
ACE Working Group G. Selander
Internet-Draft J. Mattsson
Intended status: Standards Track F. Palombini
Expires: March 22, 2019 Ericsson AB
 September 18, 2018

Ephemeral Diffie-Hellman Over COSE (EDHOC)
draft-selander-ace-cose-ecdhe-10

Abstract

 This document specifies Ephemeral Diffie-Hellman Over COSE (EDHOC), a
 very compact, and lightweight authenticated Diffie-Hellman key
 exchange with ephemeral keys that can be used over any layer. EDHOC
 provides mutual authentication, perfect forward secrecy, and identity
 protection. EDHOC uses CBOR and COSE, allowing reuse of existing
 libraries.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on March 22, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Selander, et al. Expires March 22, 2019 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) September 2018

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
1.1. Terminology and Requirements Language 4

2. Background . 4
3. EDHOC Overview . 6
3.1. Ephemeral Public Keys 7
3.2. Key Derivation . 8

4. EDHOC Authenticated with Asymmetric Keys 9
4.1. Overview . 9
4.2. EDHOC Message 1 . 11
4.3. EDHOC Message 2 . 13
4.4. EDHOC Message 3 . 17

5. EDHOC Authenticated with Symmetric Keys 19
5.1. Overview . 19
5.2. EDHOC Message 1 . 20
5.3. EDHOC Message 2 . 22
5.4. EDHOC Message 3 . 24

6. Error Handling . 26
6.1. EDHOC Error Message 26

7. IANA Considerations . 27
7.1. The Well-Known URI Registry 27
7.2. Media Types Registry 27
7.3. CoAP Content-Formats Registry 28

8. Security Considerations 28
8.1. Security Properties 28
8.2. Cryptographic Considerations 29
8.3. Unprotected Data . 29
8.4. Denial-of-Service . 30
8.5. Implementation Considerations 30
8.6. Other Documents Referencing EDHOC 31

9. References . 31
9.1. Normative References 31
9.2. Informative References 32
9.3. URIs . 34

Appendix A. Use of CBOR, CDDL and COSE in EDHOC 34
A.1. CBOR and CDDL . 34
A.2. COSE . 36

Appendix B. Test Vectors . 38
Appendix C. EDHOC PSK Chaining 38
Appendix D. EDHOC with CoAP and OSCORE 38
D.1. Transferring EDHOC in CoAP 38
D.2. Deriving an OSCORE context from EDHOC 39

Appendix E. Message Sizes 40
E.1. Message Sizes RPK . 40

Selander, et al. Expires March 22, 2019 [Page 2]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) September 2018

E.2. Message Sizes Certificates 42
E.3. Message Sizes PSK . 42
E.4. Summary . 43

 Acknowledgments . 43
 Authors' Addresses . 44

1. Introduction

 Security at the application layer provides an attractive option for
 protecting Internet of Things (IoT) deployments, for example where
 transport layer security is not sufficient
 [I-D.hartke-core-e2e-security-reqs] or where the protocol needs to
 work on a variety of underlying protocols. IoT devices may be
 constrained in various ways, including memory, storage, processing
 capacity, and energy [RFC7228]. A method for protecting individual
 messages at the application layer suitable for constrained devices,
 is provided by CBOR Object Signing and Encryption (COSE) [RFC8152]),
 which builds on the Concise Binary Object Representation (CBOR)
 [I-D.ietf-cbor-7049bis].

 In order for a communication session to provide forward secrecy, the
 communicating parties can run an Elliptic Curve Diffie-Hellman (ECDH)
 key exchange protocol with ephemeral keys, from which shared key
 material can be derived. This document specifies Ephemeral Diffie-
 Hellman Over COSE (EDHOC), a mutually authenticated key exchange
 protocol providing perfect forward secrecy and identity protection.
 EDHOC uses CBOR and COSE, allowing reuse of existing libraries.
 Authentication is based on credentials established out of band, e.g.
 from a trusted third party, such as an Authorization Server as
 specified by [I-D.ietf-ace-oauth-authz]. EDHOC supports
 authentication using pre-shared keys (PSK), raw public keys (RPK),
 and public key certificates. After successful completion of the
 EDHOC protocol, application keys and other application specific data
 can be derived using the EDHOC-Exporter interface. Note that this
 document focuses on authentication and key establishment: for
 integration with authorization of resource access, refer to
 [I-D.ietf-ace-oscore-profile].

 EDHOC is designed to work in highly constrained scenarios making it
 especially suitable for network technologies such as Cellular IoT,
 6TiSCH [I-D.ietf-6tisch-dtsecurity-zerotouch-join], and LoRaWAN
 [LoRa1][LoRa2]. Compared to the TLS 1.3 handshake with ECDH
 [RFC8446], the number of bytes in EDHOC is less than 1/3 when PSK
 authentication is used and less than 1/2 when RPK authentication is
 used, see Appendix E.

 The ECDH exchange and the key derivation follow [SIGMA], NIST SP-
 800-56A [SP-800-56A], and HKDF [RFC5869]. CBOR

https://datatracker.ietf.org/doc/html/rfc7228
https://datatracker.ietf.org/doc/html/rfc8152
https://datatracker.ietf.org/doc/html/rfc8446
https://datatracker.ietf.org/doc/html/rfc5869

Selander, et al. Expires March 22, 2019 [Page 3]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) September 2018

 [I-D.ietf-cbor-7049bis] and COSE [RFC8152] are used to implement
 these standards.

 This paper is organized as follows: Section 2 describes how EDHOC
 builds on SIGMA-I, Section 3 specifies general properties of EDHOC,
 including message flow, formatting of the ephemeral public keys, and
 key derivation, Section 4 specifies EDHOC with asymmetric key
 authentication, Section 5 specifies EDHOC with symmetric key
 authentication, Section 6 specifies the EDHOC error message, and

Appendix B provides a wealth of test vectors to ease implementation
 and ensure interoperability.

1.1. Terminology and Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP

14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 The word "encryption" without qualification always refers to
 authenticated encryption, in practice implemented with an
 Authenticated Encryption with Additional Data (AEAD) algorithm, see
 [RFC5116].

 This document uses the Concise Data Definition Language (CDDL)
 [I-D.ietf-cbor-cddl] to express CBOR data structures
 [I-D.ietf-cbor-7049bis]. The use of the CDDL unwrap operator "~" is
 extended to unwrapping of byte strings. It is the inverse of "bstr
 .cbor" that wraps a data item in a bstr, i.e. ~ bstr .cbor T = T.
 Examples of CBOR and CDDL are provided in Appendix A.1.

2. Background

 SIGMA (SIGn-and-MAc) is a family of theoretical protocols with a
 large number of variants [SIGMA]. Like IKEv2 and TLS 1.3, EDHOC is
 built on a variant of the SIGMA protocol which provide identity
 protection of the initiator (SIGMA-I), and like TLS 1.3, EDHOC
 implements the SIGMA-I variant as Sign-then-MAC. The SIGMA-I
 protocol using an authenticated encryption algorithm is shown in
 Figure 1.

https://datatracker.ietf.org/doc/html/rfc8152
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174
https://datatracker.ietf.org/doc/html/rfc5116

Selander, et al. Expires March 22, 2019 [Page 4]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) September 2018

 Party U Party V
 | X_U |
 +-->|
 | |
 | X_V, AE(K_2; ID_CRED_V, Sig(V; CRED_V, X_U, X_V)) |
 |<--+
 | |
 | AE(K_3; ID_CRED_U, Sig(U; CRED_U, X_V, X_U)) |
 +-->|
 | |

 Figure 1: Authenticated encryption variant of the SIGMA-I protocol.

 The parties exchanging messages are called "U" and "V". They
 exchange identities and ephemeral public keys, compute the shared
 secret, and derive symmetric application keys.

 o X_U and X_V are the ECDH ephemeral public keys of U and V,
 respectively.

 o CRED_U and CRED_V are the credentials containing the public
 authentication keys of U and V, respectively.

 o ID_CRED_U and ID_CRED_V are data enabling the recipient party to
 retrieve the credential of U and V, respectively

 o Sig(U; .) and S(V; .) denote signatures made with the private
 authentication key of U and V, respectively.

 o AE(K; P) denotes authenticated encryption of plaintext P using the
 key K derived from the shared secret. The authenticated
 encryption MUST NOT be replaced by plain encryption, see

Section 8.

 In order to create a "full-fledged" protocol some additional protocol
 elements are needed. EDHOC adds:

 o Explicit connection identifiers C_U, C_V chosen by U and V,
 respectively, enabling the recipient to find the protocol state.

 o An Authenticated Encryption with Additional Data (AEAD) algorithm
 is used.

 o Computationally independent keys derived from the ECDH shared
 secret and used for encryption of different messages.

 o Negotiation of key derivation, encryption, and signature
 algorithms:

Selander, et al. Expires March 22, 2019 [Page 5]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) September 2018

 * U proposes one or more algorithms of the following kinds in
 order of preference:

 + HKDF

 + AEAD

 + Signature verification

 + Signature generation

 * V selects the first supported algorithm of each kind

 o Verification of common preferred ECDH curve:

 * U lists supported ECDH curves in order of preference

 * V verifies that the ECDH curve of the ephemeral key is the
 first supported curve

 o Transport of opaque application defined data.

 EDHOC is designed to encrypt and integrity protect as much
 information as possible, and all symmetric keys are derived using as
 much previous information as possible. EDHOC is furthermore designed
 to be as compact and lightweight as possible, in terms of message
 sizes, processing, and the ability to reuse already existing CBOR and
 COSE libraries. EDHOC does not put any requirement on the lower
 layers and can therefore also be used e.g. in environments without
 IP.

 To simplify implementation, the use of CBOR and COSE in EDHOC is
 summarized in Appendix A.

3. EDHOC Overview

 EDHOC consists of three messages (message_1, message_2, message_3)
 that maps directly to the three messages in SIGMA-I, plus an EDHOC
 error message. All EDHOC messages consists of a sequence of CBOR
 encoded data items, where the first data item is an int specifying
 the message type (MSG_TYPE). The messages may be viewed as a CBOR
 encoding of an indefinite-length array without the first and last
 byte, see Appendix A.1.

