
ACE Working Group G. Selander
Internet-Draft J. Mattsson
Intended status: Standards Track F. Palombini
Expires: October 27, 2017 Ericsson AB
 April 25, 2017

Ephemeral Diffie-Hellman Over COSE (EDHOC)
draft-selander-ace-cose-ecdhe-06

Abstract

 This document specifies Ephemeral Diffie-Hellman Over COSE (EDHOC), a
 compact, and lightweight authenticated Diffie-Hellman key exchange
 with ephemeral keys that can be used over any layer. EDHOC messages
 are encoded with CBOR and COSE, allowing reuse of existing libraries.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on October 27, 2017.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Selander, et al. Expires October 27, 2017 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) April 2017

Table of Contents

1. Introduction . 2
1.1. Terminology . 3
1.2. Requirements Language 3

2. Protocol Overview . 3
3. EDHOC Overview . 5
3.1. Formatting of the Ephemeral Public Keys 6
3.2. Key Derivation . 6

4. EDHOC Authenticated with Asymmetric Keys 8
4.1. Overview . 8
4.2. EDHOC Message 1 . 8
4.3. EDHOC Message 2 . 11
4.4. EDHOC Message 3 . 13

5. EDHOC Authenticated with Symmetric Keys 15
5.1. Overview . 15
5.2. EDHOC Message 1 . 16
5.3. EDHOC Message 2 . 18
5.4. EDHOC Message 3 . 19

6. Error Handling . 21
6.1. Error Message Format 21

7. IANA Considerations . 21
7.1. Media Types Registry 21

8. Security Considerations 22
9. Acknowledgments . 24
10. References . 24
10.1. Normative References 24
10.2. Informative References 25

Appendix A. Test Vectors . 26
Appendix B. PSK Chaining . 26
Appendix C. EDHOC with CoAP and OSCOAP 26
C.1. Transferring EDHOC in CoAP 26
C.2. Deriving an OSCOAP context from EDHOC 27

 Authors' Addresses . 28

1. Introduction

 Security at the application layer provides an attractive option for
 protecting Internet of Things (IoT) deployments, for example where
 transport layer security is not sufficient
 [I-D.hartke-core-e2e-security-reqs] or where the protocol needs to
 work on a variety of underlying protocols. IoT devices may be
 constrained in various ways, including memory, storage, processing
 capacity, and energy [RFC7228]. A method for protecting individual
 messages at the application layer suitable for constrained devices,
 is provided by CBOR Object Signing and Encryption (COSE)
 [I-D.ietf-cose-msg]), which builds on the Concise Binary Object
 Representation (CBOR) [RFC7049].

https://datatracker.ietf.org/doc/html/rfc7228
https://datatracker.ietf.org/doc/html/rfc7049

Selander, et al. Expires October 27, 2017 [Page 2]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) April 2017

 In order for a communication session to provide forward secrecy, the
 communicating parties can run an Elliptic Curve Diffie-Hellman (ECDH)
 key exchange protocol with ephemeral keys, from which shared key
 material can be derived. This document specifies Ephemeral Diffie-
 Hellman Over COSE (EDHOC), an authenticated ECDH protocol using CBOR
 and COSE objects. Authentication is based on credentials established
 out of band, e.g. from a trusted third party, such as an
 Authorization Server as specified by [I-D.ietf-ace-oauth-authz].
 EDHOC supports authentication using pre-shared keys (PSK), raw public
 keys (RPK), and certificates (Cert). Note that this document focuses
 on authentication and key establishment: for integration with
 authorization of resource access, refer to
 [I-D.seitz-ace-oscoap-profile]. This document also specifies the
 derivation of shared key material.

 The ECDH exchange and the key derivation follow [SIGMA], NIST SP-
 800-56a [SP-800-56a], and HKDF [RFC5869]. CBOR [RFC7049] and COSE
 [I-D.ietf-cose-msg] are used to implement these standards.

1.1. Terminology

 This document use the same informational CBOR Data Definition
 Language (CDDL) [I-D.greevenbosch-appsawg-cbor-cddl] grammar as COSE
 (see Section 1.3 of [I-D.ietf-cose-msg]). A vertical bar | denotes
 byte string concatenation.

1.2. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119]. These
 words may also appear in this document in lowercase, absent their
 normative meanings.

2. Protocol Overview

 SIGMA (SIGn-and-MAc) is a family of theoretical protocols with a
 large number of variants [SIGMA]. Like IKEv2 and TLS 1.3, EDHOC is
 built on a variant of the SIGMA protocol which provide identity
 protection, and like TLS 1.3, EDHOC implements the SIGMA-I variant as
 Sign-then-MAC. The SIGMA-I protocol using an AEAD algorithm is shown
 in Figure 1.

https://datatracker.ietf.org/doc/html/rfc5869
https://datatracker.ietf.org/doc/html/rfc7049
https://datatracker.ietf.org/doc/html/rfc2119

Selander, et al. Expires October 27, 2017 [Page 3]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) April 2017

 Party U Party V
 | E_U |
 +-->|
 | |
 | E_V, Enc(K_2; ID_V, Sig(V; E_U, E_V);) |
 |<--+
 | |
 | Enc(K_3; ID_U, Sig(U; E_V, E_U);) |
 +-->|
 | |

 Figure 1: AEAD variant of the SIGMA-I protocol

 The parties exchanging messages are called "U" and "V". They
 exchange identities and ephemeral public keys, compute the shared
 secret, and derive the keying material. The messages are signed,
 MACed, and encrypted.

 o E_U and E_V are the ECDH ephemeral public keys of U and V,
 respectively.

 o ID_U and ID_V are identifiers for the public keys of U and V,
 respectively.

 o Sig(U; .) and S(V; .) denote signatures made with the private
 key of U and V, respectively.

 o Enc(K; P; A) denotes AEAD encryption of plaintext P and additional
 authenticated data A using the key K derived from the shared
 secret. The AEAD MUST NOT be replaced by plain encryption, see

Section 8.

