
Network Working Group G. Selander
Internet-Draft J. Mattsson
Intended status: Standards Track F. Palombini
Expires: March 14, 2020 Ericsson AB
 September 11, 2019

Ephemeral Diffie-Hellman Over COSE (EDHOC)
draft-selander-ace-cose-ecdhe-14

Abstract

 This document specifies Ephemeral Diffie-Hellman Over COSE (EDHOC), a
 very compact, and lightweight authenticated Diffie-Hellman key
 exchange with ephemeral keys. EDHOC provides mutual authentication,
 perfect forward secrecy, and identity protection. EDHOC is intended
 for usage in constrained scenarios and a main use case is to
 establish an OSCORE security context. By reusing COSE for
 cryptography, CBOR for encoding, and CoAP for transport, the
 additional code footprint can be kept very low.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on March 14, 2020.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect

Selander, et al. Expires March 14, 2020 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) September 2019

 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
1.1. Rationale for EDHOC 4
1.2. Terminology and Requirements Language 5

2. Background . 6
3. EDHOC Overview . 7
3.1. Cipher Suites . 9
3.2. Ephemeral Public Keys 9
3.3. Key Derivation . 9

4. EDHOC Authenticated with Asymmetric Keys 12
4.1. Overview . 12
4.2. EDHOC Message 1 . 14
4.3. EDHOC Message 2 . 16
4.4. EDHOC Message 3 . 19

5. EDHOC Authenticated with Symmetric Keys 21
5.1. Overview . 21
5.2. EDHOC Message 1 . 22
5.3. EDHOC Message 2 . 23
5.4. EDHOC Message 3 . 23

6. Error Handling . 24
6.1. EDHOC Error Message 24

7. Transferring EDHOC and Deriving Application Keys 25
7.1. Transferring EDHOC in CoAP 25
7.2. Transferring EDHOC over Other Protocols 28

8. Security Considerations 28
8.1. Security Properties 28
8.2. Cryptographic Considerations 29
8.3. Cipher Suites . 30
8.4. Unprotected Data . 30
8.5. Denial-of-Service . 30
8.6. Implementation Considerations 31
8.7. Other Documents Referencing EDHOC 32

9. IANA Considerations . 32
9.1. EDHOC Cipher Suites Registry 32
9.2. EDHOC Method Type Registry 32
9.3. The Well-Known URI Registry 33
9.4. Media Types Registry 33
9.5. CoAP Content-Formats Registry 34
9.6. Expert Review Instructions 34

10. References . 35
10.1. Normative References 35
10.2. Informative References 37

Selander, et al. Expires March 14, 2020 [Page 2]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) September 2019

Appendix A. Use of CBOR, CDDL and COSE in EDHOC 39
A.1. CBOR and CDDL . 39
A.2. COSE . 40

Appendix B. EDHOC Authenticated withDiffie-Hellman Keys 40
Appendix C. Test Vectors . 41

 C.1. Test Vectors for EDHOC Authenticated with Asymmetric Keys
 (RPK) . 41
 C.2. Test Vectors for EDHOC Authenticated with Symmetric Keys
 (PSK) . 57
 Acknowledgments . 70
 Authors' Addresses . 70

1. Introduction

 Security at the application layer provides an attractive option for
 protecting Internet of Things (IoT) deployments, for example where
 transport layer security is not sufficient
 [I-D.hartke-core-e2e-security-reqs] or where the protection needs to
 work over a variety of underlying protocols. IoT devices may be
 constrained in various ways, including memory, storage, processing
 capacity, and energy [RFC7228]. A method for protecting individual
 messages at the application layer suitable for constrained devices,
 is provided by CBOR Object Signing and Encryption (COSE) [RFC8152]),
 which builds on the Concise Binary Object Representation (CBOR)
 [I-D.ietf-cbor-7049bis]. Object Security for Constrained RESTful
 Environments (OSCORE) [RFC8613] is a method for application-layer
 protection of the Constrained Application Protocol (CoAP), using
 COSE.

 In order for a communication session to provide forward secrecy, the
 communicating parties can run an Elliptic Curve Diffie-Hellman (ECDH)
 key exchange protocol with ephemeral keys, from which shared key
 material can be derived. This document specifies Ephemeral Diffie-
 Hellman Over COSE (EDHOC), a lightweight key exchange protocol
 providing perfect forward secrecy and identity protection.
 Authentication is based on credentials established out of band, e.g.
 from a trusted third party, such as an Authorization Server as
 specified by [I-D.ietf-ace-oauth-authz]. EDHOC supports
 authentication using pre-shared keys (PSK), raw public keys (RPK),
 and public key certificates. After successful completion of the
 EDHOC protocol, application keys and other application specific data
 can be derived using the EDHOC-Exporter interface. A main use case
 for EDHOC is to establish an OSCORE security context. EDHOC uses
 COSE for cryptography, CBOR for encoding, and CoAP for transport. By
 reusing existing libraries, the additional code footprint can be kept
 very low. Note that this document focuses on authentication and key
 establishment: for integration with authorization of resource access,
 refer to [I-D.ietf-ace-oscore-profile].