 While EDHOC uses the COSE_Key, COSE_Sign1, and COSE_Encrypt0
 structures, only a subset of the parameters are included in the EDHOC
 messages. After creating EDHOC message_3, Party U can derive
 symmetric application keys, and application protected data can

Selander, et al. Expires March 22, 2019 [Page 6]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) September 2018

 therefore be sent in parallel with EDHOC message_3. The application
 may protect data using the negotiated algorithms (AEAD, HKDF, etc.)
 and the connection identifiers (C_U, C_V). EDHOC may be used with
 the media type application/edhoc defined in Section 7.

 Party U Party V
 | |
 | ------------------ EDHOC message_1 -----------------> |
 | |
 | <----------------- EDHOC message_2 ------------------ |
 | |
 | ------------------ EDHOC message_3 -----------------> |
 | |
 | <----------- Application Protected Data ------------> |
 | |

 Figure 2: EDHOC message flow

 The EDHOC message exchange may be authenticated using pre-shared keys
 (PSK), raw public keys (RPK), or public key certificates. EDHOC
 assumes the existence of mechanisms (certification authority, manual
 distribution, etc.) for binding identities with authentication keys
 (public or pre-shared). When a public key infrastructure is used,
 the identity is included in the certificate and bound to the
 authentication key by trust in the certification authority. When the
 credential is manually distributed (PSK, RPK, self-signed
 certificate), the identity and authentication key is distributed out-
 of-band and bound together by trust in the distribution method.
 EDHOC with symmetric key authentication is very similar to EDHOC with
 asymmetric key authentication, the difference being that information
 is only MACed, not signed.

 EDHOC allows opaque application data (UAD and PAD) to be sent in the
 EDHOC messages. Unprotected Application Data (UAD_1, UAD_2) may be
 sent in message_1 and message_2, while Protected Application Data
 (PAD_3) may be send in message_3.

3.1. Ephemeral Public Keys

 The ECDH ephemeral public keys are formatted as a COSE_Key of type
 EC2 or OKP according to Sections 13.1 and 13.2 of [RFC8152], but only
 a subset of the parameters are included in the EDHOC messages. The
 curve X25519 is mandatory to implement. For Elliptic Curve Keys of
 type EC2, compact representation as per [RFC6090] MAY be used also in
 the COSE_Key. If the COSE implementation requires an y-coordinate,
 any of the possible values of the y-coordinate can be used, see

Appendix C of [RFC6090]. COSE [RFC8152] always use compact output
 for Elliptic Curve Keys of type EC2.

https://datatracker.ietf.org/doc/html/rfc8152
https://datatracker.ietf.org/doc/html/rfc6090
https://datatracker.ietf.org/doc/html/rfc6090#appendix-C
https://datatracker.ietf.org/doc/html/rfc8152

Selander, et al. Expires March 22, 2019 [Page 7]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) September 2018

3.2. Key Derivation

 Key and IV derivation SHALL be performed as specified in Section 11
 of [RFC8152] with the following input:

 o The KDF SHALL be the HKDF [RFC5869] in the ECDH-SS w/ HKDF
 negotiated during the message exchange (HKDF_V).

 o The secret (Section 11.1 of [RFC8152]) SHALL be the ECDH shared
 secret as defined in Section 12.4.1 of [RFC8152].

 o The salt (Section 11.1 of [RFC8152]) SHALL be the PSK when EDHOC
 is authenticated with symmetric keys, and the empty byte string
 when EDHOC is authenticated with asymmetric keys. Note that
 [RFC5869] specifies that if the salt is not provided, it is set to
 a string of zeros (see Section 2.2 of [RFC5869]). For
 implementation purposes, not providing the salt is the same as
 setting the salt to the empty byte string.

 o The fields in the context information COSE_KDF_Context
 (Section 11.2 of [RFC8152]) SHALL have the following values:

 * AlgorithmID is an int or tstr, see below

 * PartyUInfo = PartyVInfo = (null, null, null)

 * keyDataLength is a uint, see below

 * protected SHALL be a zero length bstr

 * other is a bstr and SHALL be aad_2, aad_3, or exchange_hash;
 see below

 * SuppPrivInfo is omitted

 where exchange_hash, in non-CDDL notation, is:

 exchange_hash = H(bstr .cborseq [aad_3, CIPHERTEXT_3])

 where H() is the hash function in HKDF_V, which takes a CBOR byte
 string (bstr) as input and produces a CBOR byte string as output.
 The use of '.cborseq' is exemplified in Appendix A.1.

 We define EDHOC-Key-Derivation to be the function which produces the
 output as described in [RFC5869] and [RFC8152] depending on the
 variable input AlgorithmID, keyDataLength, and other:

 output = EDHOC-Key-Derivation(AlgorithmID, keyDataLength, other)

https://datatracker.ietf.org/doc/html/rfc8152#section-11
https://datatracker.ietf.org/doc/html/rfc8152#section-11
https://datatracker.ietf.org/doc/html/rfc5869
https://datatracker.ietf.org/doc/html/rfc8152#section-11.1
https://datatracker.ietf.org/doc/html/rfc8152#section-12.4.1
https://datatracker.ietf.org/doc/html/rfc8152#section-11.1
https://datatracker.ietf.org/doc/html/rfc5869
https://datatracker.ietf.org/doc/html/rfc5869#section-2.2
https://datatracker.ietf.org/doc/html/rfc8152#section-11.2
https://datatracker.ietf.org/doc/html/rfc5869
https://datatracker.ietf.org/doc/html/rfc8152

Selander, et al. Expires March 22, 2019 [Page 8]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) September 2018

 For message_i the key, called K_i, SHALL be derived using other =
 aad_i, where i = 2 or 3. The key SHALL be derived using AlgorithmID
 set to the integer value of the negotiated AEAD (AEAD_V), and
 keyDataLength equal to the key length of AEAD_V.

 If the AEAD algorithm uses an IV, then IV_i for message_i SHALL be
 derived using other = aad_i, where i = 2 or 3. The IV SHALL be
 derived using AlgorithmID = "IV-GENERATION" as specified in

Section 12.1.2. of [RFC8152], and keyDataLength equal to the IV
 length of AEAD_V.

3.2.1. EDHOC-Exporter Interface

 Application keys and other application specific data can be derived
 using the EDHOC-Exporter interface defined as:

 EDHOC-Exporter(label, length) = EDHOC-Key-Derivation(label, 8 *
 length, exchange_hash)

 The output of the EDHOC-Exporter function SHALL be derived using
 other = exchange_hash, AlgorithmID = label, and keyDataLength = 8 *
 length, where label is a tstr defined by the application and length
 is a uint defined by the application. The label SHALL be different
 for each different exporter value. An example use of the EDHOC-
 Exporter is given in Appendix D.2).

4. EDHOC Authenticated with Asymmetric Keys

4.1. Overview

 EDHOC supports authentication with raw public keys (RPK) and public
 key certificates with the requirements that:

 o Party U SHALL be able to retrieve Party V's public authentication
 key using ID_CRED_V,

 o Party V SHALL be able to retrieve Party U's public authentication
 key using ID_CRED_U,

 where ID_CRED_x, for x = U or V, is encoded in a COSE map, see
Appendix A.2. In the following we give some examples of possible

 COSE map labels.

 Raw public keys are most optimally stored as COSE_Key objects and
 identified with a 'kid' value (see [RFC8152]):

 o kid : ID_CRED_x, for x = U or V.

https://datatracker.ietf.org/doc/html/rfc8152#section-12.1.2
https://datatracker.ietf.org/doc/html/rfc8152

Selander, et al. Expires March 22, 2019 [Page 9]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) September 2018

 Public key certificates can be identified in different ways, for
 example (see [I-D.schaad-cose-x509]):

 o by a hash value;

 * x5t : ID_CRED_x, for x = U or V,

 o by a URL;

 * x5u : ID_CRED_x, for x = U or V,

 o by a certificate chain;

 * x5chain : ID_CRED_x, for x = U or V,

 o or by a bag of certificates.

 * x5bag : ID_CRED_x, for x = U or V.

 In the latter two examples, ID_CRED_U and ID_CRED_V contains the
 actual credential used for authentication. ID_CRED_U and ID_CRED_V
 do not need to uniquely identify the public authentication key, but
 doing so is recommended as the recipient may otherwise have to try
 several public keys. ID_CRED_U and ID_CRED_V are transported in the
 ciphertext, see Section 4.3.2 and Section 4.4.2.

 The actual credentials CRED_U and CRED_V (e.g. a COSE_Key or a single
 X.509 certificate) are signed by party U and V, respectively, see

Section 4.4.1 and Section 4.3.1. Party U and Party V MAY use
 different type of credentials, e.g. one uses RPK and the other uses
 certificate. Party U and Party V MAY use different signature
 algorithms.

 EDHOC with asymmetric key authentication is illustrated in Figure 3.

Selander, et al. Expires March 22, 2019 [Page 10]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) September 2018

Party U Party V
| C_U, X_U, ALG_1, UAD_1 |
+--->|
| message_1 |
| |
|C_U, C_V, X_V, ALG_2, AE(K_2; ID_CRED_V, Sig(V; CRED_V, aad_2), UAD_2)|
|<---+
| message_2 |
| |
| S_V, AE(K_3; ID_CRED_U, Sig(U; CRED_U, aad_3), PAD_3) |
+--->|
| message_3 |

 Figure 3: EDHOC with asymmetric key authentication.

4.1.1. Mandatory to Implement Algorithms

 For EDHOC authenticated with asymmetric keys, the COSE algorithms
 ECDH-SS + HKDF-256, AES-CCM-64-64-128, and Ed25519 are mandatory to
 implement.