 As described in Appendix B of [SIGMA], in order to create a "full-
 fledge" protocol some additional protocol elements are needed. EDHOC
 adds:

 o Explicit session identifiers S_U, S_V chosen by U and V,
 respectively.

 o Explicit nonces N_U, N_V chosen freshly and anew with each session
 by U and V, respectively.

 o Computationally independent keys derived from the ECDH shared
 secret and used for encryption of different messages.

 EDHOC also makes the following additions:

Selander, et al. Expires October 27, 2017 [Page 4]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) April 2017

 o Negotiation of key derivation, encryption, and signature
 algorithms:

 * U proposes one or more algorithms of the following kinds:

 + HKDF

 + AEAD

 + Signature verification

 + Signature generation

 * V selects one algorithm of each kind

 o Verification of common preferred ECDH curve:

 * U lists supported ECDH curves in order of preference

 * V verifies that the ECDH curve of the ephemeral key is the most
 preferred common curve

 o Transport of opaque application defined data.

 EDHOC is designed to encrypt and integrity protect as much
 information as possible, and all symmetric keys are derived using as
 much previous information as possible. EDHOC is furthermore designed
 to be as compact and lightweight as possible, in terms of message
 sizes, processing, and the ability to reuse already existing CBOR and
 COSE libraries. EDHOC does not put any requirement on the lower
 layers and can therefore be also be used e.g. in environments without
 IP.

 This paper is organized as follows: Section 3 specifies general
 properties of EDHOC, including formatting of the ephemeral public
 keys and key derivation, Section 4 specifies EDHOC with asymmetric
 key authentication, Section 5 specifies EDHOC with symmetric key
 authentication, and Appendix A provides a wealth of test vectors to
 ease implementation and ensure interoperability.

3. EDHOC Overview

 EDHOC consists of three messages (message_1, message_2, message_3)
 that maps directly to the three messages in SIGMA-I, plus an EDHOC
 error message. All EDHOC messages consists of a CBOR array where the
 first element is an int specifying the message type (MSG_TYPE).
 After creating EDHOC message_3, Party U can derive the traffic key
 (master secret) and protected application data can therefore be sent

Selander, et al. Expires October 27, 2017 [Page 5]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) April 2017

 in parallel with EDHOC message_3. The application data may e.g. be
 protected using the negotiated AEAD algorithm. EDHOC may be used
 with the media type application/edhoc defined in Section 7.

 Party U Party V
 | |
 | ------------------ EDHOC message_1 -----------------> |
 | |
 | <----------------- EDHOC message_2 ------------------ |
 | |
 | ----------------- EDHOC message_3 ------------------> |
 | |
 | <----------- Protected Application Data ------------> |
 | |

 Figure 2: EDHOC message flow

 The EDHOC message exchange may be authenticated using pre-shared keys
 (PSK), raw public keys (RPK), or certificates (Cert). EDHOC assumes
 the existence of mechanisms (certification authority, manual
 distribution, etc.) for binding identities with authentication keys
 (public or pre-shared). EDHOC with symmetric key authentication is
 very similar to EDHOC with asymmetric key authentication, the
 difference being that information is only MACed, not signed.

 EDHOC also allows application data (APP_1, APP_2, APP_3) to be sent
 in the respective messages. APP_1 is unprotected, APP_2 is protected
 (encrypted and integrity protected), and APP_3 is protected and
 mutually authenticated. When EDHOC is used with asymmetric key
 authentication APP_2 is sent to an unauthenticated party, but with
 symmetric key authentication APP_2 is mutually authenticated.

3.1. Formatting of the Ephemeral Public Keys

 The ECDH ephemeral public key SHALL be formatted as a COSE_Key of
 type EC2 or OKP according to section 13.1 and 13.2 of
 [I-D.ietf-cose-msg]. The curve X25519 is mandatory to implement.
 For Elliptic Curve Keys of type EC2, point compression is mandatory
 to implement.

3.2. Key Derivation

 Key and IV derivation SHALL be done as specified in Section 11.1 of
 [I-D.ietf-cose-msg] with the following input:

 o The PRF SHALL be the HKDF [RFC5869] in the ECDH-SS w/ HKDF
 negotiated during the message exchange (HKDF_V).

https://datatracker.ietf.org/doc/html/rfc5869

Selander, et al. Expires October 27, 2017 [Page 6]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) April 2017

 o The secret SHALL be the ECDH shared secret as defined in
 Section 12.4.1 of [I-D.ietf-cose-msg].

 o salt = PSK / nil

 o The context information SHALL be the serialized COSE_KDF_Context
 with the following values:

 * AlgorithmID = tstr / int

 * PartyInfo = (nil, nil, nil)

 * SuppPubInfo SHALL contain:

 + keyDataLength int

 + protected SHALL be a zero length bstr

 + other = aad_2 / aad_3 / exchange_hash

 exchange_hash = bstr

 where exchange_hash, in diagnostic non-normative notation, is:

 exchange_hash = H(H(message_1 | message_2) | message_3)

 where H() is the hash function in HKDF_V, and | denotes byte string
 concatenation.

 The salt SHALL only be present in the symmetric case.

 Symmetric keys and IVs SHALL be derived with the negotiated PRF
 (HKDF_V) and with the secret set to the ECDH shared secret.

 For message_i the key and IV, called K_i and IV_i, SHALL be derived
 using other = aad_i, where i = 2 or 3. The key SHALL be derived
 using AlgorithmID set to the negotiated AEAD (AEAD_V), and
 keyDataLength equal to the key length of AEAD_V. The IV SHALL be
 derived using AlgorithmID = "IV-GENERATION" as specified in section

12.1.2. of [I-D.ietf-cose-msg], and keyDataLength equal to the IV
 length of AEAD_V.

