRequest.

Section 9 of RFC 5055 [RFC5055] asserts that clients MUST verify

that the response matches their original request and outlines the

steps necessary to perform this verification. For this extension,

the client responsibility of divided between the TLS initiator that

sends the validation_reqeust extension and the TLS peer that sends

the SCVP response. Certain values are only known by the TLS peer

whereas other values require verification at the final end-point,

the TLS initiator. The following two sections specify the

verification of the SCVP response at the TLS peer Section 4.1 and at

the TLS initiator Section 4.2.

4.1. SCVP Response Processing by TLS Peer

The TLS Peer that generates the CVRequest MUST verify the response

from the SCVP server. If the TLS peer finds the response

unacceptable, it MAY query another SCVP server (from the

ResponderURIs or a pre-configured list) or MAY send a

bad_path_validation_response alert notifying to close the

connection.

The TLS peer MUST verify that the response is a protected response

consisting of a CVResponse encapsulated in CMS SignedData.

The TLS peer SHOULD verify that the SignedData Message Digest is a

hash of the received CVResponse.

The TLS peer MAY verify the certificate of the SCVP responder used

for signing the response. In some environments, it may be left to

the TLS initiator to validate.

As an SCVP client, the TLS peer MUST process the CVResponse as

defined by RFC 5055 [RFC5055].

The TLS peer SHOULD verify the responseStatus code. If the code does

not indicate okay(0), the TLS peer MAY choose to query another SCVP

server from the Responder URIs.

As stated in RFC 5055, the requestRef item allows the SCVP client to

determine that the request was not maliciously altered. The TLS peer

creates the CVRequest and is therefore the only place where the full

CVRequst is known. The TLS peer SHOULD compare the returned

requestRef to the CVRequest.

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc5055#section-9

If the TLS peer generated a requestNonce it SHOULD verify that the

requestNonce in the response matches the value in the request.

4.2. SCVP Response Processing by TLS Initiator

On receipt of a SCVPValidationResponse, the TLS initiator MUST

verify that the response indicates a successful path validation and

can be trusted.

The TLS initiator MUST verify that the CVResponse is encapsulated in

a CMS SignedData object and validate the digital signature on the

response to ensure that the expected SCVP server generated the

response. The TLS initiator MUST verify that the SignedData Message

Digest matches a hash of the received CVResponse.

The CVResponse CertReply item MUST contain a single certificate

matching the TLS peer's certificate sent in the TLS Certificate

Handshake message. If the CertReply does not meet this requirement

the TLS initiator MUST abort the connection with a

bad_path_validation_response.

The TLS initiator MUST verify that the CVResponse indicates success.

A CVResponse is successful if: the responseStatus is CVStatusCode

okay(0) and the CertReply item containing the TLS peer's certificate

has a replyStatus of success (0). If these conditions are not met

the TLS initiator MUST abort the connection with a

bad_path_validation_response.

The TLS initiator should check the SCVPValidationResponse

validation_extensions against the validation_extensions sent in the

SCVPValidationRequest. If the SCVPValidationResponse

validation_extensions list does not match the list of sent

validation_extensions, the TLS initiator MAY abort the connection.

If the initiator set validation extensions in the

SCVPValidationRequest, the TLS initiator SHOULD verify that the

CVResponse appropriately reflects those validation extensions. For

example, if the request_nonce validation extension was set the

initiator SHOULD verify that the CVResponse respNonce contains the

same value.

4.3. SCVP Validation Response Cache

To improve performance and survive path validation service outages

the TLS peer MAY cache SCVPValidationResponse messages. On receipt

of a client hello or certificate request with a validation_request

extension the TLS peer MAY check a local cache for a

SCVPValidationResponse matching the SCVPValidationRequest's

settings. If a matching response is found the peer MAY use this

response rather than generating a fresh response.

¶

¶

¶

¶

¶

¶

¶

¶

The TLS peer should check if the SCVPValidationRequest has

validation extensions before returning a cached response. If the

cached_response validation extension is set to FALSE or the

request_nonce validation extension is set. The TLS peer SHOULD NOT

return a cached response.

The TLS peer SHOULD place a time limit on cached responses and

generate a fresh SCVPValidationResponse after that time has elapsed.

To improve performance, the TLS peer MAY proactively refresh cached

responses before the cache time limit has been reached. SCVP servers

may also perform caching to optimize response times. SCVP servers

may optionally include the nextUpdate wantBack value in the

CVResponse to indicate when a fresh response will be available from

the SCVP server.

5. Error Alerts

On receipt of a SCVPValidationResponse the TLS initiator MUST

validate that the response indicates a successful path validation as

described in Section 4. If the SCVPValidationResponse does not

indicate that the certificate was successfully validated, the TLS

connection MUST be aborted with a bad_path_validation_response as

follows.

6. IANA Considerations

IANA considerations for TLS extensions and the creation of a

registry are covered in Section 11 of RFC 8446 [RFC8446].

6.1. Reference for TLS Alerts and ExtensionTypes

The following values in the TLS Alert Registry have been updated to

reference this document:

TBD bad_path_validation_response

The following ExtensionType values have been updated to reference

this document:

TBD validation_request

7. Security Considerations

General security considerations for TLS extensions are covered in

TLS 1.3 RFC 8446 [RFC8446].

¶

¶

¶

enum {

 bad_path_validation_response(TBD),

 (255)

} AlertDescription;

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc8446#section-11

For security considerations specific to the Cryptographic Message

Syntax message formats, see RFC 5652 [RFC5652]. For security

considerations specific to the process of PKI certification path

validation, see RFC 5280 [RFC5280]. For security considerations

specific to SCVP, see RFC 5055 [RFC5055].