4.2. EDHOC Message 1

4.2.1. Formatting of Message 1

 message_1 SHALL be a sequence of CBOR data items (see Appendix A.1)
 as defined below

 message_1 = (
 MSG_TYPE : int,
 C_U : bstr,
 ECDH-Curves_U : algs,
 ECDH-Curve_U : uint,
 X_U : bstr,
 HKDFs_U : algs,
 AEADs_U : algs,
 SIGs_V : algs,
 SIGs_U : algs,
 ? UAD_1 : bstr
)

 alg : int / tstr

 algs = alg / [2* alg]

 where:

 o MSG_TYPE = 1

Selander, et al. Expires March 22, 2019 [Page 11]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) September 2018

 o C_U - variable length connection identifier

 o ECDH-Curves_U - EC curves for ECDH which Party U supports, in
 order of decreasing preference. If a single algorithm is
 conveyed, it is placed in an int or text string, if multiple
 algorithms are conveyed, an array is used.

 o ECDH-Curve_U - a single chosen algorithm from ECDH-Curves_U (zero-
 based index, i.e. 0 for the first or only, 1 for the second, etc.)

 o X_U - the x-coordinate of the ephemeral public key of Party U

 o HKDFs_U - supported ECDH-SS w/ HKDF algorithms, in order of
 decreasing preference

 o AEADs_U - supported AEAD algorithms, in order of decreasing
 preference

 o SIGs_V - signature algorithms, with which Party U supports
 verification, in order of decreasing preference.

 o SIGs_U - signature algorithms, with which Party U supports
 signing, in order of decreasing preference.

 o UAD_1 - bstr containing unprotected opaque application data

4.2.2. Party U Processing of Message 1

 Party U SHALL compose message_1 as follows:

 o The supported algorithms and the order of preference MUST NOT be
 changed based on previous error messages. However, the lists sent
 to Party V (ECDH-Curves_U, HKDFs_U, AEADs_U, SIGs_V, SIGs_U) MAY
 be truncated such that curves/algorithms which are the least
 preferred are omitted. The amount of truncation MAY be changed
 between sessions, e.g. based on previous error messages (see next
 bullet), but all curves/algorithms which are more preferred than
 the least preferred curve in the list MUST be included in the
 list.

 o Determine the curve ECDH-Curve_U to use with Party V in message_1.
 If Party U previously received from Party V an error message to
 message_1 with diagnostic payload identifying an ECDH curve that U
 supports, then U SHALL use that curve (which implies that
 ECDH_Curves_U in message_1 SHALL include that curve). Otherwise
 the first curve in ECDH-Curves_U MUST be used.

Selander, et al. Expires March 22, 2019 [Page 12]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) September 2018

 o Generate an ephemeral ECDH key pair as specified in Section 5 of
 [SP-800-56A] using the curve indicated by ECDH-Curve_U. Let X_U
 be the x-coordinate of the ephemeral public key.

 o Choose a connection identifier C_U and store it for the length of
 the protocol. Party U MUST be able to retrieve the protocol state
 using the connection identifier C_U and optionally other
 information such as the 5-tuple. The connection identifier MAY be
 used with protocols for which EDHOC establishes application keys,
 in which case C_U SHALL be different from the concurrently used
 identifiers of that protocol.

 o Format message_1 as the sequence of CBOR data items specified in
Section 4.2.1 and encode it to a byte string (see Appendix A.1).

4.2.3. Party V Processing of Message 1

 Party V SHALL process message_1 as follows:

 o Decode message_1 (see Appendix A.1).

 o Verify that at least one of each kind of the proposed algorithms
 are supported.

 o Verify that the ECDH curve indicated by ECDH-Curve_U is supported,
 and that no prior curve in ECDH-Curves_U is supported.

 o Validate that there is a solution to the curve definition for the
 given x-coordinate X_U.

 o Pass UAD_1 to the application.

 If any verification step fails, Party V MUST send an EDHOC error
 message back, formatted as defined in Section 6, and the protocol
 MUST be discontinued. If V does not support the curve ECDH-Curve_U,
 but supports another ECDH curves in ECDH-Curves_U, then ALGs_V MUST
 include the first supported ECDH curve in ECDH-Curves_U. If V does
 not support any of the algorithms of one kind (ECDH-Curves_U,
 HKDFs_U, AEADs_U, SIGs_V, or SIGs_U), then ALGs_V MUST include one or
 more supported algorithms of that kind.

4.3. EDHOC Message 2

4.3.1. Formatting of Message 2

 message_2 SHALL be a sequence of CBOR data items (see Appendix A.1)
 as defined below

Selander, et al. Expires March 22, 2019 [Page 13]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) September 2018

 message_2 = (
 data_2,
 CIPHERTEXT_2 : bstr
)

 data_2 = (
 MSG_TYPE : int,
 C_U : bstr / nil,
 C_V : bstr,
 X_V : bstr,
 HKDF_V : uint,
 AEAD_V : uint,
 SIG_V : uint,
 SIG_U : uint
)

 aad_2 : bstr

 where aad_2, in non-CDDL notation, is:

 aad_2 = H(bstr .cborseq [message_1, data_2])

 where:

 o MSG_TYPE = 2

 o C_V - variable length connection identifier

 o X_V - the x-coordinate of the ephemeral public key of Party V

 o HKDF_V - the first supported algorithm from HKDFs_U

 o AEAD_V - the first supported algorithm from AEADs_U

 o SIG_V - the first supported algorithm from SIGs_V with which Party
 V signs

 o SIG_U - the first supported algorithm from SIGs_U with which Party
 U signs

 o H() - the hash function in HKDF_V, which takes a CBOR byte string
 (bstr) as input and produces a CBOR byte string as output. The
 use of '.cborseq' is exemplified in Appendix A.1.

Selander, et al. Expires March 22, 2019 [Page 14]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) September 2018

4.3.2. Party V Processing of Message 2

 Party V SHALL compose message_2 as follows:

 o Generate an ephemeral ECDH key pair as specified in Section 5 of
 [SP-800-56A] using the curve indicated by ECDH-Curve_U. Let X_V
 be the x-coordinate of the ephemeral public key.

 o Choose a connection identifier C_V and store it for the length of
 the protocol. Party V MUST be able to retrieve the protocol state
 using the connection identifier C_V and optionally other
 information such as the 5-tuple. The connection identifier MAY be
 used with protocols for which EDHOC establishes application keys,
 in which case C_V SHALL be different from the concurrently used
 identifiers of that protocol. To reduce message overhead, party V
 can set the message field C_U in message_2 to null (still storing
 the actual value of C_U) if there is an external correlation
 mechanism (e.g. the Token in CoAP) that enables Party U to
 correlate message_1 and message_2.

 o Select HKDF_V, AEAD_V, SIG_V, and SIG_U as the first supported
 algorithms in HKDFs_U, AEADs_U, SIGs_V, and SIGs_U.

 o Compute COSE_Sign1 as defined in Section 4.4 of [RFC8152], using
 algorithm SIG_V, the private authentication key of Party V, and
 the following parameters (further clarifications in

Appendix A.2.2). The unprotected header MAY contain parameters
 (e.g. 'alg').

 * protected = bstr .cbor { abc : ID_CRED_V }

 + The use of .cbor is exemplified in Appendix A.1.

 * payload = CRED_V

 * external_aad = aad_2

 * abc - any COSE map label that can identify a public
 authentication key, see Section 4.1

 * ID_CRED_V - bstr enabling the retrieval of the public
 authentication key of Party V, see Section 4.1

 * CRED_V - bstr credential containing the public authentication
 key of Party V, see Section 4.1

 Note that only 'protected' and 'signature' of the COSE_Sign1
 object are used in message_2, see next bullet.

https://datatracker.ietf.org/doc/html/rfc8152#section-4.4

Selander, et al. Expires March 22, 2019 [Page 15]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) September 2018

 o Compute COSE_Encrypt0 as defined in Section 5.3 of [RFC8152], with
 AEAD_V, K_2, IV_2, and the following parameters (further
 clarifications in Appendix A.2.1). The protected header SHALL be
 empty. The unprotected header MAY contain parameters (e.g.
 'alg').

 * plaintext = bstr .cborseq [~protected, signature, ? UAD_2]

 + The use of '.cborseq' and '~' is exemplified in
Appendix A.1.

 * external_aad = aad_2

 * UAD_2 = bstr containing opaque unprotected application data

 Note that protected and signature in the plaintext are taken from
 the COSE_Sign1 object, and that that only 'ciphertext' of the
 COSE_Encrypt0 object are used in message_2, see next bullet.

 o Format message_2 as the sequence of CBOR data items specified in
Section 4.3.1 and encode it to a byte string (see Appendix A.1).

 CIPHERTEXT_2 is the COSE_Encrypt0 ciphertext.

4.3.3. Party U Processing of Message 2

 Party U SHALL process message_2 as follows:

 o Decode message_2 (see Appendix A.1).

 o Retrieve the protocol state using the connection identifier C_U
 and optionally other information such as the 5-tuple.

 o Validate that there is a solution to the curve definition for the
 given x-coordinate X_V.

 o Decrypt and verify COSE_Encrypt0 as defined in Section 5.3 of
 [RFC8152], with AEAD_V, K_2, and IV_2.

 o Verify COSE_Sign1 as defined in Section 4.4 of [RFC8152], using
 algorithm SIG_V and the public authentication key of Party V.

 If any verification step fails, Party U MUST send an EDHOC error
 message back, formatted as defined in Section 6, and the protocol
 MUST be discontinued.

https://datatracker.ietf.org/doc/html/rfc8152#section-5.3
https://datatracker.ietf.org/doc/html/rfc8152#section-5.3
https://datatracker.ietf.org/doc/html/rfc8152#section-5.3
https://datatracker.ietf.org/doc/html/rfc8152#section-4.4

Selander, et al. Expires March 22, 2019 [Page 16]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) September 2018

4.4. EDHOC Message 3

4.4.1. Formatting of Message 3

 message_3 SHALL be a sequence of CBOR data items (see Appendix A.1)
 as defined below

 message_3 = (
 data_3,
 CIPHERTEXT_3 : bstr
)

 data_3 = (
 MSG_TYPE : int,
 C_V : bstr
)

 aad_3 : bstr

 where aad_3, in non-CDDL notation, is:

 aad_3 = H(bstr .cborseq [aad_2, CIPHERTEXT_2, data_3])

 where:

 o MSG_TYPE = 3

 o The use of '.cborseq' is exemplified in Appendix A.1.