https://datatracker.ietf.org/doc/html/rfc7228
https://datatracker.ietf.org/doc/html/rfc8152
https://datatracker.ietf.org/doc/html/rfc8613

Selander, et al. Expires March 14, 2020 [Page 3]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) September 2019

 EDHOC is designed to work in highly constrained scenarios making it
 especially suitable for network technologies such as Cellular IoT,
 6TiSCH [I-D.ietf-6tisch-dtsecurity-zerotouch-join], and LoRaWAN
 [LoRa1][LoRa2]. These network technologies are characterized by
 their low throughput, low power consumption, and small frame sizes.
 Compared to the DTLS 1.3 handshake [I-D.ietf-tls-dtls13] with ECDH
 and connection ID, the number of bytes in EDHOC is less than 1/4 when
 PSK authentication is used and less than 1/3 when RPK authentication
 is used, see [I-D.ietf-lwig-security-protocol-comparison]. Typical
 message sizes for EDHOC with pre-shared keys, raw public keys, and
 X.509 certificates are shown in Figure 1.

 ===
 PSK RPK x5t x5chain

 message_1 40 38 38 38
 message_2 45 114 126 116 + Certificate chain
 message_3 11 80 91 81 + Certificate chain

 Total 96 232 255 235 + Certificate chains
 ===

 Figure 1: Typical message sizes in bytes

 The ECDH exchange and the key derivation follow [SIGMA], NIST SP-
 800-56A [SP-800-56A], and HKDF [RFC5869]. CBOR
 [I-D.ietf-cbor-7049bis] and COSE [RFC8152] are used to implement
 these standards. The use of COSE provides crypto agility and enables
 use of future algorithms and headers designed for constrained IoT.

 This document is organized as follows: Section 2 describes how EDHOC
 builds on SIGMA-I, Section 3 specifies general properties of EDHOC,
 including message flow, formatting of the ephemeral public keys, and
 key derivation, Section 4 specifies EDHOC with asymmetric key
 authentication, Section 5 specifies EDHOC with symmetric key
 authentication, Section 6 specifies the EDHOC error message, and

Section 7 describes how EDHOC can be transferred in CoAP and used to
 establish an OSCORE security context.

1.1. Rationale for EDHOC

 Many constrained IoT systems today do not use any security at all,
 and when they do, they often do not follow best practices. One
 reason is that many current security protocols are not designed with
 constrained IoT in mind. Constrained IoT systems often deal with
 personal information, valuable business data, and actuators
 interacting with the physical world. Not only do such systems need
 security and privacy, they often need end-to-end protection with

https://datatracker.ietf.org/doc/html/rfc5869
https://datatracker.ietf.org/doc/html/rfc8152

Selander, et al. Expires March 14, 2020 [Page 4]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) September 2019

 source authentication and perfect forward secrecy. EDHOC and OSCORE
 [RFC8613] enables security following current best practices to
 devices and systems where current security protocols are impractical.

 EDHOC is optimized for small message sizes and can therefore be sent
 over a small number of radio frames. The message size of a key
 exchange protocol may have a large impact on the performance of an
 IoT deployment, especially in noisy environments. For example, in a
 network bootstrapping setting a large number of devices turned on in
 a short period of time may result in large latencies caused by
 parallel key exchanges. Requirements on network formation time in
 constrained environments can be translated into key exchange
 overhead. In networks technologies with transmission back-off time,
 each additional frame significantly increases the latency even if no
 other devices are transmitting.

 Power consumption for wireless devices is highly dependent on message
 transmission, listening, and reception. For devices that only send a
 few bytes occasionally, the battery lifetime may be significantly
 reduced by a heavy key exchange protocol. Moreover, a key exchange
 may need to be executed more than once, e.g. due to a device losing
 power or rebooting for other reasons.

 EDHOC is adapted to primitives and protocols designed for the
 Internet of Things: EDHOC is built on CBOR and COSE which enables
 small message overhead and efficient parsing in constrained devices.
 EDHOC is not bound to a particular transport layer, but it is
 recommended to transport the EDHOC message in CoAP payloads. EDHOC
 is not bound to a particular communication security protocol but
 works off-the-shelf with OSCORE [RFC8613] providing the necessary
 input parameters with required properties. Maximum code complexity
 (ROM/Flash) is often a constraint in many devices and by reusing
 already existing libraries, the additional code footprint for EDHOC +
 OSCORE can be kept very low.

1.2. Terminology and Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP

14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 The word "encryption" without qualification always refers to
 authenticated encryption, in practice implemented with an
 Authenticated Encryption with Additional Data (AEAD) algorithm, see
 [RFC5116].

https://datatracker.ietf.org/doc/html/rfc8613
https://datatracker.ietf.org/doc/html/rfc8613
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174
https://datatracker.ietf.org/doc/html/rfc5116

Selander, et al. Expires March 14, 2020 [Page 5]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) September 2019

 Readers are expected to be familiar with the terms and concepts
 described in CBOR [I-D.ietf-cbor-7049bis], COSE [RFC8152], and CDDL
 [RFC8610]. The Concise Data Definition Language (CDDL) is used to
 express CBOR data structures [I-D.ietf-cbor-7049bis]. Examples of
 CBOR and CDDL are provided in Appendix A.1.