 Application specific traffic keys and other data SHALL be derived
 using other = exchange_hash. AlgorithmID is defined by the
 application and SHALL be different for different data being derived
 (an example is given in Appendix C.2). keyDataLength is set to the
 length of the data being derived.

Selander, et al. Expires October 27, 2017 [Page 7]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) April 2017

4. EDHOC Authenticated with Asymmetric Keys

4.1. Overview

 EDHOC supports authentication with raw public keys (RPK) and
 certificates (Cert) with the requirements that:

 o Party U's SHALL be able to identify Party V's public key using
 ID_V.

 o Party V's SHALL be able to identify Party U's public key using
 ID_U.

 ID_U and ID_V either enable the other party to retrieve the public
 key (kid, x5t, x5u) or they contain the public key (x5c), see
 [I-D.schaad-cose-x509]. Party U and party V MAY use different type
 of credentials, e.g. one uses RPK and the other Cert. Party U and
 party V MAY use different signature algorithms.

 EDHOC with asymmetric key authentication is illustrated in Figure 3.

Party U Party V
| S_U, N_U, E_U, ALG_1, APP_1 |
+--->|
| message_1 |
| |
|S_U, S_V, N_V, E_V, ALG_2, Enc(K_2; APP_2, ID_V, Sig(V; aad_2); aad_2)|
|<---+
| message_2 |
| |
| S_V, Enc(K_3; APP_3, ID_U, Sig(U; aad_3); aad_3) |
+--->|
| message_3 |

 Figure 3: EDHOC with asymmetric key authentication.

4.1.1. Mandatory to Implement Algorithms

 For EDHOC authenticated with asymmetric keys, the COSE algorithms
 ECDH-SS + HKDF-256, AES-CCM-64-64-128, and EdDSA are mandatory to
 implement.

4.2. EDHOC Message 1

Selander, et al. Expires October 27, 2017 [Page 8]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) April 2017

4.2.1. Formatting of Message 1

 message_1 SHALL be a CBOR array as defined below

 message_1 = [
 MSG_TYPE : int,
 S_U : bstr,
 N_U : bstr,
 E_U : serialized_COSE_Key,
 ECDH-Curves_U : alg_array,
 HKDFs_U : alg_array,
 AEADs_U : alg_array,
 SIGs_V : alg_array,
 SIGs_U : alg_array,
 ? APP_1 : bstr
]

 serialized_COSE_Key = bstr .cbor COSE_Key

 alg_array = [+ alg : int / tstr]

 where:

 o MSG_TYPE = 1

 o S_U - variable length session identifier

 o N_U - 64-bit random nonce

 o E_U - the ephemeral public key of Party U

 o ECDH-Curves_U - EC curves for ECDH which Party U supports, in the
 order of decreasing preference

 o HKDFs_U - supported ECDH-SS w/ HKDF algorithms

 o AEADs_U - supported AEAD algorithms

 o SIGs_V - signature algorithms, with which Party U supports
 verification

 o SIGs_U - signature algorithms, with which Party U supports signing

 o APP_1 - bstr containing application data

Selander, et al. Expires October 27, 2017 [Page 9]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) April 2017

4.2.2. Party U Processing of Message 1

 Party U SHALL compose message_1 as follows:

 o Determine which ECDH curve to use with Party V. If U previously
 received from Party V an error message to message_1 with
 diagnostic payload identifying an ECDH curve in ECDH-Curves_U,
 then U SHALL retrieve an ephemeral from that curve. Otherwise the
 first curve in ECDH-Curves_U MUST be used.

 o Retrieve an ephemeral ECDH key pair generated as specified in
 Section 5 of [SP-800-56a] and format the ephemeral public key E_U
 as a COSE_key as specified in Section 3.1.

 o Generate the pseudo-random nonce N_U

 o Choose a session identifier S_U and store it for the length of the
 protocol.

 o Format message_1 as specified in Section 4.2.1.

4.2.3. Party V Processing of Message 1

 Party V SHALL process message_1 as follows:

 o Verify (OPTIONAL) that N_U has not been received before.

 o Verify that at least one of each kind of the proposed algorithms
 are supported.

 o Verify that the ECDH curve used in E_U is supported, and that no
 prior curve in ECDH-Curves_U is supported

 If any verification step fails, Party V MUST send an EDHOC error
 message back, formatted as defined in Section 6.1, and the protocol
 MUST be discontinued. If V does not support the ECDH curve used in
 E_U, but supports another ECDH curves in ECDH-Curves_U, then the
 error message MUST include the following diagnostic payload
 describing the first supported ECDH curve in ECDH-Curves_U:

 ERR_MSG = "Curve not supported; X"

 where X is the first curve in ECDH-Curves_U that V supports,
 encoded as in Table 22 of {{I-D.ietf-cose-msg}}.