4.4.2. Party U Processing of Message 3

 Party U SHALL compose message_3 as follows:

 o Compute COSE_Sign1 as defined in Section 4.4 of [RFC8152], using
 algorithm SIG_U, the private authentication key of Party U, and
 the following parameters (further clarifications in

Appendix A.2.2). The unprotected header MAY contain parameters
 (e.g. 'alg').

 * protected = bstr .cbor { abc : ID_CRED_U }

 + The use of .cbor is exemplified in Appendix A.1.

 * payload = CRED_U

 * external_aad = aad_3

https://datatracker.ietf.org/doc/html/rfc8152#section-4.4

Selander, et al. Expires March 22, 2019 [Page 17]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) September 2018

 * abc - any COSE map label that can identify a public
 authentication key, see Section 4.1

 * ID_CRED_U - bstr enabling the retrieval of the public
 authentication key of Party U, see Section 4.1

 * CRED_U - bstr credential containing the public authentication
 key of Party U, see Section 4.1

 Note that only 'protected' and 'signature' of the COSE_Sign1
 object are used in message_3, see next bullet.

 o Compute COSE_Encrypt0 as defined in Section 5.3 of [RFC8152], with
 AEAD_V, K_3, and IV_3 and the following parameters (further
 clarifications in Appendix A.2.1). The protected header SHALL be
 empty. The unprotected header MAY contain parameters (e.g.
 'alg').

 * plaintext = bstr .cborseq [~protected, signature, ? PAD_3]

 + The use of '.cborseq' and '~' is exemplified in
Appendix A.1.

 * external_aad = aad_2

 * PAD_3 = bstr containing opaque protected application data

 Note that protected and signature in the plaintext are taken from
 the COSE_Sign1 object, and that only 'ciphertext' of the
 COSE_Encrypt0 object are used in message_3, see next bullet.

 o Format message_3 as the sequence of CBOR data items specified in
Section 4.4.1 and encode it to a byte string (see Appendix A.1).

 CIPHERTEXT_3 is the COSE_Encrypt0 ciphertext.

 o Pass the connection identifiers (C_U, C_V) and the negotiated
 algorithms (AEAD, HDKF, etc.) to the application. The application
 can now derive application keys using the EDHOC-Exporter
 interface.

4.4.3. Party V Processing of Message 3

 Party V SHALL process message_3 as follows:

 o Decode message_3 (see Appendix A.1).

 o Retrieve the protocol state using the connection identifier C_V
 and optionally other information such as the 5-tuple.

https://datatracker.ietf.org/doc/html/rfc8152#section-5.3

Selander, et al. Expires March 22, 2019 [Page 18]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) September 2018

 o Decrypt and verify COSE_Encrypt0 as defined in Section 5.3 of
 [RFC8152], with AEAD_V, K_3, and IV_3.

 o Verify COSE_Sign1 as defined in Section 4.4 of [RFC8152], using
 algorithm SIG_U and the public authentication key of Party U.

 If any verification step fails, Party V MUST send an EDHOC error
 message back, formatted as defined in Section 6, and the protocol
 MUST be discontinued.

 o Pass PAD_3, the connection identifiers (C_U, C_V), and the
 negotiated algorithms (AEAD, HDKF, etc.) to the application. The
 application can now derive application keys using the EDHOC-
 Exporter interface.

5. EDHOC Authenticated with Symmetric Keys

5.1. Overview

 EDHOC supports authentication with pre-shared keys. Party U and V
 are assumed to have a pre-shared key (PSK) with a good amount of
 randomness and the requirement that:

 o Party V SHALL be able to retrieve the PSK using KID.

 KID may optionally contain information about how to retrieve the PSK.
 KID does not need to uniquely identify the PSK, but doing so is
 recommended as the recipient may otherwise have to try several PSKs.

 EDHOC with symmetric key authentication is illustrated in Figure 4.
 AEAD(K; P; A) denotes the output from an AEAD algorithm using key K
 on plaintext P and additional authenticated data A, see [RFC5116].

 Party U Party V
 | C_U, X_U, ALG_1, KID, UAD_1 |
 +-->|
 | message_1 |
 | |
 | C_U, C_V, X_V, ALG_2, AEAD(K_2; UAD_2; aad_2) |
 |<--+
 | message_2 |
 | |
 | S_V, AEAD(K_3; PAD_3; aad_3) |
 +-->|
 | message_3 |

 Figure 4: EDHOC with symmetric key authentication.

https://datatracker.ietf.org/doc/html/rfc8152#section-5.3
https://datatracker.ietf.org/doc/html/rfc8152#section-5.3
https://datatracker.ietf.org/doc/html/rfc8152#section-4.4
https://datatracker.ietf.org/doc/html/rfc5116

Selander, et al. Expires March 22, 2019 [Page 19]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) September 2018

5.1.1. Mandatory to Implement Algorithms

 For EDHOC authenticated with symmetric keys, the COSE algorithms
 ECDH-SS + HKDF-256 and AES-CCM-64-64-128 are mandatory to implement.

5.2. EDHOC Message 1

5.2.1. Formatting of Message 1

 message_1 SHALL be a sequence of CBOR data items (see Appendix A.1)
 as defined below

 message_1 = (
 MSG_TYPE : int,
 C_U : bstr,
 ECDH-Curves_U : algs,
 ECDH-Curve_U : uint,
 X_U : bstr,
 HKDFs_U : algs,
 AEADs_U : algs,
 KID : bstr,
 ? UAD_1 : bstr
)

 alg : int / tstr

 algs = alg / [2* alg]

 where:

 o MSG_TYPE = 4

 o C_U - variable length connection identifier

 o ECDH-Curves_U - EC curves for ECDH which Party U supports, in
 order of decreasing preference. If a single algorithm is
 conveyed, it is placed in an int or text string, if multiple
 algorithms are conveyed, an array is used.

 o ECDH-Curve_U - a single chosen algorithm from ECDH-Curves_U (zero-
 based index, i.e. 0 for the first or only, 1 for the second, etc.)

 o X_U - the x-coordinate of the ephemeral public key of Party U

 o HKDFs_U - supported ECDH-SS w/ HKDF algorithms, in order of
 decreasing preference

Selander, et al. Expires March 22, 2019 [Page 20]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) September 2018

 o AEADs_U - supported AEAD algorithms, in order of decreasing
 preference

 o KID - bstr enabling the retrieval of the pre-shared key

 o UAD_1 - bstr containing unprotected opaque application data

5.2.2. Party U Processing of Message 1

 Party U SHALL compose message_1 as follows:

 o The supported algorithms and the order of preference MUST NOT be
 changed based on previous error messages. However, the lists sent
 to Party V (ECDH-Curves_U, HKDFs_U, AEADs_U) MAY be truncated such
 that curves/algorithms which are the least preferred are omitted.
 The amount of truncation MAY be changed between sessions, e.g.
 based on previous error messages (see next bullet), but all
 curves/algorithms which are more preferred than the least
 preferred curve in the list MUST be included in the list.

 o Determine the curve ECDH-Curve_U to use with Party V in message_1.
 If Party U previously received from Party V an error message to
 message_1 with diagnostic payload identifying an ECDH curve that U
 supports, then U SHALL use that curve (which implies that
 ECDH_Curves_U in message_1 SHALL include that curve). Otherwise
 the first curve in ECDH-Curves_U MUST be used.

 o Generate an ephemeral ECDH key pair as specified in Section 5 of
 [SP-800-56A] using the curve indicated by ECDH-Curve_U. Let X_U
 be the x-coordinate of the ephemeral public key.

 o Choose a connection identifier C_U and store it for the length of
 the protocol. Party U MUST be able to retrieve the protocol state
 using the connection identifier C_U and optionally other
 information such as the 5-tuple. The connection identifier MAY be
 used with protocols for which EDHOC establishes application keys,
 in which case C_U SHALL be different from the concurrently used
 identifiers of that protocol.

 o Format message_1 as the sequence of CBOR data items specified in
Section 5.2.1 and encode it to a byte string (see Appendix A.1).

5.2.3. Party V Processing of Message 1

 Party V SHALL process message_1 as follows:

 o Decode message_1 (see Appendix A.1).

Selander, et al. Expires March 22, 2019 [Page 21]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) September 2018

 o Verify that at least one of each kind of the proposed algorithms
 are supported.

 o Verify that the ECDH curve indicated by ECDH-Curve_U is supported,
 and that no prior curve in ECDH-Curves_U is supported.

 o Validate that there is a solution to the curve definition for the
 given x-coordinate X_U.

 o Pass UAD_1 to the application.

 If any verification step fails, Party V MUST send an EDHOC error
 message back, formatted as defined in Section 6, and the protocol
 MUST be discontinued. If V does not support the curve ECDH-Curve_U,
 but supports another ECDH curves in ECDH-Curves_U, then ALGs_V MUST
 include the first supported ECDH curve in ECDH-Curves_U. If V does
 not support any of the algorithms of one kind (ECDH-Curves_U,
 HKDFs_U, AEADs_U), then ALGs_V MUST include one or more supported
 algorithms of that kind.

5.3. EDHOC Message 2

5.3.1. Formatting of Message 2

 message_2 SHALL be a sequence of CBOR data items (see Appendix A.1)
 as defined below

 message_2 = (
 data_2,
 CIPHERTEXT_2 : bstr
)

 data_2 = (
 MSG_TYPE : int,
 C_U : bstr / nil,
 C_V : bstr,
 X_V : bstr,
 HKDF_V : uint,
 AEAD_V : uint
)

 aad_2 : bstr

 where aad_2, in non-CDDL notation, is:

 aad_2 = H(bstr .cborseq [message_1, data_2])

 where:

Selander, et al. Expires March 22, 2019 [Page 22]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) September 2018

 o MSG_TYPE = 5

 o C_V - variable length connection identifier

 o X_V - the x-coordinate of the ephemeral public key of Party V

 o HKDF_V - the first supported algorithm from HKDFs_U

 o AEAD_V - the first supported algorithm from AEADs_U

 o H() - the hash function in HKDF_V, which takes a CBOR byte string
 (bstr) as input and produces a CBOR byte string as output. The
 use of '.cborseq' is exemplified in Appendix A.1.