2. Background

 SIGMA (SIGn-and-MAc) is a family of theoretical protocols with a
 large number of variants [SIGMA]. Like IKEv2 and (D)TLS 1.3
 [RFC8446], EDHOC is built on a variant of the SIGMA protocol which
 provide identity protection of the initiator (SIGMA-I), and like
 (D)TLS 1.3, EDHOC implements the SIGMA-I variant as Sign-then-MAC.
 The SIGMA-I protocol using an authenticated encryption algorithm is
 shown in Figure 2.

 Party U Party V
 | G_X |
 +-->|
 | |
 | G_Y, AEAD(K_2; ID_CRED_V, Sig(V; CRED_V, G_X, G_Y)) |
 |<--+
 | |
 | AEAD(K_3; ID_CRED_U, Sig(U; CRED_U, G_Y, G_X)) |
 +-->|
 | |

 Figure 2: Authenticated encryption variant of the SIGMA-I protocol.

 The parties exchanging messages are called "U" and "V". They
 exchange identities and ephemeral public keys, compute the shared
 secret, and derive symmetric application keys.

 o G_X and G_Y are the ECDH ephemeral public keys of U and V,
 respectively.

 o CRED_U and CRED_V are the credentials containing the public
 authentication keys of U and V, respectively.

 o ID_CRED_U and ID_CRED_V are data enabling the recipient party to
 retrieve the credential of U and V, respectively.

 o Sig(U; .) and S(V; .) denote signatures made with the private
 authentication key of U and V, respectively.

 o AEAD(K; .) denotes authenticated encryption with additional data
 using the key K derived from the shared secret. The authenticated

https://datatracker.ietf.org/doc/html/rfc8152
https://datatracker.ietf.org/doc/html/rfc8610
https://datatracker.ietf.org/doc/html/rfc8446

Selander, et al. Expires March 14, 2020 [Page 6]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) September 2019

 encryption MUST NOT be replaced by plain encryption, see
Section 8.

 In order to create a "full-fledged" protocol some additional protocol
 elements are needed. EDHOC adds:

 o Explicit connection identifiers C_U, C_V chosen by U and V,
 respectively, enabling the recipient to find the protocol state.

 o Transcript hashes TH_2, TH_3, TH_4 used for key derivation and as
 additional authenticated data.

 o Computationally independent keys derived from the ECDH shared
 secret and used for encryption of different messages.

 o Verification of a common preferred cipher suite (AEAD algorithm,
 ECDH algorithm, ECDH curve, signature algorithm):

 * U lists supported cipher suites in order of preference

 * V verifies that the selected cipher suite is the first
 supported cipher suite

 o Method types and error handling.

 o Transport of opaque application defined data.

 EDHOC is designed to encrypt and integrity protect as much
 information as possible, and all symmetric keys are derived using as
 much previous information as possible. EDHOC is furthermore designed
 to be as compact and lightweight as possible, in terms of message
 sizes, processing, and the ability to reuse already existing CBOR,
 COSE, and CoAP libraries.

 To simplify for implementors, the use of CBOR in EDHOC is summarized
 in Appendix A and test vectors including CBOR diagnostic notation are
 given in Appendix C.

3. EDHOC Overview

 EDHOC consists of three flights (message_1, message_2, message_3)
 that maps directly to the three messages in SIGMA-I, plus an EDHOC
 error message. EDHOC messages are CBOR Sequences
 [I-D.ietf-cbor-sequence], where the first data item of message_1 is
 an int (TYPE) specifying the method (asymmetric, symmetric) and the
 correlation properties of the transport used.

Selander, et al. Expires March 14, 2020 [Page 7]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) September 2019

 While EDHOC uses the COSE_Key, COSE_Sign1, and COSE_Encrypt0
 structures, only a subset of the parameters is included in the EDHOC
 messages. After creating EDHOC message_3, Party U can derive
 symmetric application keys, and application protected data can
 therefore be sent in parallel with EDHOC message_3. The application
 may protect data using the algorithms (AEAD, HMAC, etc.) in the
 selected cipher suite and the connection identifiers (C_U, C_V).
 EDHOC may be used with the media type application/edhoc defined in

Section 9.

 Party U Party V
 | |
 | ------------------ EDHOC message_1 -----------------> |
 | |
 | <----------------- EDHOC message_2 ------------------ |
 | |
 | ------------------ EDHOC message_3 -----------------> |
 | |
 | <----------- Application Protected Data ------------> |
 | |

 Figure 3: EDHOC message flow

 The EDHOC message exchange may be authenticated using pre-shared keys
 (PSK), raw public keys (RPK), or public key certificates. EDHOC
 assumes the existence of mechanisms (certification authority, manual
 distribution, etc.) for binding identities with authentication keys
 (public or pre-shared). When a public key infrastructure is used,
 the identity is included in the certificate and bound to the
 authentication key by trust in the certification authority. When the
 credential is manually distributed (PSK, RPK, self-signed
 certificate), the identity and authentication key is distributed out-
 of-band and bound together by trust in the distribution method.
 EDHOC with symmetric key authentication is very similar to EDHOC with
 asymmetric key authentication, the difference being that information
 is only MACed, not signed, and that session keys are derived from the
 ECDH shared secret and the PSK.