Selander, et al. Expires October 27, 2017 [Page 10]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) April 2017

4.3. EDHOC Message 2

4.3.1. Formatting of Message 2

 message_2 SHALL be a CBOR array as defined below

 message_2 = [
 data_2,
 COSE_ENC_2 : COSE_Encrypt0
]

 data_2 = (
 MSG_TYPE : int,
 S_U : bstr,
 S_V : bstr,
 N_V : bstr,
 E_V : serialized_COSE_Key,
 HKDF_V : int / tstr,
 AEAD_V : int / tstr,
 SIG_V : int / tstr,
 SIG_U : int / tstr
)

 aad_2 = bstr

 where aad_2, in diagnostic non-normative notation, is:

 aad_2 = message_1 | [data_2] | ? Cert_V

 where:

 o MSG_TYPE = 2

 o S_V - variable length session identifier

 o N_V - 64-bit random nonce

 o E_V - the ephemeral public key of Party V

 o HKDF_V - a single chosen algorithm from HKDFs_U

 o AEAD_V - a single chosen algorithm from AEADs_U

 o SIG_V - a single chosen algorithm from SIGs_V with which Party V
 signs

 o SIG_U - a single chosen algorithm from SIGs_U with which Party U
 signs

Selander, et al. Expires October 27, 2017 [Page 11]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) April 2017

 o COSE_ENC_2 has the following fields and values:

 * external_aad = aad_2

 * plaintext = [COSE_SIG_V, ? APP_2]

 o COSE_SIG_V is a COSE_Sign1 object with the following fields and
 values:

 * unprotected = { xyz: ID_V }

 * detached payload = aad_2

 o xyz - any COSE map label that can identify a public key, see
Section 4.1

 o ID_V - identifier for the public key of Party V

 o APP_2 - bstr containing application data

 o Cert_V - The end-entity certificate of Party V

 o H() - the hash function in HKDF_V

4.3.2. Party V Processing of Message 2

 Party V SHALL compose message_2 as follows:

 o Retrieve an ephemeral ECDH key pair generated as specified in
 Section 5 of [SP-800-56a] using same curve as used in E_U. Format
 the ephemeral public key E_V as a COSE_key as specified in

Section 3.1.

 o Generate the pseudo-random nonce N_V

 o Choose a session identifier S_V and store it for the length of the
 protocol.

 o Select HKDF_V, AEAD_V, SIG_V, and SIG_U from the algorithms
 proposed in HKDFs_U, AEADs_U, SIGs_V, and SIGs_U.

 o Format message_2 as specified in Section 4.3.1:

 * COSE_Sign1 is computed as defined in section 4.4 of
 [I-D.ietf-cose-msg], using algorithm SIG_V and the private key
 of Party V.

Selander, et al. Expires October 27, 2017 [Page 12]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) April 2017

 * COSE_Encrypt0 is computed as defined in section 5.3 of
 [I-D.ietf-cose-msg], with AEAD_V, K_2, and IV_2. The AEAD
 algorithm MUST NOT be replaced by plain encryption, see

Section 8.

 + If certificates are used then aad_2 MUST include Cert_V

4.3.3. Party U Processing of Message 2

 Party U SHALL process message_2 as follows:

 o Use the session identifier S_U to retrieve the protocol state.

 o Verify that HKDF_V, AEAD_V, SIG_V, and SIG_U were proposed in
 HKDFs_U, AEADs_U, SIGs_V, and SIGs_U.

 o Verify (OPTIONAL) that N_V has not been received before.

 o Verify message_2 as specified in Section 4.3.1:

 * COSE_Encrypt0 is decrypted defined in section 5.3 of
 [I-D.ietf-cose-msg], with AEAD_V, K_2, and IV_2.

 * COSE_Sign1 is verified as defined in section 4.4 of
 [I-D.ietf-cose-msg], using algorithm SIG_V and the public key
 of Party V.

 If any verification step fails, Party V MUST send an EDHOC error
 message back, formatted as defined in Section 6.1, and the protocol
 MUST be discontinued.

4.4. EDHOC Message 3

4.4.1. Formatting of Message 3

 message_3 SHALL be a CBOR array as defined below

 message_3 = [
 data_3,
 COSE_ENC_3 : COSE_Encrypt0
]

 data_3 = (
 MSG_TYPE : int,
 S_V : bstr
)

 aad_3 = bstr

Selander, et al. Expires October 27, 2017 [Page 13]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) April 2017

 where aad_3, in diagnostic non-normative notation, is:

 aad_3 = H(message_1 | message_2) | [data_3] | ? Cert_U

 where:

 o MSG_TYPE = 3

 o COSE_ENC_3 has the following fields and values:

 * external_aad = aad_3

 * plaintext = [COSE_SIG_U, ? APP_3]

 o COSE_SIG_U is a COSE_Sign1 object with the following fields and
 values:

 * unprotected = { xyz: ID_U }

 * detached payload = aad_3

 o xyz - any COSE map label that can identify a public key, see
Section 4.1

 o ID_U - identifier for the public key of Party U

 o APP_3 - bstr containing application data

 o Cert_U - The end-entity certificate of Party U

4.4.2. Party U Processing of Message 3

 Party U SHALL compose message_3 as follows:

 o Format message_3 as specified in Section 4.4.1:

 * COSE_Sign1 is computed as defined in section 4.4 of
 [I-D.ietf-cose-msg], using algorithm SIG_U and the private key
 of Party U.

 * COSE_Encrypt0 is computed as defined in section 5.3 of
 [I-D.ietf-cose-msg], with AEAD_V, K_3, and IV_3. The AEAD
 algorithm MUST NOT be replaced by plain encryption, see

Section 8.

 + If certificates are used then aad_3 MUST include Cert_U

Selander, et al. Expires October 27, 2017 [Page 14]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) April 2017

4.4.3. Party V Processing of Message 3

 Party V SHALL process message_3 as follows:

 o Use the session identifier S_V to retrieve the protocol state.

 o Verify message_3 as specified in Section 4.4.1.

 * COSE_Encrypt0 is decrypted as defined in section 5.3 of
 [I-D.ietf-cose-msg], with AEAD_V, K_3, and IV_3.

 * COSE_Sign1 is verified as defined in section 4.4 of
 [I-D.ietf-cose-msg], using algorithm SIG_U and the public key
 of Party U;

 If any verification step fails, Party V MUST send an EDHOC error
 message back, formatted as defined in Section 6.1, and the protocol
 MUST be discontinued.