5.3.2. Party V Processing of Message 2

 Party V SHALL compose message_2 as follows:

 o Generate an ephemeral ECDH key pair as specified in Section 5 of
 [SP-800-56A] using the curve indicated by ECDH-Curve_U. Let X_V
 be the x-coordinate of the ephemeral public key.

 o Choose a connection identifier C_V and store it for the length of
 the protocol. Party V MUST be able to retrieve the protocol state
 using the connection identifier C_V and optionally other
 information such as the 5-tuple. The connection identifier MAY be
 used with protocols for which EDHOC establishes application keys,
 in which case C_V SHALL be different from the concurrently used
 identifiers of that protocol. To reduce message overhead, party V
 can set the message field C_U in message_2 to null (still storing
 the actual value of C_U) if there is an external correlation
 mechanism (e.g. the Token in CoAP) that enables Party U to
 correlate message_1 and message_2.

 o Select HKDF_V and AEAD_V as the first supported algorithms in
 HKDFs_U and AEADs_U.

 o Compute COSE_Encrypt0 as defined in Section 5.3 of [RFC8152], with
 AEAD_V, K_2, IV_2, and the following parameters. The protected
 header SHALL be empty. The unprotected header MAY contain
 parameters (e.g. 'alg').

 * external_aad = aad_2

 * plaintext = h'' / UAD_2

 * UAD_2 = bstr containing opaque unprotected application data

https://datatracker.ietf.org/doc/html/rfc8152#section-5.3

Selander, et al. Expires March 22, 2019 [Page 23]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) September 2018

 Note that only 'ciphertext' of the COSE_Encrypt0 object are used
 in message_2, see next bullet.

 o Format message_2 as the sequence of CBOR data items specified in
Section 5.3.1 and encode it to a byte string (see Appendix A.1).

 CIPHERTEXT_2 is the COSE_Encrypt0 ciphertext.

5.3.3. Party U Processing of Message 2

 Party U SHALL process message_2 as follows:

 o Decode message_2 (see Appendix A.1).

 o Retrieve the protocol state using the connection identifier C_U
 and optionally other information such as the 5-tuple.

 o Validate that there is a solution to the curve definition for the
 given x-coordinate X_V.

 o Decrypt and verify COSE_Encrypt0 as defined in Section 5.3 of
 [RFC8152], with AEAD_V, K_2, and IV_2.

 If any verification step fails, Party U MUST send an EDHOC error
 message back, formatted as defined in Section 6, and the protocol
 MUST be discontinued.

 o Pass UAD_2 to the application.

5.4. EDHOC Message 3

5.4.1. Formatting of Message 3

 message_3 SHALL be a sequence of CBOR data items (see Appendix A.1)
 as defined below

 message_3 = (
 data_3,
 CIPHERTEXT_3 : bstr
)

 data_3 = (
 MSG_TYPE : int,
 C_V : bstr
)

 aad_3 : bstr

 where aad_3, in non-CDDL notation, is:

https://datatracker.ietf.org/doc/html/rfc8152#section-5.3
https://datatracker.ietf.org/doc/html/rfc8152#section-5.3

Selander, et al. Expires March 22, 2019 [Page 24]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) September 2018

 aad_3 = H(bstr .cborseq [aad_2, CIPHERTEXT_2, data_3])

 where:

 o MSG_TYPE = 6

 o The use of '.cborseq' is exemplified in Appendix A.1.

5.4.2. Party U Processing of Message 3

 Party U SHALL compose message_3 as follows:

 o Compute COSE_Encrypt0 as defined in Section 5.3 of [RFC8152], with
 AEAD_V, K_3, IV_3, and the following parameters. The protected
 header SHALL be empty. The unprotected header MAY contain
 parameters (e.g. 'alg').

 * external_aad = aad_3

 * plaintext = h'' / PAD_3

 * PAD_3 = bstr containing opaque protected application data

 Note that only 'ciphertext' of the COSE_Encrypt0 object are used
 in message_3, see next bullet.

 o Format message_3 as the sequence of CBOR data items specified in
Section 5.4.1 and encode it to a byte string (see Appendix A.1).

 CIPHERTEXT_3 is the COSE_Encrypt0 ciphertext.

 o Pass the connection identifiers (C_U, C_V) and the negotiated
 algorithms (AEAD, HDKF, etc.) to the application. The application
 can now derive application keys using the EDHOC-Exporter
 interface.

5.4.3. Party V Processing of Message 3

 Party V SHALL process message_3 as follows:

 o Decode message_3 (see Appendix A.1).

 o Retrieve the protocol state using the connection identifier C_V
 and optionally other information such as the 5-tuple.

 o Decrypt and verify COSE_Encrypt0 as defined in Section 5.3 of
 [RFC8152], with AEAD_V, K_3, and IV_3.

https://datatracker.ietf.org/doc/html/rfc8152#section-5.3
https://datatracker.ietf.org/doc/html/rfc8152#section-5.3
https://datatracker.ietf.org/doc/html/rfc8152#section-5.3

Selander, et al. Expires March 22, 2019 [Page 25]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) September 2018

 If any verification step fails, Party V MUST send an EDHOC error
 message back, formatted as defined in Section 6, and the protocol
 MUST be discontinued.

 o Pass PAD_3, the connection identifiers (C_U, C_V), and the
 negotiated algorithms (AEAD, HDKF, etc.) to the application. The
 application can now derive application keys using the EDHOC-
 Exporter interface.

6. Error Handling

6.1. EDHOC Error Message

 This section defines a message format for the EDHOC error message,
 used during the protocol. An EDHOC error message can be send by both
 parties as a response to any non-error EDHOC message. After sending
 an error message, the protocol MUST be discontinued. Errors at the
 EDHOC layer are sent as normal successful messages in the lower
 layers (e.g. POST and 2.04 Changed). An advantage of using such a
 construction is to avoid issues created by usage of cross protocol
 proxies (e.g. UDP to TCP).

 error SHALL be a sequence of CBOR data items (see Appendix A.1) as
 defined below

 error = (
 MSG_TYPE : int,
 ERR_MSG : tstr,
 ? ALGs_V: algs
)

 alg : int / tstr

 algs = alg / [2* alg]

 where:

 o MSG_TYPE = 0

 o ERR_MSG - text string containing the diagnostic payload, defined
 in the same way as in Section 5.5.2 of [RFC7252]

 o ALGs_V - algorithms that V supports that were not included in
 ECDH-Curve_U, HKDFs_U, AEADs_U, SIGs_V, and SIGs_U. Note that
 ALG_V contatins the values from the COSE Algorithms registry and
 not indexes.

https://datatracker.ietf.org/doc/html/rfc7252#section-5.5.2

Selander, et al. Expires March 22, 2019 [Page 26]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) September 2018

7. IANA Considerations

7.1. The Well-Known URI Registry

 IANA has added the well-known URI 'edhoc' to the Well-Known URIs
 registry.

 o URI suffix: edhoc

 o Change controller: IETF

 o Specification document(s): [[this document]]

 o Related information: None

7.2. Media Types Registry

 IANA has added the media type 'application/edhoc' to the Media Types
 registry.

 o Type name: application

 o Subtype name: edhoc

 o Required parameters: N/A

 o Optional parameters: N/A

 o Encoding considerations: binary

 o Security considerations: See Section 7 of this document.

 o Interoperability considerations: N/A

 o Published specification: [[this document]] (this document)

 o Applications that use this media type: To be identified

 o Fragment identifier considerations: N/A

 o Additional information:

 * Magic number(s): N/A

 * File extension(s): N/A

 * Macintosh file type code(s): N/A

Selander, et al. Expires March 22, 2019 [Page 27]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) September 2018

 o Person & email address to contact for further information: Goeran
 Selander goran.selander@ericsson.com [1]

 o Intended usage: COMMON

 o Restrictions on usage: N/A

 o Author: Goeran Selander goran.selander@ericsson.com [2]

 o Change Controller: IESG

7.3. CoAP Content-Formats Registry

 IANA has added the media type 'application/edhoc' to the CoAP
 Content-Formats registry.

 o Media Type: application/edhoc

 o Encoding:

 o ID: TBD42

 o Reference: [[this document]]

8. Security Considerations

8.1. Security Properties

 EDHOC inherits its security properties from the theoretical SIGMA-I
 protocol [SIGMA]. Using the terminology from [SIGMA], EDHOC provides
 perfect forward secrecy, mutual authentication with aliveness,
 consistency, peer awareness, and identity protection. As described
 in [SIGMA], peer awareness is provided to Party V, but not to Party
 U.

 EDHOC with asymmetric authentication offers identity protection of
 Party U against active attacks and identity protection of Party V
 against passive attacks. The roles should be assigned to protect the
 most sensitive identity, typically the one that is not derivable from
 routing information in the lower layers.

 Compared to [SIGMA], EDHOC adds an explicit message type and expands
 the message authentication coverage to additional elements such as
 algorithms, application data, and previous messages. This protects
 against an attacker replaying messages or injecting messages from
 another session.

Selander, et al. Expires March 22, 2019 [Page 28]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) September 2018

 EDHOC also adds negotiation of connection identifiers and downgrade
 protected negotiation of cryptographic parameters, i.e. an attacker
 cannot affect the negotiated parameters. A single session of EDHOC
 does not include negotiation of parameters related to the ephemeral
 key, but it enables Party V to verify that the ECDH curve used in the
 protocol is the most preferred curve by U which is supported by both
 U and V.

8.2. Cryptographic Considerations

 The security of the SIGMA protocol requires the MAC to be bound to
 the identity of the signer. Hence the message authenticating
 functionality of the authenticated encryption in EDHOC is critical:
 authenticated encryption MUST NOT be replaced by plain encryption
 only, even if authentication is provided at another level or through
 a different mechanism. EDHOC implements SIGMA-I using the same Sign-
 then-MAC approach as TLS 1.3.

 To reduce message overhead EDHOC does not use explicit nonces and
 instead rely on the ephemeral public keys to provide randomness to
 each session. A good amount of randomness is important for the key
 generation, to provide aliveness, and to protect against interleaving
 attacks. For this reason, the ephemeral keys MUST NOT be reused, and
 both parties SHALL generate fresh random ephemeral key pairs.