 EDHOC allows opaque application data (UAD and PAD) to be sent in the
 EDHOC messages. Unprotected Application Data (UAD_1, UAD_2) may be
 sent in message_1 and message_2 and can be e.g. be used to transfer
 access tokens that are protected outside of EDHOC. Protected
 application data (PAD_3) may be used to transfer any application data
 in message_3.

 Cryptographically, EDHOC does not put requirements on the lower
 layers. EDHOC is not bound to a particular transport layer, and can
 be used in environments without IP. It is recommended to transport

Selander, et al. Expires March 14, 2020 [Page 8]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) September 2019

 the EDHOC message in CoAP payloads, see Section 7. An implementation
 may support only Party U or only Party V.

3.1. Cipher Suites

 EDHOC cipher suites consist of an ordered set of COSE algorithms: an
 AEAD algorithm, an HMAC algorithm, an ECDH curve, a signature
 algorithm, and signature algorithm parameters. The signature
 algorithm is not used when EDHOC is authenticated with symmetric
 keys. Each cipher suite is either identified with a pre-defined int
 label or with an array of labels and values from the COSE Algorithms
 and Elliptic Curves registries.

 suite = int / [4*4 algs: int / tstr, ? para: any]

 This document specifies two pre-defined cipher suites.

 0. [10, 5, 4, -8, 6]
 (AES-CCM-16-64-128, HMAC 256/256, X25519, EdDSA, Ed25519)

 1. [10, 5, 1, -7, 1]
 (AES-CCM-16-64-128, HMAC 256/256, P-256, ES256, P-256)

3.2. Ephemeral Public Keys

 The ECDH ephemeral public keys are formatted as a COSE_Key of type
 EC2 or OKP according to Sections 13.1 and 13.2 of [RFC8152], but only
 the x-coordinate is included in the EDHOC messages. For Elliptic
 Curve Keys of type EC2, compact representation as per [RFC6090] MAY
 be used also in the COSE_Key. If the COSE implementation requires an
 y-coordinate, any of the possible values of the y-coordinate can be
 used, see Appendix C of [RFC6090]. COSE [RFC8152] always use compact
 output for Elliptic Curve Keys of type EC2.

3.3. Key Derivation

 Key and IV derivation SHALL be performed with HKDF [RFC5869]
 following the specification in Section 11 of [RFC8152] using the HMAC
 algorithm in the selected cipher suite. The pseudorandom key (PRK)
 is derived using HKDF-Extract [RFC5869]

 PRK = HKDF-Extract(salt, IKM)

 with the following input:

 o The salt SHALL be the PSK when EDHOC is authenticated with
 symmetric keys, and the empty byte string when EDHOC is
 authenticated with asymmetric keys. The PSK is used as 'salt' to

https://datatracker.ietf.org/doc/html/rfc8152
https://datatracker.ietf.org/doc/html/rfc6090
https://datatracker.ietf.org/doc/html/rfc6090#appendix-C
https://datatracker.ietf.org/doc/html/rfc8152
https://datatracker.ietf.org/doc/html/rfc5869
https://datatracker.ietf.org/doc/html/rfc8152#section-11
https://datatracker.ietf.org/doc/html/rfc5869

Selander, et al. Expires March 14, 2020 [Page 9]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) September 2019

 simplify implementation. Note that [RFC5869] specifies that if
 the salt is not provided, it is set to a string of zeros (see

Section 2.2 of [RFC5869]). For implementation purposes, not
 providing the salt is the same as setting the salt to the empty
 byte string.

 o The input keying material (IKM) SHALL be the ECDH shared secret
 G_XY as defined in Section 12.4.1 of [RFC8152]. When using the
 curve25519, the ECDH shared secret is the output of the X25519
 function [RFC7748].

 Example: Assuming use of HMAC 256/256 the extract phase of HKDF
 produces a PRK as follows:

 PRK = HMAC-SHA-256(salt, G_XY)

 where salt = 0x (the empty byte string) in the asymmetric case and
 salt = PSK in the symmetric case.

 The keys and IVs used in EDHOC are derived from PRK using HKDF-Expand
 [RFC5869]

 OKM = HKDF-Expand(PRK, info, L)

 where L is the length of output keying material (OKM) in bytes and
 info is the CBOR encoding of a COSE_KDF_Context

 info = [
 AlgorithmID,
 [null, null, null],
 [null, null, null],
 [keyDataLength, h'', other]
]

 where

 o AlgorithmID is an int or tstr, see below

 o keyDataLength is a uint set to the length of output keying
 material in bits, see below

 o other is a bstr set to one of the transcript hashes TH_2, TH_3, or
 TH_4 as defined in Sections 4.3.1, 4.4.1, and 3.3.1.