This section summarizes some of the more important security aspects

specific to the TLS validation_request extension, though there are

many security-relevant details in the remainder of this document.

7.1. Support for Extension

If a client or server requests a path validation response, it must

consider that an attacker could (and probably would) pretend not to

support the extension. In this case, the initiator of the request

that requires path validation of certificates SHOULD either contact

the validation server directly or abort the handshake.

7.2. Replay Attacks

Use of the optional SCVP cached response flag and request nonce

items in the SCVPValidationRequest validation extensions and in the

CVRequest may improve security against attacks that attempt to

replay SCVP responses. However, use of these properties must be

balanced with the performance impact of requiring generation of a

fresh SCVP response.

7.3. Extension Modifications

Values in the client hello validation_request extension and

SCVPValidationRequest are passed between the TLS client to the TLS

server unprotected. This makes the values vulnerable to

modification. An attacker might try to influence the handshake

exchange in multiple ways including to increase latency, cause

parties to abort the connection or to create trust in an untrusted

server.

This extension is made further vulnerable by the inclusion of

validation extensions in the SCVPValidationRequest. These validation

extensions have been included to support flexibility. However, to

mitigate the vulnerability to modification, domains should consider

limiting use of validation extensions and instead use preconfigured

domain specific values. TLS client and server verification of values

returned in the signed CVResponse as described in Section 4 should

also be used to protect against these attacks and detect attempts to

modify these values.

This extension modification consideration does not apply in the case

where the TLS Server sends a validation_request in the certificate

request message which is encrypted.

¶

¶

¶

¶

¶

¶

¶

[RFC2119]

[RFC5055]

[RFC5280]

[RFC5652]

[RFC8446]

[RFC9147]

7.4. Unrelated SCVP Validation Response

The received SCVPValidationResponse could contain information

unrelated to the request. A path for an end-entity certificate other

than the TLS certificate could be returned. The first certificate in

the certificate path could not match any of the provided trust

anchors. Or the SCVP responder signing the response could be unknown

to the TLS client or server. If any such unrelated

SCVPValidationResponse is received, it MUST be discarded. An

alternative means MAY be used to validate the certificate or if no

alternative means is used it SHOULD abort the handshake.

7.5. Trust Anchor Maintenance

The TLS client or server sending the validation_request extension

relies on a locally known trust anchor to verify the signed

SCVPValidationResponse. The trust anchor may change or expire

periodically. TLS clients and servers using this specification MUST

implement a secure mechanism to keep their trust anchors up to date.

8. References

8.1. Normative References

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Freeman, T., Housley, R., Malpani, A., Cooper, D., and W.

Polk, "Server-Based Certificate Validation Protocol

(SCVP)", RFC 5055, DOI 10.17487/RFC5055, December 2007,

<https://www.rfc-editor.org/info/rfc5055>.

Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,

Housley, R., and W. Polk, "Internet X.509 Public Key

Infrastructure Certificate and Certificate Revocation

List (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May

2008, <https://www.rfc-editor.org/info/rfc5280>.

Housley, R., "Cryptographic Message Syntax (CMS)", STD

70, RFC 5652, DOI 10.17487/RFC5652, September 2009,

<https://www.rfc-editor.org/info/rfc5652>.

Rescorla, E., "The Transport Layer Security (TLS)

Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446,

August 2018, <https://www.rfc-editor.org/info/rfc8446>.

Rescorla, E., Tschofenig, H., and N. Modadugu, "The

Datagram Transport Layer Security (DTLS) Protocol Version

¶

¶

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc5055
https://www.rfc-editor.org/info/rfc5280
https://www.rfc-editor.org/info/rfc5652
https://www.rfc-editor.org/info/rfc8446

1.3", RFC 9147, DOI 10.17487/RFC9147, April 2022,

<https://www.rfc-editor.org/info/rfc9147>.

Authors' Addresses

Robert Segers

Federal Aviation Administration

800 Independence Ave. SW

Washington, DC 20591

United States of America

Email: Robert.Segers@faa.gov

Ashley Kopman

Concepts Beyond

1155 F St NW

Washington, DC 20004

United States of America

Email: akopman@conceptsbeyond.com

https://www.rfc-editor.org/info/rfc9147
mailto:Robert.Segers@faa.gov
mailto:akopman@conceptsbeyond.com

	Transport Layer Security (TLS) Extension: Validation Request
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Requirements Language

	2. Validation Request Extension
	2.1. Server Authentication
	2.2. Client Authentication

	3. SCVP Validation Request
	3.1. Responder URIs
	3.2. Trust Anchors
	3.3. Validation Extensions
	3.4. CVRequest
	3.4.1. cvRequestVersion
	3.4.2. Query
	3.4.3. requestorRef
	3.4.4. requestNonce
	3.4.5. requestorName
	3.4.6. responderName
	3.4.7. requestExtensions
	3.4.8. signatureAlgorithm
	3.4.9. hashAlgorithm
	3.4.10. requestorText

	4. SCVP Validation Response
	4.1. SCVP Response Processing by TLS Peer
	4.2. SCVP Response Processing by TLS Initiator
	4.3. SCVP Validation Response Cache

	5. Error Alerts
	6. IANA Considerations
	6.1. Reference for TLS Alerts and ExtensionTypes

	7. Security Considerations
	7.1. Support for Extension
	7.2. Replay Attacks
	7.3. Extension Modifications
	7.4. Unrelated SCVP Validation Response
	7.5. Trust Anchor Maintenance

	8. References
	8.1. Normative References

	Authors' Addresses