 The choice of key length used in the different algorithms needs to be
 harmonized, so that a sufficient security level is maintained for
 certificates, EDHOC, and the protection of application data. Party U
 and V should enforce a minimum security level.

 The data rates in many IoT deployments are very limited. Given that
 the application keys are protected as well as the long-term
 authentication keys they can often be used for years or even decades
 before the cryptographic limits are reached. If the application keys
 established through EDHOC need to be renewed, the communicating
 parties can derive application keys with other labels or run EDHOC
 again.

8.3. Unprotected Data

 Party U and V must make sure that unprotected data and metadata do
 not reveal any sensitive information. This also applies for
 encrypted data sent to an unauthenticated party. In particular, it
 applies to UAD_1, ID_CRED_V, UAD_2, and ERR_MSG in the asymmetric
 case, and KID, UAD_1, and ERR_MSG in the symmetric case. Using the
 same KID or UAD_1 in several EDHOC sessions allows passive
 eavesdroppers to correlate the different sessions. The communicating
 parties may therefore anonymize KID. Another consideration is that

Selander, et al. Expires March 22, 2019 [Page 29]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) September 2018

 the list of supported algorithms may be used to identify the
 application.

 Party U and V must also make sure that unauthenticated data does not
 trigger any harmful actions. In particular, this applies to UAD_1
 and ERR_MSG in the asymmetric case, and KID, UAD_1, and ERR_MSG in
 the symmetric case.

8.4. Denial-of-Service

 EDHOC itself does not provide countermeasures against Denial-of-
 Service attacks. By sending a number of new or replayed message_1 an
 attacker may cause Party V to allocate state, perform cryptographic
 operations, and amplify messages. To mitigate such attacks, an
 implementation SHOULD rely on lower layer mechanisms such as the Echo
 option in CoAP [I-D.ietf-core-echo-request-tag] that forces the
 initiator to demonstrate reachability at their apparent network
 address.

8.5. Implementation Considerations

 The availability of a secure pseudorandom number generator and truly
 random seeds are essential for the security of EDHOC. If no true
 random number generator is available, a truly random seed must be
 provided from an external source. If ECDSA is supported,
 "deterministic ECDSA" as specified in RFC6979 is RECOMMENDED.

 The referenced processing instructions in [SP-800-56A] must be
 complied with, including deleting the intermediate computed values
 along with any ephemeral ECDH secrets after the key derivation is
 completed. The ECDH shared secret, keys (K_2, K_3), and IVs (IV_2,
 IV_3) MUST be secret. Implementations should provide countermeasures
 to side-channel attacks such as timing attacks.

 Party U and V are responsible for verifying the integrity of
 certificates. The selection of trusted CAs should be done very
 carefully and certificate revocation should be supported. The
 private authentication keys MUST be kept secret.

 Party U and V are allowed to select the connection identifiers C_U
 and C_V, respectively, for the other party to use in the ongoing
 EDHOC protocol as well as in a subsequent application protocol (e.g.
 OSCORE [I-D.ietf-core-object-security]). The choice of connection
 identifier is not security critical in EDHOC but intended to simplify
 the retrieval of the right security context in combination with using
 short identifiers. If the wrong connection identifier of the other
 party is used in a protocol message it will result in the receiving
 party not being able to retrieve a security context (which will

https://datatracker.ietf.org/doc/html/rfc6979

Selander, et al. Expires March 22, 2019 [Page 30]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) September 2018

 terminate the protocol) or retrieve the wrong security context (which
 also terminates the protocol as the message cannot be verified).

8.6. Other Documents Referencing EDHOC

 EDHOC has been analyzed in several other documents. An analysis of
 EDHOC for certificate enrollment was done in [CertEnr], the use of
 EDHOC in LoRaWAN is analyzed in [LoRa1] and [LoRa2], and the use of
 EDHOC in 6TiSCH is described in
 [I-D.ietf-6tisch-dtsecurity-zerotouch-join].

9. References

9.1. Normative References

 [I-D.ietf-cbor-7049bis]
 Bormann, C. and P. Hoffman, "Concise Binary Object
 Representation (CBOR)", draft-ietf-cbor-7049bis-02 (work
 in progress), March 2018.

 [I-D.ietf-cbor-cddl]
 Birkholz, H., Vigano, C., and C. Bormann, "Concise data
 definition language (CDDL): a notational convention to
 express CBOR and JSON data structures", draft-ietf-cbor-

cddl-05 (work in progress), August 2018.

 [I-D.ietf-core-echo-request-tag]
 Amsuess, C., Mattsson, J., and G. Selander, "Echo and
 Request-Tag", draft-ietf-core-echo-request-tag-02 (work in
 progress), June 2018.

 [I-D.ietf-core-object-security]
 Selander, G., Mattsson, J., Palombini, F., and L. Seitz,
 "Object Security for Constrained RESTful Environments
 (OSCORE)", draft-ietf-core-object-security-15 (work in
 progress), August 2018.

 [I-D.schaad-cose-x509]
 Schaad, J., "CBOR Object Signing and Encryption (COSE):
 Headers for carrying and referencing X.509 certificates",

draft-schaad-cose-x509-02 (work in progress), July 2018.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

https://datatracker.ietf.org/doc/html/draft-ietf-cbor-7049bis-02
https://datatracker.ietf.org/doc/html/draft-ietf-cbor-cddl-05
https://datatracker.ietf.org/doc/html/draft-ietf-cbor-cddl-05
https://datatracker.ietf.org/doc/html/draft-ietf-core-echo-request-tag-02
https://datatracker.ietf.org/doc/html/draft-ietf-core-object-security-15
https://datatracker.ietf.org/doc/html/draft-schaad-cose-x509-02
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119

Selander, et al. Expires March 22, 2019 [Page 31]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) September 2018

 [RFC5116] McGrew, D., "An Interface and Algorithms for Authenticated
 Encryption", RFC 5116, DOI 10.17487/RFC5116, January 2008,
 <https://www.rfc-editor.org/info/rfc5116>.

 [RFC5869] Krawczyk, H. and P. Eronen, "HMAC-based Extract-and-Expand
 Key Derivation Function (HKDF)", RFC 5869,
 DOI 10.17487/RFC5869, May 2010,
 <https://www.rfc-editor.org/info/rfc5869>.

 [RFC6090] McGrew, D., Igoe, K., and M. Salter, "Fundamental Elliptic
 Curve Cryptography Algorithms", RFC 6090,
 DOI 10.17487/RFC6090, February 2011,
 <https://www.rfc-editor.org/info/rfc6090>.

 [RFC7252] Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
 Application Protocol (CoAP)", RFC 7252,
 DOI 10.17487/RFC7252, June 2014,
 <https://www.rfc-editor.org/info/rfc7252>.

 [RFC8152] Schaad, J., "CBOR Object Signing and Encryption (COSE)",
RFC 8152, DOI 10.17487/RFC8152, July 2017,

 <https://www.rfc-editor.org/info/rfc8152>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [SIGMA] Krawczyk, H., "SIGMA - The 'SIGn-and-MAc' Approach to
 Authenticated Diffie-Hellman and Its Use in the IKE-
 Protocols (Long version)", June 2003,
 <http://webee.technion.ac.il/~hugo/sigma-pdf.pdf>.

 [SP-800-56A]
 Barker, E., Chen, L., Roginsky, A., Vassilev, A., and R.
 Davis, "Recommendation for Pair-Wise Key-Establishment
 Schemes Using Discrete Logarithm Cryptography",
 NIST Special Publication 800-56A Revision 3, April 2018,
 <https://doi.org/10.6028/NIST.SP.800-56Ar3>.

9.2. Informative References

 [CborMe] Bormann, C., "CBOR Playground", May 2018,
 <http://cbor.me/>.

 [CertEnr] Krontiris, A., "Evaluation of Certificate Enrollment over
 Application Layer Security", May 2018,
 <https://www.nada.kth.se/~ann/exjobb/

alexandros_krontiris.pdf>.

https://datatracker.ietf.org/doc/html/rfc5116
https://www.rfc-editor.org/info/rfc5116
https://datatracker.ietf.org/doc/html/rfc5869
https://www.rfc-editor.org/info/rfc5869
https://datatracker.ietf.org/doc/html/rfc6090
https://www.rfc-editor.org/info/rfc6090
https://datatracker.ietf.org/doc/html/rfc7252
https://www.rfc-editor.org/info/rfc7252
https://datatracker.ietf.org/doc/html/rfc8152
https://www.rfc-editor.org/info/rfc8152
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174
http://webee.technion.ac.il/~hugo/sigma-pdf.pdf
https://doi.org/10.6028/NIST.SP.800-56Ar3
http://cbor.me/
https://www.nada.kth.se/~ann/exjobb/alexandros_krontiris.pdf
https://www.nada.kth.se/~ann/exjobb/alexandros_krontiris.pdf

Selander, et al. Expires March 22, 2019 [Page 32]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) September 2018

 [I-D.hartke-core-e2e-security-reqs]
 Selander, G., Palombini, F., and K. Hartke, "Requirements
 for CoAP End-To-End Security", draft-hartke-core-e2e-

security-reqs-03 (work in progress), July 2017.

 [I-D.ietf-6tisch-dtsecurity-zerotouch-join]
 Richardson, M. and B. Damm, "6tisch Zero-Touch Secure Join
 protocol", draft-ietf-6tisch-dtsecurity-zerotouch-join-02
 (work in progress), April 2018.

 [I-D.ietf-ace-oauth-authz]
 Seitz, L., Selander, G., Wahlstroem, E., Erdtman, S., and
 H. Tschofenig, "Authentication and Authorization for
 Constrained Environments (ACE) using the OAuth 2.0
 Framework (ACE-OAuth)", draft-ietf-ace-oauth-authz-13
 (work in progress), July 2018.

 [I-D.ietf-ace-oscore-profile]
 Seitz, L., Palombini, F., Gunnarsson, M., and G. Selander,
 "OSCORE profile of the Authentication and Authorization
 for Constrained Environments Framework", draft-ietf-ace-

oscore-profile-02 (work in progress), June 2018.

 [I-D.ietf-core-resource-directory]
 Shelby, Z., Koster, M., Bormann, C., Stok, P., and C.
 Amsuess, "CoRE Resource Directory", draft-ietf-core-

resource-directory-14 (work in progress), July 2018.