 For message_2 and message_3, the keys K_2 and K_3 SHALL be derived
 using transcript hashes TH_2 and TH_3 respectively. The key SHALL be
 derived using AlgorithmID set to the integer value of the AEAD in the

https://datatracker.ietf.org/doc/html/rfc5869
https://datatracker.ietf.org/doc/html/rfc5869#section-2.2
https://datatracker.ietf.org/doc/html/rfc8152#section-12.4.1
https://datatracker.ietf.org/doc/html/rfc7748
https://datatracker.ietf.org/doc/html/rfc5869

Selander, et al. Expires March 14, 2020 [Page 10]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) September 2019

 selected cipher suite, and keyDataLength equal to the key length of
 the AEAD.

 If the AEAD algorithm uses an IV, then IV_2 and IV_3 for message_2
 and message_3 SHALL be derived using the transcript hashes TH_2 and
 TH_3 respectively. The IV SHALL be derived using AlgorithmID = "IV-
 GENERATION" as specified in Section 12.1.2. of [RFC8152], and
 keyDataLength equal to the IV length of the AEAD.

 Assuming the output OKM length L is smaller than the hash function
 output size, the expand phase of HKDF consists of a single HMAC
 invocation

 OKM = first L bytes of HMAC(PRK, info || 0x01)

 where || means byte string concatenation.

 Example: Assuming use of the algorithm AES-CCM-16-64-128 and HMAC
 256/256, K_i and IV_i are therefore the first 16 and 13 bytes,
 respectively, of

 HMAC-SHA-256(PRK, info || 0x01)

 calculated with (AlgorithmID, keyDataLength) = (10, 128) and
 (AlgorithmID, keyDataLength) = ("IV-GENERATION", 104), respectively.

3.3.1. EDHOC-Exporter Interface

 Application keys and other application specific data can be derived
 using the EDHOC-Exporter interface defined as:

 EDHOC-Exporter(label, length) = HKDF-Expand(PRK, info, length)

 The output of the EDHOC-Exporter function SHALL be derived using
 AlgorithmID = label, keyDataLength = 8 * length, and other = TH_4
 where label is a tstr defined by the application and length is a uint
 defined by the application. The label SHALL be different for each
 different exporter value. The transcript hash TH_4 is a CBOR encoded
 bstr and the input to the hash function is a CBOR Sequence.

 TH_4 = H(TH_3, CIPHERTEXT_3)

 where H() is the hash function in the HMAC algorithm. Example use of
 the EDHOC-Exporter is given in Sections 3.3.2 and 7.1.1.

https://datatracker.ietf.org/doc/html/rfc8152#section-12.1.2

Selander, et al. Expires March 14, 2020 [Page 11]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) September 2019

3.3.2. EDHOC PSK Chaining

 An application using EDHOC may want to derive new PSKs to use for
 authentication in future EDHOC exchanges. In this case, the new PSK
 and the ID_PSK 'kid_value' parameter SHOULD be derived as follows
 where length is the key length (in bytes) of the AEAD Algorithm.

 PSK = EDHOC-Exporter("EDHOC Chaining PSK", length)
 ID_PSK = EDHOC-Exporter("EDHOC Chaining ID_PSK", 4)

4. EDHOC Authenticated with Asymmetric Keys

4.1. Overview

 EDHOC supports authentication with raw public keys (RPK) and public
 key certificates with the requirements that:

 o Only Party V SHALL have access to the private authentication key
 of Party V,

 o Only Party U SHALL have access to the private authentication key
 of Party U,

 o Party U is able to retrieve Party V's public authentication key
 using ID_CRED_V,

 o Party V is able to retrieve Party U's public authentication key
 using ID_CRED_U,

 where the identifiers ID_CRED_U and ID_CRED_V are COSE header_maps,
 i.e. a CBOR map containing COSE Common Header Parameters, see
 [RFC8152]). ID_CRED_U and ID_CRED_V need to contain parameters that
 can identify a public authentication key, see Appendix A.2. In the
 following we give some examples of possible COSE header parameters.

 Raw public keys are most optimally stored as COSE_Key objects and
 identified with a 'kid' parameter (see [RFC8152]):

 o ID_CRED_x = { 4 : kid_value }, where kid_value : bstr, for x = U
 or V.

 Public key certificates can be identified in different ways. Several
 header parameters for identifying X.509 certificates are defined in
 [I-D.ietf-cose-x509] (the exact labels are TBD):

 o by a hash value with the 'x5t' parameter;

 * ID_CRED_x = { TBD1 : COSE_CertHash }, for x = U or V,

https://datatracker.ietf.org/doc/html/rfc8152
https://datatracker.ietf.org/doc/html/rfc8152

Selander, et al. Expires March 14, 2020 [Page 12]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) September 2019

 o by a URL with the 'x5u' parameter;

 * ID_CRED_x = { TBD2 : uri }, for x = U or V,

 o or by a bag of certificates with the 'x5bag' parameter;

 * ID_CRED_x = { TBD3 : COSE_X509 }, for x = U or V.

 o by a certificate chain with the 'x5chain' parameter;

 * ID_CRED_x = { TBD4 : COSE_X509 }, for x = U or V,

 In the latter two examples, ID_CRED_U and ID_CRED_V contain the
 actual credential used for authentication. The purpose of ID_CRED_U
 and ID_CRED_V is to facilitate retrieval of a public authentication
 key and when they do not contain the actual credential, they may be
 very short. It is RECOMMENDED that they uniquely identify the public
 authentication key as the recipient may otherwise have to try several
 keys. ID_CRED_U and ID_CRED_V are transported in the ciphertext, see

Section 4.3.2 and Section 4.4.2.