5. EDHOC Authenticated with Symmetric Keys

5.1. Overview

 EDHOC supports authentication with pre-shared keys. Party U and V
 are assumed to have a pre-shared uniformly random key (PSK) with the
 requirement that:

 o Party V SHALL be able to identify the PSK using KID.

 KID either enable the other party to retrieve the PSK or contain the
 PSK (e.g. CBOR Web Token).

 EDHOC with symmetric key authentication is illustrated in Figure 4.

 Party U Party V
 | S_U, N_U, E_U, ALG_1, KID, APP_1 |
 +-->|
 | message_1 |
 | |
 | S_U, S_V, N_V, E_V, ALG_2, Enc(K_2; APP_2; aad_2) |
 |<--+
 | message_2 |
 | |
 | S_V, Enc(K_3; APP_3; aad_3) |
 +-->|
 | message_3 |

 Figure 4: EDHOC with symmetric key authentication.

Selander, et al. Expires October 27, 2017 [Page 15]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) April 2017

5.1.1. Mandatory to Implement Algorithms

 For EDHOC authenticated with symmetric keys, the COSE algorithms
 ECDH-SS + HKDF-256 and AES-CCM-64-64-128 are mandatory to implement.

5.2. EDHOC Message 1

5.2.1. Formatting of Message 1

 message_1 SHALL be a CBOR array as defined below

 message_1 = [
 data_1
]

 data_1 = (
 MSG_TYPE : int,
 S_U : bstr,
 N_U : bstr,
 E_U : serialized_COSE_Key,
 ECDH-Curves_U : alg_array,
 HKDFs_U : alg_array,
 AEADs_U : alg_array,
 KID : bstr,
 ? APP_1 : bstr
)

 serialized_COSE_Key = bstr .cbor COSE_Key

 alg_array = [+ alg : int / tstr]

 where:

 o MSG_TYPE = 4

 o S_U - variable length session identifier

 o N_U - 64-bit random nonce

 o E_U - the ephemeral public key of Party U

 o ECDH-Curves_U - EC curves for ECDH which Party U supports, in the
 order of decreasing preference

 o HKDFs_U - supported ECDH-SS w/ HKDF algorithms

 o AEADs_U - supported AEAD algorithms

Selander, et al. Expires October 27, 2017 [Page 16]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) April 2017

 o KID - identifier of the pre-shared key

 o APP_1 - bstr containing application data

5.2.2. Party U Processing of Message 1

 Party U SHALL compose message_1 as follows:

 o Determine which ECDH curve to use with Party V. If U previously
 received from Party V an error message to message_1 with
 diagnostic payload identifying an ECDH curve in ECDH-Curves_U,
 then U SHALL retrieve an ephemeral from that curve. Otherwise the
 first curve in ECDH-Curves_U MUST be used.

 o Retrieve an ephemeral ECDH key pair generated as specified in
 Section 5 of [SP-800-56a] and format the ephemeral public key E_U
 as a COSE_key as specified in Section 3.1.

 o Generate the pseudo-random nonce N_U

 o Choose a session identifier S_U and store it for the length of the
 protocol.

 o Format message_1 as specified in Section 5.2.1.

5.2.3. Party V Processing of Message 1

 Party V SHALL process message_1 as follows:

 o Verify (OPTIONAL) that N_U has not been received before.

 o Verify that at least one of each kind of the proposed algorithms
 are supported.

 o Verify that the ECDH curve used in E_U is supported, and that no
 prior curve in ECDH-Curves_U is supported.

 If any verification step fails, Party V MUST send an EDHOC error
 message back, formatted as defined in Section 6.1, and the protocol
 MUST be discontinued. If V does not support the ECDH curve used in
 E_U, but supports another ECDH curves in ECDH-Curves_U, then the
 error message SHOULD include a diagnostic payload describing the
 first supported ECDH curve in ECDH-Curves_U.

Selander, et al. Expires October 27, 2017 [Page 17]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) April 2017

5.3. EDHOC Message 2

5.3.1. Formatting of Message 2

 message_2 SHALL be a CBOR array as defined below

 message_2 = [
 data_2,
 COSE_ENC_2 : COSE_Encrypt0
]

 data_2 = (
 MSG_TYPE : int,
 S_U : bstr,
 S_V : bstr,
 N_V : bstr,
 E_V : serialized_COSE_Key,
 HKDF_V : int / tstr,
 AEAD_V : int / tstr
)

 aad_2, in diagnostic non-normative notation, is:

 aad_2 = message_1 | [data_2]

 where:

 o MSG_TYPE = 5

 o S_V - variable length session identifier

 o N_V - 64-bit random nonce

 o E_V - the ephemeral public key of Party V

 o HKDF_V - an single chosen algorithm from HKDFs_U

 o AEAD_V - an single chosen algorithm from AEADs_U

 o COSE_ENC_2 has the following fields and values:

 * external_aad = aad_2

 * plaintext = ? APP_2

 o APP_2 - bstr containing application data

 o H() - the hash function in HKDF_V

Selander, et al. Expires October 27, 2017 [Page 18]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) April 2017

5.3.2. Party V Processing of Message 2

 Party V SHALL compose message_2 as follows:

 o Retrieve an ephemeral ECDH key pair generated as specified in
 Section 5 of [SP-800-56a] using same curve as used in E_U. Format
 the ephemeral public key E_V as a COSE_key as specified in

Section 3.1.

 o Generate the pseudo-random nonce N_V

 o Choose a session identifier S_V and store it for the length of the
 protocol.

 o Select HKDF_V and AEAD_V from the algorithms proposed in HKDFs_U
 and AEADs_U.

 o Format message_2 as specified in Section 5.3.1 where COSE_Encrypt0
 is computed as defined in section 5.3 of [I-D.ietf-cose-msg], with
 AEAD_V, K_2, and IV_2.