 [LoRa1] Sanchez-Iborra, R., Sanchez-Gomez, J., Perez, S.,
 Fernandez, P., Santa, J., Hernandez-Ramos, J., and A.
 Skarmeta, "Enhancing LoRaWAN Security through a
 Lightweight and Authenticated Key Management Approach",
 June 2018,
 <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6021899/pdf/

sensors-18-01833.pdf>.

 [LoRa2] Sanchez-Iborra, R., Sanchez-Gomez, J., Perez, S.,
 Fernandez, P., Santa, J., Hernandez-Ramos, J., and A.
 Skarmeta, "Internet Access for LoRaWAN Devices Considering
 Security Issues", June 2018,
 <https://ants.inf.um.es/~josesanta/doc/GIoTS1.pdf>.

 [RFC7228] Bormann, C., Ersue, M., and A. Keranen, "Terminology for
 Constrained-Node Networks", RFC 7228,
 DOI 10.17487/RFC7228, May 2014,
 <https://www.rfc-editor.org/info/rfc7228>.

https://datatracker.ietf.org/doc/html/draft-hartke-core-e2e-security-reqs-03
https://datatracker.ietf.org/doc/html/draft-hartke-core-e2e-security-reqs-03
https://datatracker.ietf.org/doc/html/draft-ietf-6tisch-dtsecurity-zerotouch-join-02
https://datatracker.ietf.org/doc/html/draft-ietf-ace-oauth-authz-13
https://datatracker.ietf.org/doc/html/draft-ietf-ace-oscore-profile-02
https://datatracker.ietf.org/doc/html/draft-ietf-ace-oscore-profile-02
https://datatracker.ietf.org/doc/html/draft-ietf-core-resource-directory-14
https://datatracker.ietf.org/doc/html/draft-ietf-core-resource-directory-14
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6021899/pdf/sensors-18-01833.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6021899/pdf/sensors-18-01833.pdf
https://ants.inf.um.es/~josesanta/doc/GIoTS1.pdf
https://datatracker.ietf.org/doc/html/rfc7228
https://www.rfc-editor.org/info/rfc7228

Selander, et al. Expires March 22, 2019 [Page 33]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) September 2018

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

9.3. URIs

 [1] mailto:goran.selander@ericsson.com

 [2] mailto:goran.selander@ericsson.com

Appendix A. Use of CBOR, CDDL and COSE in EDHOC

 This Appendix is intended to simplify for implementors not familiar
 with CBOR [I-D.ietf-cbor-7049bis], CDDL [I-D.ietf-cbor-cddl], COSE
 [RFC8152], and HKDF [RFC5869].

A.1. CBOR and CDDL

 The Concise Binary Object Representation (CBOR)
 [I-D.ietf-cbor-7049bis] is a data format designed for small code size
 and small message size. CBOR builds on the JSON data model but
 extends it by e.g. encoding binary data directly without base64
 conversion. In addition to the binary CBOR encoding, CBOR also has a
 diagnostic notation that is readable and editable by humans. The
 Concise Data Definition Language (CDDL) [I-D.ietf-cbor-cddl] provides
 a way to express structures for protocol messages and APIs that use
 CBOR. [I-D.ietf-cbor-cddl] also extends the diagnostic notation.

 CBOR data items are encoded to or decoded from byte strings using a
 type-length-value encoding scheme, where the three highest order bits
 of the initial byte contain information about the major type. CBOR
 supports several different types of data items, in addition to
 integers (int, uint), simple values (e.g. null), byte strings (bstr),
 and text strings (tstr), CBOR also supports arrays [] of data items
 and maps {} of pairs of data items. Some examples are given below.
 For a complete specification and more examples, see
 [I-D.ietf-cbor-7049bis] and [I-D.ietf-cbor-cddl]. We recommend
 implementors to get used to CBOR by using the CBOR playground
 [CborMe].

https://datatracker.ietf.org/doc/html/rfc8446
https://www.rfc-editor.org/info/rfc8446
https://datatracker.ietf.org/doc/html/rfc8152
https://datatracker.ietf.org/doc/html/rfc5869

Selander, et al. Expires March 22, 2019 [Page 34]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) September 2018

 Diagnostic Encoded Type
 --
 1 0x01 unsigned integer
 24 0x1818 unsigned integer
 -24 0x37 negative integer
 -25 0x3818 negative integer
 null 0xf6 simple value
 h'12cd' 0x4212cd byte string
 '12cd' 0x4431326364 byte string
 "12cd" 0x6431326364 text string
 << 1, 2, null >> 0x430102f6 byte string
 [1, 2, null] 0x830102f6 array
 [_ 1, 2, null] 0x9f0102f6ff array (indefinite-length)
 (1, 2, null) 0x0102f6 group
 { 4: h'cd' } 0xa10441cd map
 --

 All EDHOC messages consist of a sequence of CBOR encoded data items.
 While an EDHOC message in itself is not a CBOR data item, it may be
 viewed as the CBOR encoding of an indefinite-length array [_
 message_i] without the first byte (0x9f) and the last byte (0xff),
 for i = 1, 2 and 3. The same applies to the EDHOC error message.

 The message format specification uses the constructs '.cbor',
 '.cborseq' and '~' enabling conversion between different CDDL types
 matching different CBOR items with different encodings. Some
 examples are given below.

 An type (e.g. an uint) may be wrapped in a byte string (bstr), and
 back again:

 CDDL Type Diagnostic Encoded
 --
 uint 24 0x1818
 bstr .cbor uint << 24 >> 0x421818
 ~ bstr .cbor uint 24 0x1818
 --

 A array, say of an uint and a byte string, may be converted into a
 byte string (bstr):

 CDDL Type Diagnostic Encoded
 --
 bstr h'cd' 0x41cd
 [uint, bstr] [24, h'cd'] 0x82181841cd
 bstr .cborseq [uint, bstr] << 24, h'cd' >> 0x44181841cd
 --

Selander, et al. Expires March 22, 2019 [Page 35]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) September 2018

A.2. COSE

 CBOR Object Signing and Encryption (COSE) [RFC8152] describes how to
 create and process signatures, message authentication codes, and
 encryption using CBOR. COSE builds on JOSE, but is adapted to allow
 more efficient processing in constrained devices. EDHOC makes use of
 COSE_Key, COSE_Encrypt0, COSE_Sign1, and COSE_KDF_Context objects.

A.2.1. Encryption and Decryption

 The COSE parameters used in COSE_Encrypt0 (see Section 5.2 of
 [RFC8152]) are constructed as described below. Note that "i" in
 "K_i", "IV_i" and "aad_i" is a variable with value i = 2 or 3,
 depending on whether the calculation is made over message_2 or
 message_3.

 o The secret key K_i is a CBOR bstr, generated with the EDHOC-Key-
 Derivation function as defined in Section 3.2.

 o The initialization vector IV_i is a CBOR bstr, also generated with
 the EDHOC-Key-Derivation function as defined in Section 3.2.

 o The plaintext is a CBOR bstr. If the application data (UAD and
 PAD) is omitted, then plaintext = h'' in the symmetric case, and
 plaintext = << ~protected, signature >> in the asymmetric case.
 For instance, if protected = h'a10140' and signature = h'050607'
 (CBOR encoding 0x43050607), then plaintext = h'a1014043050607'.

 o The external_aad is a CBOR bstr. It is always set to aad_i.

 COSE constructs the input to the AEAD [RFC5116] as follows:

 o The key K is the value of the key K_i.

 o The nonce N is the value of the initialization vector IV_i.

 o The plaintext P is the value of the COSE plaintext. E.g. if the
 COSE plaintext = h'010203', then P = 0x010203.

 o The associated data A is the CBOR encoding of:

 ["Encrypt0", h'', aad_i]

 This equals the concatenation of 0x8368456e63727970743040 and the
 CBOR encoding of aad_i. For instance if aad_2 = h'010203' (CBOR
 encoding 0x43010203), then A = 0x8368456e6372797074304043010203.

https://datatracker.ietf.org/doc/html/rfc8152
https://datatracker.ietf.org/doc/html/rfc8152#section-5.2
https://datatracker.ietf.org/doc/html/rfc8152#section-5.2
https://datatracker.ietf.org/doc/html/rfc5116

Selander, et al. Expires March 22, 2019 [Page 36]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) September 2018

A.2.2. Signing and Verification

 The COSE parameters used in COSE_Sign1 (see Section 4.2 of [RFC8152])
 are constructed as described below. Note that "i" in "aad_i" is a
 variable with values i = 2 or 3, depending on whether the calculation
 is made over message_2 or message_3. Note also that "x" in
 "ID_CRED_x" and "CRED_x" is a variable with values x = U or V,
 depending on whether it is the credential of U or of V that is used
 in the relevant protocol message.

 o The key is the private authentication key of U or V. This may be
 stored as a COSE_KEY object or as a certificate.

 o The protected parameter is a map { abc : ID_CRED_x } wrapped in a
 byte string.

 o The payload is a bstr cointaining the CBOR encoding of a COSE_KEY
 or a single certificate.

 o external_aad = aad_i.

 COSE constructs the input to the Signature Algorithm as follows:

 o The key is the private authentication key of U or V.

 o The message to be signed M is the CBOR encoding of:

 ["Signature1", << { abc : ID_CRED_x } >>, aad_i, CRED_x]

 For instance if abc = 4 (CBOR encoding 0x04), ID_CRED_U = h'1111'
 (CBOR encoding 0x421111), aad_3 = h'222222' (CBOR encoding
 0x43222222), and CRED_U = h'55555555' (CBOR encoding
 0x4455555555), then M =
 0x846a5369676e61747572653145A104421111432222224455555555.