 The actual credentials CRED_U and CRED_V (e.g. a COSE_Key or a single
 X.509 certificate) are signed by party U and V, respectively to
 prevent duplicate-signature key selection (DSKS) attacks, see

Section 4.4.1 and Section 4.3.1. Party U and Party V MAY use
 different types of credentials, e.g. one uses RPK and the other uses
 certificate. When included in the signature payload, COSE_Keys of
 type OKP SHALL only include the parameters 1 (kty), -1 (crv), and -2
 (x-coordinate). COSE_Keys of type EC2 SHALL only include the
 parameters 1 (kty), -1 (crv), -2 (x-coordinate), and -3
 (y-coordinate). The parameters SHALL be encoded in decreasing order.

 The connection identifiers C_U and C_V do not have any cryptographic
 purpose in EDHOC. They contain information facilitating retrieval of
 the protocol state and may therefore be very short. The connection
 identifier MAY be used with an application protocol (e.g. OSCORE)
 for which EDHOC establishes keys, in which case the connection
 identifiers SHALL adhere to the requirements for that protocol. Each
 party choses a connection identifier it desires the other party to
 use in outgoing messages.

 The first data item of message_1 is an int TYPE = 4 * method + corr
 specifying the method and the correlation properties of the transport
 used. corr = 0 is used when there is no external correlation
 mechanism. corr = 1 is used when there is an external correlation
 mechanism (e.g. the Token in CoAP) that enables Party U to correlate
 message_1 and message_2. corr = 2 is used when there is an external
 correlation mechanism that enables Party V to correlate message_2 and

Selander, et al. Expires March 14, 2020 [Page 13]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) September 2019

 message_3. corr = 3 is used when there is an external correlation
 mechanism that enables the parties to correlate all the messages.
 The use of the correlation parameter is exemplified in Section 7.1.

 1 byte connection and credential identifiers are realistic in many
 scenarios as most constrained devices only have a few keys and
 connections. In cases where a node only has one connection or key,
 the identifiers may even be the empty byte string.

 EDHOC with asymmetric key authentication is illustrated in Figure 4.

 Party U Party V
 | TYPE, SUITES_U, G_X, C_U, UAD_1 |
 +-->|
 | message_1 |
 | |
 | C_U, G_Y, C_V, AEAD(K_2; ID_CRED_V, Sig(V; CRED_V, TH_2), UAD_2) |
 |<--+
 | message_2 |
 | |
 | C_V, AEAD(K_3; ID_CRED_U, Sig(U; CRED_U, TH_3), PAD_3) |
 +-->|
 | message_3 |

 Figure 4: Overview of EDHOC with asymmetric key authentication.

4.2. EDHOC Message 1

4.2.1. Formatting of Message 1

 message_1 SHALL be a CBOR Sequence (see Appendix A.1) as defined
 below

 message_1 = (
 TYPE : int,
 SUITES_U : suite / [index : uint, 2* suite],
 G_X : bstr,
 C_U : bstr,
 ? UAD_1 : bstr,
)

 where:

 o TYPE = 4 * method + corr, where the method = 0 and the correlation
 parameter corr is chosen based on the transport and determines
 which connection identifiers that are omitted (see Section 4.1).

Selander, et al. Expires March 14, 2020 [Page 14]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) September 2019

 o SUITES_U - cipher suites which Party U supports in order of
 decreasing preference. One cipher suite is selected. If a single
 cipher suite is conveyed then that cipher suite is selected. If
 multiple cipher suites are conveyed then zero-based index (i.e. 0
 for the first suite, 1 for the second suite, etc.) identifies the
 selected cipher suite out of the array elements listing the cipher
 suites (see Section 6).

 o G_X - the x-coordinate of the ephemeral public key of Party U

 o C_U - variable length connection identifier

 o UAD_1 - bstr containing unprotected opaque application data

4.2.2. Party U Processing of Message 1

 Party U SHALL compose message_1 as follows:

 o The supported cipher suites and the order of preference MUST NOT
 be changed based on previous error messages. However, the list
 SUITES_U sent to Party V MAY be truncated such that cipher suites
 which are the least preferred are omitted. The amount of
 truncation MAY be changed between sessions, e.g. based on previous
 error messages (see next bullet), but all cipher suites which are
 more preferred than the least preferred cipher suite in the list
 MUST be included in the list.

 o Determine the cipher suite to use with Party V in message_1. If
 Party U previously received from Party V an error message to
 message_1 with diagnostic payload identifying a cipher suite that
 U supports, then U SHALL use that cipher suite. Otherwise the
 first cipher suite in SUITES_U MUST be used.

 o Generate an ephemeral ECDH key pair as specified in Section 5 of
 [SP-800-56A] using the curve in the selected cipher suite. Let
 G_X be the x-coordinate of the ephemeral public key.

 o Choose a connection identifier C_U and store it for the length of
 the protocol.

 o Encode message_1 as a sequence of CBOR encoded data items as
 specified in Section 4.2.1

4.2.3. Party V Processing of Message 1

 Party V SHALL process message_1 as follows:

 o Decode message_1 (see Appendix A.1).