5.3.3. Party U Processing of Message 2

 Party U SHALL process message_2 as follows:

 o Use the session identifier S_U to retrieve the protocol state.

 o Verify message_2 as specified in Section 5.3.1 where COSE_Encrypt0
 is decrypted defined in section 5.3 of [I-D.ietf-cose-msg], with
 AEAD_V, K_2, and IV_2.

 If any verification step fails, Party U MUST send an EDHOC error
 message back, formatted as defined in Section 6.1, and the protocol
 MUST be discontinued.

5.4. EDHOC Message 3

5.4.1. Formatting of Message 3

 message_3 SHALL be a CBOR array as defined below

Selander, et al. Expires October 27, 2017 [Page 19]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) April 2017

 message_3 = [
 data_3,
 COSE_ENC_3 : COSE_Encrypt0
]

 data_3 = (
 MSG_TYPE : int,
 S_V : bstr
)

 aad_3, in diagnostic non-normative notation, is:

 aad_3 = H(message_1 | message_2) | [data_3]

 where:

 o MSG_TYPE = 6

 o COSE_ENC_3 has the following fields and values:

 * external_aad = aad_3

 * plaintext = ? APP_3

 o APP_3 - bstr containing application data

5.4.2. Party U Processing of Message 3

 Party U SHALL compose message_3 as follows:

 o Format message_3 as specified in Section 5.4.1 where COSE_Encrypt0
 is computed as defined in section 5.3 of [I-D.ietf-cose-msg], with
 AEAD_V, K_3, and IV_3.

5.4.3. Party V Processing of Message 3

 Party V SHALL process message_3 as follows:

 o Use the session identifier S_V to retrieve the protocol state.

 o Verify message_3 as specified in Section 5.4.1 where COSE_Encrypt0
 is decrypted and verified as defined in section 5.3 of
 [I-D.ietf-cose-msg], with AEAD_V, K_3, and IV_3.

 If any verification step fails, Party V MUST send an EDHOC error
 message back, formatted as defined in Section 6.1, and the protocol
 MUST be discontinued.

Selander, et al. Expires October 27, 2017 [Page 20]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) April 2017

6. Error Handling

6.1. Error Message Format

 This section defines a message format for an EDHOC error message,
 used during the protocol. This is an error on EDHOC level and is
 independent of the transport layer used. An advantage of using such
 a construction is to avoid issues created by usage of cross protocol
 proxies (e.g. UDP to TCP).

 error SHALL be a CBOR array as defined below

 error = [
 MSG_TYPE : int,
 ? ERR_MSG : tstr
]

 where:

 o MSG_TYPE = 0

 o ERR_MSG is an optional text string containing the diagnostic
 payload, defined in the same way as in Section 5.5.2 of [RFC7252].

7. IANA Considerations

7.1. Media Types Registry

 IANA has added the media type 'application/edhoc' to the Media Types
 registry:

https://datatracker.ietf.org/doc/html/rfc7252#section-5.5.2

Selander, et al. Expires October 27, 2017 [Page 21]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) April 2017

 Type name: application

 Subtype name: edhoc

 Required parameters: N/A

 Optional parameters: N/A

 Encoding considerations: binary

 Security considerations: See Section 7 of this document.

 Interoperability considerations: N/A

 Published specification: [[this document]] (this document)

 Applications that use this media type: To be identified

 Fragment identifier considerations: N/A

 Additional information:

 * Magic number(s): N/A

 * File extension(s): N/A

 * Macintosh file type code(s): N/A

 Person & email address to contact for further information:
 Goeran Selander <goran.selander@ericsson.com>

 Intended usage: COMMON

 Restrictions on usage: N/A

 Author: Goeran Selander <goran.selander@ericsson.com>

 Change Controller: IESG

8. Security Considerations

 EDHOC builds on the SIGMA-I family of theoretical protocols that
 provides perfect forward secrecy and identity protection with a
 minimal number of messages. The encryption algorithm of the SIGMA-I
 protocol provides identity protection, but the security of the
 protocol requires the MAC to cover the identity of the signer. Hence
 the message authenticating functionality of the authenticated
 encryption in EDHOC is critical: authenticated encryption MUST NOT be

Selander, et al. Expires October 27, 2017 [Page 22]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) April 2017

 replaced by plain encryption only, even if authentication is provided
 at another level or through a different mechanism.

 EDHOC adds an explicit message type and expands the message
 authentication coverage to additional elements such as algorithms,
 application data, and previous messages. EDHOC uses the same Sign-
 then-MAC approach as TLS 1.3.

 EDHOC does not include negotiation of parameters related to the
 ephemeral key, but it enables Party V to verify that the ECDH curve
 used in the protocol is the most preferred curve by U which is
 supported by both U and V.

 Party U and V must make sure that unprotected data and metadata do
 not reveal any sensitive information. This also applies for
 encrypted data sent to an unauthenticated party. In particular, it
 applies to APP_1 and APP_2 in the asymmetric case, and APP_1 and KID
 in the symmetric case. The communicating parties may therefore
 anonymize KID.

 Using the same KID or unprotected application data in several EDHOC
 sessions allows passive eavesdroppers to correlate the different
 sessions. Another consideration is that the list of supported
 algorithms may be used to identify the application.

 Party U and V must make sure that unprotected data does not trigger
 any harmful actions. In particular, this applies to APP_1 in the
 asymmetric case, and APP_1 and KID in the symmetric case. Party V
 should be aware that replays of EDHOC message_1 cannot be detected
 unless previous nonces are stored.

 The availability of a secure pseudorandom number generator and truly
 random seeds are essential for the security of EDHOC. If no true
 random number generator is available, a truly random seed must be
 provided from an external source. If ECDSA is supported,
 "deterministic ECDSA" as specified in RFC6979 is RECOMMENDED.