A.2.3. Key Derivation

 Assuming use of the mandatory-to-implement algorithms HKDF SHA-256
 and AES-CCM-16-64-128, the extract phase of HKDF produces a
 pseudorandom key (PRK) as follows:

 PRK = HMAC-SHA-256(salt, ECDH shared secret)

 where salt = 0x in the asymmetric case and salt = PSK in the
 symmetric case. As the output length L is smaller than the hash
 function output size, the expand phase of HKDF consists of a single
 HMAC invocation, and K_i and IV_i are therefore the first 16 and 13
 bytes, respectively, of

https://datatracker.ietf.org/doc/html/rfc8152#section-4.2

Selander, et al. Expires March 22, 2019 [Page 37]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) September 2018

 output parameter = HMAC-SHA-256(PRK, info || 0x01)

 where | | means byte string concatenation, and info is the CBOR
 encoding of

 COSE_KDF_Context = [
 AlgorithmID,
 [null, null, null],
 [null, null, null],
 [keyDataLength, h'', aad_i]
]

 If AES-CCM-16-64-128 then AlgorithmID = 10 and keyDataLength = 128
 for K_i, and AlgorithmID = "IV-GENERATION" (CBOR encoding
 0x6d49562d47454e45524154494f4e) and keyDataLength = 104 for IV_i.
 Hence, if aad_2 = h'aaaa' then

 K_2 = HMAC-SHA-256(PRK, 0x840a83f6f6f683f6f6f68318804042aaaa01)
 IV_2 = HMAC-SHA-256(PRK, 0x846d49562d47454e45524154494f4e
 83f6f6f683f6f6f68318804042aaaa01)

Appendix B. Test Vectors

 This appendix provides a wealth of test vectors to ease
 implementation and ensure interoperability.

 TODO: This section needs to be updated.

Appendix C. EDHOC PSK Chaining

 An application using EDHOC may want to derive new PSKs to use for
 authentication in future EDHOC sessions. In this case, the new PSK
 and KID SHOULD be derived as follows where length is the key length
 (in bytes) of AEAD_V.

 PSK = EDHOC-Exporter("EDHOC Chaining PSK", length)
 KID = EDHOC-Exporter("EDHOC Chaining KID", 4)

Appendix D. EDHOC with CoAP and OSCORE

D.1. Transferring EDHOC in CoAP

 EDHOC can be transferred as an exchange of CoAP [RFC7252] messages.
 By default, the CoAP client is Party U and the CoAP server is Party
 V, but the roles SHOULD be chosen to protect the most sensitive
 identity, see Section 8. By default, EDHOC is transferred in POST
 requests and 2.04 (Changed) responses to the Uri-Path: "/.well-known/
 edhoc", but an application may define its own path that can be

https://datatracker.ietf.org/doc/html/rfc7252

Selander, et al. Expires March 22, 2019 [Page 38]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) September 2018

 discovered e.g. using resource directory
 [I-D.ietf-core-resource-directory].

 By default, the message flow is as follows: EDHOC message_1 is sent
 in the payload of a POST request from the client to the server's
 resource for EDHOC. EDHOC message_2 or the EDHOC error message is
 sent from the server to the client in the payload of a 2.04 (Changed)
 response. EDHOC message_3 or the EDHOC error message is sent from
 the client to the server's resource in the payload of a POST request.
 If needed, an EDHOC error message is sent from the server to the
 client in the payload of a 2.04 (Changed) response.

 An example of a successful EDHOC exchange using CoAP is shown in
 Figure 5.

 Client Server
 | |
 +--------->| Header: POST (Code=0.02)
 | POST | Uri-Path: "/.well-known/edhoc"
 | | Content-Format: application/edhoc
 | | Payload: EDHOC message_1
 | |
 |<---------+ Header: 2.04 Changed
 | 2.04 | Content-Format: application/edhoc
 | | Payload: EDHOC message_2
 | |
 +--------->| Header: POST (Code=0.02)
 | POST | Uri-Path: "/.well-known/edhoc"
 | | Content-Format: application/edhoc
 | | Payload: EDHOC message_3
 | |
 |<---------+ Header: 2.04 Changed
 | 2.04 |
 | |

 Figure 5: Example of transferring EDHOC in CoAP

D.2. Deriving an OSCORE context from EDHOC

 When EDHOC is used to derive parameters for OSCORE
 [I-D.ietf-core-object-security], the parties must make sure that the
 EDHOC connection identifiers are unique, i.e. C_V MUST NOT be equal
 to C_U. In case that the CoAP client is party U and the CoAP server
 is party V:

 o The client's OSCORE Sender ID is C_V and the server's OSCORE
 Sender ID is C_U, as defined in this document

Selander, et al. Expires March 22, 2019 [Page 39]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) September 2018

 o The AEAD Algorithm is AEAD_V and the HMAC-based Key Derivation
 Function (HKDF) is HKDF_V, as defined in this document

 o The Master Secret and Master Salt are derived as follows where
 length is the key length (in bytes) of AEAD_V.

 Master Secret = EDHOC-Exporter("OSCORE Master Secret", length)
 Master Salt = EDHOC-Exporter("OSCORE Master Salt", 8)

Appendix E. Message Sizes

 This appendix gives an estimate of the message sizes of EDHOC with
 different authentication methods. Note that the examples in this
 appendix are not test vectors, the cryptographic parts are just
 replaced with byte strings of the same length. All examples are
 given in CBOR diagnostic notation and hexadecimal.

E.1. Message Sizes RPK

E.1.1. message_1

 message_1 = (
 1,
 h'c3',
 4,
 0,
 h'000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d
 1e1f',
 -27,
 10,
 -8,
 -8
)

 message_1 (44 bytes):
 01 41 C3 04 00 58 20 00 01 02 03 04 05 06 07 08 09 0A 0B 0C
 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F
 38 1A 0A 27 27

E.1.2. message_2

 plaintext = <<
 { 4 : 'acdc' },
 h'000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d
 1e1f202122232425262728292a2b2c2d2e2f303132333435363738393a3b
 3c3d3e3f'
 >>

Selander, et al. Expires March 22, 2019 [Page 40]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) September 2018

 The protected header map is 7 bytes. The length of plaintext is 73
 bytes so assuming a 64-bit MAC value the length of ciphertext is 81
 bytes.

 message_2 = (
 2,
 null,
 h'c4',
 h'000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d
 1e1f',
 0,
 0,
 0,
 0,
 h'000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d
 1e1f202122232425262728292a2b2c2d2e2f303132333435363738393a3b
 3c3d3e3f404142434445464748494a4b4c4d4e4f50'
)

 message_2 (125 bytes):
 02 F6 41 C4 58 20 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D
 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 00 00
 00 00 58 51 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23
 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 30 31 32 33 34 35 36 37
 38 39 3A 3B 3C 3D 3E 3F 40 41 42 43 44 45 46 47 48 49 4A 4B
 4C 4D 4E 4F 50

E.1.3. message_3

 The plaintext and ciphertext in message_3 are assumed to be of equal
 sizes as in message_2.

 message_3 = (
 3,
 h'c3',
 h'000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d
 1e1f202122232425262728292a2b2c2d2e2f303132333435363738393a3b
 3c3d3e3f404142434445464748494a4b4c4d4e4f50'
)

 message_3 (86 bytes):
 03 41 C3 58 51 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E
 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22
 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 30 31 32 33 34 35 36
 37 38 39 3A 3B 3C 3D 3E 3F 40 41 42 43 44 45 46 47 48 49 4A
 4B 4C 4D 4E 4F 50

Selander, et al. Expires March 22, 2019 [Page 41]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) September 2018

E.2. Message Sizes Certificates

 When the certificates are distributed out-of-band and identified with
 the x5t header and a SHA256/64 hash value, the protected header map
 will be 13 bytes instead of 7 bytes (assuming labels in the range
 -24...23).

 protected = << { TDB1 : [TDB6, h'0001020304050607'] } >>

 When the certificates are identified with the x5chain header, the
 message sizes depends on the size of the (truncated) certificate
 chains. The protected header map will be 3 bytes + the size of the
 certificate chain (assuming a label in the range -24...23).

 protected = << { TDB3 : h'0001020304050607...' } >>

E.3. Message Sizes PSK

E.3.1. message_1

 message_1 = (
 4,
 h'c3',
 4,
 0,
 h'000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d
 1e1f',
 -27,
 10,
 'abba'
)

 message_1 (47 bytes):
 04 41 C3 04 00 58 20 00 01 02 03 04 05 06 07 08 09 0A 0B 0C
 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F
 38 1A 0A 44 61 63 64 63

E.3.2. message_2

 Assuming a 0 byte plaintext and a 64-bit MAC value the ciphertext is
 8 bytes

Selander, et al. Expires March 22, 2019 [Page 42]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) September 2018

 message_2 = (
 5,
 null,
 h'c4',
 h'000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d
 1e1f',
 0,
 0,
 h'0001020304050607'
)

 message_2 (49 bytes):
 05 F6 41 C4 58 20 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D
 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 00 00
 48 61 62 63 64 65 66 67 68

E.3.3. message_3

 The plaintext and ciphertext in message_3 are assumed to be of equal
 sizes as in message_2.

 message_3 = (
 6,
 h'c3',
 h'0001020304050607'
)

 message_3 (12 bytes):
 06 41 C3 48 00 01 02 03 04 05 06 07

E.4. Summary

 PSK RPK x5t x5chain
 --
 message_1 47 44 44 44
 message_2 49 125 131 121 + Certificate chain
 message_3 12 86 92 82 + Certificate chain
 --
 Total 108 255 267 247 + Certificate chains

 Figure 6: Typical message sizes in bytes

Acknowledgments

 The authors want to thank Dan Harkins, Ilari Liusvaara, Jim Schaad,
 and Ludwig Seitz for reviewing intermediate versions of the draft and
 contributing concrete proposals incorporated in this version. We are

Selander, et al. Expires March 22, 2019 [Page 43]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) September 2018

 especially indebted to Jim Schaad for his continuous reviewing and
 implementation of different versions of the draft.

 We are also grateful to Theis Groenbech Petersen, Thorvald Sahl
 Joergensen, Alessandro Bruni, and Carsten Schuermann for their work
 on formal analysis of EDHOC.

Authors' Addresses

 Goeran Selander
 Ericsson AB

 Email: goran.selander@ericsson.com

 John Mattsson
 Ericsson AB

 Email: john.mattsson@ericsson.com

 Francesca Palombini
 Ericsson AB

 Email: francesca.palombini@ericsson.com

Selander, et al. Expires March 22, 2019 [Page 44]