Selander, et al. Expires March 14, 2020 [Page 15]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) September 2019

 o Verify that the selected cipher suite is supported and that no
 prior cipher suites in SUITES_U are supported.

 o Validate that there is a solution to the curve definition for the
 given x-coordinate G_X.

 o Pass UAD_1 to the application.

 If any verification step fails, Party V MUST send an EDHOC error
 message back, formatted as defined in Section 6, and the protocol
 MUST be discontinued. If V does not support the selected cipher
 suite, then SUITES_V MUST include one or more supported cipher
 suites. If V does not support the selected cipher suite, but
 supports another cipher suite in SUITES_U, then SUITES_V MUST include
 the first supported cipher suite in SUITES_U.

4.3. EDHOC Message 2

4.3.1. Formatting of Message 2

 message_2 and data_2 SHALL be CBOR Sequences (see Appendix A.1) as
 defined below

 message_2 = (
 data_2,
 CIPHERTEXT_2 : bstr,
)

 data_2 = (
 ? C_U : bstr,
 G_Y : bstr,
 C_V : bstr,
)

 where:

 o G_Y - the x-coordinate of the ephemeral public key of Party V

 o C_V - variable length connection identifier

4.3.2. Party V Processing of Message 2

 Party V SHALL compose message_2 as follows:

 o If TYPE mod 4 equals 1 or 3, C_U is omitted, otherwise C_U is not
 omitted.

Selander, et al. Expires March 14, 2020 [Page 16]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) September 2019

 o Generate an ephemeral ECDH key pair as specified in Section 5 of
 [SP-800-56A] using the curve in the selected cipher suite. Let
 G_Y be the x-coordinate of the ephemeral public key.

 o Choose a connection identifier C_V and store it for the length of
 the protocol.

 o Compute the transcript hash TH_2 = H(message_1, data_2) where
 H() is the hash function in the HMAC algorithm. The transcript
 hash TH_2 is a CBOR encoded bstr and the input to the hash
 function is a CBOR Sequence.

 o Compute COSE_Sign1 as defined in Section 4.4 of [RFC8152], using
 the signature algorithm in the selected cipher suite, the private
 authentication key of Party V, and the parameters below. Note
 that only 'signature' of the COSE_Sign1 object is used to create
 message_2, see next bullet. The unprotected header (not included
 in the EDHOC message) MAY contain parameters (e.g. 'alg').

 * protected = bstr .cbor ID_CRED_V

 * payload = CRED_V

 * external_aad = TH_2

 * ID_CRED_V - identifier to facilitate retrieval of CRED_V, see
Section 4.1

 * CRED_V - bstr credential containing the credential of Party V,
 e.g. its public authentication key or X.509 certificate see

Section 4.1. The public key must be a signature key. Note
 that if objects that are not bstr are used, such as COSE_Key
 for public authentication keys, these objects must be wrapped
 in a CBOR bstr.

 COSE constructs the input to the Signature Algorithm as follows:

 * The key is the private authentication key of V.

 * The message M to be signed is the CBOR encoding of:

 ["Signature1", << ID_CRED_V >>, TH_2, CRED_V]

 o Compute COSE_Encrypt0 as defined in Section 5.3 of [RFC8152], with
 the AEAD algorithm in the selected cipher suite, K_2, IV_2, and
 the parameters below. Note that only 'ciphertext' of the
 COSE_Encrypt0 object is used to create message_2, see next bullet.
 The protected header SHALL be empty. The unprotected header (not

https://datatracker.ietf.org/doc/html/rfc8152#section-4.4
https://datatracker.ietf.org/doc/html/rfc8152#section-5.3

Selander, et al. Expires March 14, 2020 [Page 17]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) September 2019

 included in the EDHOC message) MAY contain parameters (e.g.
 'alg').

 * plaintext = (ID_CRED_V / kid_value, signature, ? UAD_2)

 * external_aad = TH_2

 * UAD_2 = bstr containing opaque unprotected application data

 where signature is taken from the COSE_Sign1 object, ID_CRED_V is
 a COSE header_map (i.e. a CBOR map containing COSE Common Header
 Parameters, see [RFC8152]), and kid_value is a bstr. If ID_CRED_V
 contains a single 'kid' parameter, i.e., ID_CRED_V = { 4 :
 kid_value }, only kid_value is conveyed in the plaintext.

 COSE constructs the input to the AEAD [RFC5116] as follows:

 * Key K = K_2

 * Nonce N = IV_2

 * Plaintext P = (ID_CRED_V / kid_value, signature, ? UAD_2)

 * Associated data A = ["Encrypt0", h'', TH_2]

 o Encode message_2 as a sequence of CBOR encoded data items as
 specified in Section 4.3.1. CIPHERTEXT_2 is the COSE_Encrypt0
 ciphertext.