 Nonces MUST NOT be reused, both parties MUST generate fresh random
 nonces.

 Ephemeral keys SHOULD NOT be reused, both parties SHOULD generate
 fresh random ephemeral key pairs. Party V MAY reuse the ephemeral
 key to limit the effect of certain DoS attacks. For example, to
 reduce processing costs in the case of repeated uncompleted protocol
 runs, party V MAY pre-compute its ephemeral key E_V and reuse it for
 a small number of concurrent EDHOC executions, for example until a
 number of EDHOC protocol instances has been successfully completed,

https://datatracker.ietf.org/doc/html/rfc6979

Selander, et al. Expires October 27, 2017 [Page 23]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) April 2017

 which triggers party V to pre-compute a new ephemeral key E_V to use
 with subsequent protocol runs.

 The referenced processing instructions in [SP-800-56a] must be
 complied with, including deleting the intermediate computed values
 along with any ephemeral ECDH secrets after the key derivation is
 completed.

 Party U and V are responsible for verifying the integrity of
 certificates. The selection of trusted CAs should be done very
 carefully and certificate revocation should be supported.

 The choice of key length used in the different algorithms needs to be
 harmonized, so that a sufficient security level is maintained for
 certificates, EDHOC, and the protection of application data. Party U
 and V should enforce a minimum security level.

 Note that, depending on the application, the keys established through
 the EDHOC protocol will need to be renewed, in which case the
 communicating parties need to run the protocol again.

 Implementations should provide countermeasures to side-channel
 attacks such as timing attacks.

9. Acknowledgments

 The authors want to thank Jim Schaad for reviewing intermediate
 versions and for contributing many concrete proposals incorporated in
 this version. We are also greatful to Ilari Liusvaara and Ludwig
 Seitz for reviewing previous versions of the draft.

 TODO: This section should be after Appendixes and before Author's
 address according to RFC7322.

10. References

10.1. Normative References

 [I-D.ietf-cose-msg]
 Schaad, J., "CBOR Object Signing and Encryption (COSE)",

draft-ietf-cose-msg-24 (work in progress), November 2016.

 [I-D.schaad-cose-x509]
 Schaad, J., "CBOR Encoded Message Syntax (COSE): Headers
 for carrying and referencing X.509 certificates", draft-

schaad-cose-x509-00 (work in progress), November 2016.

https://datatracker.ietf.org/doc/html/rfc7322
https://datatracker.ietf.org/doc/html/draft-ietf-cose-msg-24
https://datatracker.ietf.org/doc/html/draft-schaad-cose-x509-00
https://datatracker.ietf.org/doc/html/draft-schaad-cose-x509-00

Selander, et al. Expires October 27, 2017 [Page 24]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) April 2017

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC7049] Bormann, C. and P. Hoffman, "Concise Binary Object
 Representation (CBOR)", RFC 7049, DOI 10.17487/RFC7049,
 October 2013, <http://www.rfc-editor.org/info/rfc7049>.

 [SIGMA] Krawczyk, H., "SIGMA - The 'SIGn-and-MAc' Approach to
 Authenticated Diffie-Hellman and Its Use in the IKE-
 Protocols (Long version)", June 2003,
 <http://webee.technion.ac.il/~hugo/sigma-pdf.pdf>.

 [SP-800-56a]
 Barker, E., Chen, L., Roginsky, A., and M. Smid,
 "Recommendation for Pair-Wise Key Establishment Schemes
 Using Discrete Logarithm Cryptography", NIST Special
 Publication 800-56A Revision 2, May 2013,
 <http://dx.doi.org/10.6028/NIST.SP.800-56Ar2>.

10.2. Informative References

 [I-D.greevenbosch-appsawg-cbor-cddl]
 Birkholz, H., Vigano, C., and C. Bormann, "CBOR data
 definition language (CDDL): a notational convention to
 express CBOR data structures", draft-greevenbosch-appsawg-

cbor-cddl-10 (work in progress), March 2017.

 [I-D.hartke-core-e2e-security-reqs]
 Selander, G., Palombini, F., and K. Hartke, "Requirements
 for CoAP End-To-End Security", draft-hartke-core-e2e-

security-reqs-02 (work in progress), January 2017.

 [I-D.ietf-ace-oauth-authz]
 Seitz, L., Selander, G., Wahlstroem, E., Erdtman, S., and
 H. Tschofenig, "Authentication and Authorization for
 Constrained Environments (ACE)", draft-ietf-ace-oauth-

authz-06 (work in progress), March 2017.

 [I-D.ietf-core-object-security]
 Selander, G., Mattsson, J., Palombini, F., and L. Seitz,
 "Object Security of CoAP (OSCOAP)", draft-ietf-core-

object-security-02 (work in progress), March 2017.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc7049
http://www.rfc-editor.org/info/rfc7049
http://webee.technion.ac.il/~hugo/sigma-pdf.pdf
http://dx.doi.org/10.6028/NIST.SP.800-56Ar2
https://datatracker.ietf.org/doc/html/draft-greevenbosch-appsawg-cbor-cddl-10
https://datatracker.ietf.org/doc/html/draft-greevenbosch-appsawg-cbor-cddl-10
https://datatracker.ietf.org/doc/html/draft-hartke-core-e2e-security-reqs-02
https://datatracker.ietf.org/doc/html/draft-hartke-core-e2e-security-reqs-02
https://datatracker.ietf.org/doc/html/draft-ietf-ace-oauth-authz-06
https://datatracker.ietf.org/doc/html/draft-ietf-ace-oauth-authz-06
https://datatracker.ietf.org/doc/html/draft-ietf-core-object-security-02
https://datatracker.ietf.org/doc/html/draft-ietf-core-object-security-02

Selander, et al. Expires October 27, 2017 [Page 25]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) April 2017

 [I-D.ietf-core-resource-directory]
 Shelby, Z., Koster, M., Bormann, C., and P. Stok, "CoRE
 Resource Directory", draft-ietf-core-resource-directory-10
 (work in progress), March 2017.

 [I-D.seitz-ace-oscoap-profile]
 Seitz, L. and F. Palombini, "OSCOAP profile of ACE",

draft-seitz-ace-oscoap-profile-01 (work in progress),
 October 2016.

 [RFC5869] Krawczyk, H. and P. Eronen, "HMAC-based Extract-and-Expand
 Key Derivation Function (HKDF)", RFC 5869,
 DOI 10.17487/RFC5869, May 2010,
 <http://www.rfc-editor.org/info/rfc5869>.

 [RFC7228] Bormann, C., Ersue, M., and A. Keranen, "Terminology for
 Constrained-Node Networks", RFC 7228,
 DOI 10.17487/RFC7228, May 2014,
 <http://www.rfc-editor.org/info/rfc7228>.

 [RFC7252] Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
 Application Protocol (CoAP)", RFC 7252,
 DOI 10.17487/RFC7252, June 2014,
 <http://www.rfc-editor.org/info/rfc7252>.

Appendix A. Test Vectors

 TODO: This section needs to be updated.

Appendix B. PSK Chaining

 An application using EDHOC with symmetric keys may have a security
 policy to change the PSK as a result of successfully completing the
 EDHOC protocol. In this case, the old PSK SHALL be replaced with a
 new PSK derived using other = exchange_hash, AlgorithmID = "EDHOC PSK
 Chaining" and keyDataLength equal to the key length of AEAD_V, see

Section 3.2.

Appendix C. EDHOC with CoAP and OSCOAP

C.1. Transferring EDHOC in CoAP

 EDHOC can be transferred as an exchange of CoAP [RFC7252] messages,
 with the CoAP client as party U and the CoAP server as party V. By
 default EDHOC is sent to the Uri-Path: "/.well-known/edhoc", but an
 application may define its own path that can be discorvered e.g.
 using resource directory [I-D.ietf-core-resource-directory].

https://datatracker.ietf.org/doc/html/draft-ietf-core-resource-directory-10
https://datatracker.ietf.org/doc/html/draft-seitz-ace-oscoap-profile-01
https://datatracker.ietf.org/doc/html/rfc5869
http://www.rfc-editor.org/info/rfc5869
https://datatracker.ietf.org/doc/html/rfc7228
http://www.rfc-editor.org/info/rfc7228
https://datatracker.ietf.org/doc/html/rfc7252
http://www.rfc-editor.org/info/rfc7252
https://datatracker.ietf.org/doc/html/rfc7252

Selander, et al. Expires October 27, 2017 [Page 26]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) April 2017

 In practice, EDHOC message_1 is sent in the payload of a POST request
 from the client to the server's resource for EDHOC. EDHOC message_2
 or the EDHOC error message is sent from the server to the client in
 the payload of a 2.04 Changed response. EDHOC message_3 or the EDHOC
 error message is sent from the client to the server's resource in the
 payload of a POST request. If needed, an EDHOC error message is sent
 from the server to the client in the payload of a 2.04 Changed
 response

 An example of successful EDHOC exchange using CoAP is shown in
 Figure 5.

 Client Server
 | |
 +--------->| Header: POST (Code=0.02)
 | POST | Uri-Path: "/.well-known/edhoc"
 | | Content-Type: application/edhoc
 | | Payload: EDHOC message_1
 | |
 |<---------+ Header: 2.04 Changed
 | 2.04 | Content-Type: application/edhoc
 | | Payload: EDHOC message_2
 | |
 +--------->| Header: POST (Code=0.02)
 | POST | Uri-Path: "/.well-known/edhoc"
 | | Content-Type: application/edhoc
 | | Payload: EDHOC message_3
 | |
 |<---------+ Header: 2.04 Changed
 | 2.04 |
 | |

 Figure 5: Transferring EDHOC in CoAP

C.2. Deriving an OSCOAP context from EDHOC

 When EDHOC is use to derive parameters for OSCOAP
 [I-D.ietf-core-object-security], the parties must make sure that the
 EDHOC session identifiers are unique Recipient IDs in OSCOAP. In
 case that the CoAP client is party U and the CoAP server is party V:

 o The AEAD Algorithm is AEAD_V, as defined in this document

 o The KDF algorithm is HKDF_V, as defined in this document

 o The Client's Sender ID is S_V, as defined in this document

 o The Server's Sender ID is S_U, as defined in this document

Selander, et al. Expires October 27, 2017 [Page 27]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) April 2017

 o The Master Secret is derived as specified in Section 3.2 of this
 document, with other = exchange_hash, AlgorithmID = "EDHOC OSCOAP
 Master Secret" and keyDataLength equal to the key length of
 AEAD_V.

 o The Master Salt is derived as specified in Section 3.2 of this
 document, with other = exchange_hash, AlgorithmID = "EDHOC OSCOAP
 Master Salt" and keyDataLength equal to 64 bits.

Authors' Addresses

 Goeran Selander
 Ericsson AB
 Faeroegatan 6
 Kista SE-164 80 Stockholm
 Sweden

 Email: goran.selander@ericsson.com

 John Mattsson
 Ericsson AB
 Faeroegatan 6
 Kista SE-164 80 Stockholm
 Sweden

 Email: john.mattsson@ericsson.com

 Francesca Palombini
 Ericsson AB
 Faeroegatan 6
 Kista SE-164 80 Stockholm
 Sweden

 Email: francesca.palombini@ericsson.com

Selander, et al. Expires October 27, 2017 [Page 28]