4.3.3. Party U Processing of Message 2

 Party U SHALL process message_2 as follows:

 o Decode message_2 (see Appendix A.1).

 o Retrieve the protocol state using the connection identifier C_U
 and/or other external information such as the CoAP Token and the
 5-tuple.

 o Validate that there is a solution to the curve definition for the
 given x-coordinate G_Y.

 o Decrypt and verify COSE_Encrypt0 as defined in Section 5.3 of
 [RFC8152], with the AEAD algorithm in the selected cipher suite,
 K_2, and IV_2.

https://datatracker.ietf.org/doc/html/rfc8152
https://datatracker.ietf.org/doc/html/rfc5116
https://datatracker.ietf.org/doc/html/rfc8152#section-5.3
https://datatracker.ietf.org/doc/html/rfc8152#section-5.3

Selander, et al. Expires March 14, 2020 [Page 18]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) September 2019

 o Verify COSE_Sign1 as defined in Section 4.4 of [RFC8152], using
 the signature algorithm in the selected cipher suite and the
 public authentication key of Party V.

 If any verification step fails, Party U MUST send an EDHOC error
 message back, formatted as defined in Section 6, and the protocol
 MUST be discontinued.

4.4. EDHOC Message 3

4.4.1. Formatting of Message 3

 message_3 and data_3 SHALL be CBOR Sequences (see Appendix A.1) as
 defined below

 message_3 = (
 data_3,
 CIPHERTEXT_3 : bstr,
)

 data_3 = (
 ? C_V : bstr,
)

4.4.2. Party U Processing of Message 3

 Party U SHALL compose message_3 as follows:

 o If TYPE mod 4 equals 2 or 3, C_V is omitted, otherwise C_V is not
 omitted.

 o Compute the transcript hash TH_3 = H(TH_2 , CIPHERTEXT_2, data_3
) where H() is the hash function in the HMAC algorithm. The
 transcript hash TH_3 is a CBOR encoded bstr and the input to the
 hash function is a CBOR Sequence.

 o Compute COSE_Sign1 as defined in Section 4.4 of [RFC8152], using
 the signature algorithm in the selected cipher suite, the private
 authentication key of Party U, and the parameters below. Note
 that only 'signature' of the COSE_Sign1 object is used to create
 message_3, see next bullet. The unprotected header (not included
 in the EDHOC message) MAY contain parameters (e.g. 'alg').

 * protected = bstr .cbor ID_CRED_U

 * payload = CRED_U

 * external_aad = TH_3

https://datatracker.ietf.org/doc/html/rfc8152#section-4.4
https://datatracker.ietf.org/doc/html/rfc8152#section-4.4

Selander, et al. Expires March 14, 2020 [Page 19]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) September 2019

 * ID_CRED_U - identifier to facilitate retrieval of CRED_U, see
Section 4.1

 * CRED_U - bstr credential containing the credential of Party U,
 e.g. its public authentication key or X.509 certificate see

Section 4.1. The public key must be a signature key. Note
 that if objects that are not bstr are used, such as COSE_Key
 for public authentication keys, these objects must be wrapped
 in a CBOR bstr.

 COSE constructs the input to the Signature Algorithm as follows:

 * The key is the private authentication key of U.

 * The message M to be signed is the CBOR encoding of:

 ["Signature1", << ID_CRED_U >>, TH_3, CRED_U]

 o Compute COSE_Encrypt0 as defined in Section 5.3 of [RFC8152], with
 the AEAD algorithm in the selected cipher suite, K_3, and IV_3 and
 the parameters below. Note that only 'ciphertext' of the
 COSE_Encrypt0 object is used to create message_3, see next bullet.
 The protected header SHALL be empty. The unprotected header (not
 included in the EDHOC message) MAY contain parameters (e.g.
 'alg').

 * plaintext = (ID_CRED_U / kid_value, signature, ? PAD_3)

 * external_aad = TH_3

 * PAD_3 = bstr containing opaque protected application data

 where signature is taken from the COSE_Sign1 object, ID_CRED_U is
 a COSE header_map (i.e. a CBOR map containing COSE Common Header
 Parameters, see [RFC8152]), and kid_value is a bstr. If ID_CRED_U
 contains a single 'kid' parameter, i.e., ID_CRED_U = { 4 :
 kid_value }, only kid_value is conveyed in the plaintext.

 COSE constructs the input to the AEAD [RFC5116] as follows:

 * Key K = K_3

 * Nonce N = IV_2

 * Plaintext P = (ID_CRED_U / kid_value, signature, ? PAD_3)

 * Associated data A = ["Encrypt0", h'', TH_3]

https://datatracker.ietf.org/doc/html/rfc8152#section-5.3
https://datatracker.ietf.org/doc/html/rfc8152
https://datatracker.ietf.org/doc/html/rfc5116

Selander, et al. Expires March 14, 2020 [Page 20]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) September 2019

 o Encode message_3 as a sequence of CBOR encoded data items as
 specified in Section 4.4.1. CIPHERTEXT_3 is the COSE_Encrypt0
 ciphertext.

 o Pass the connection identifiers (C_U, C_V) and the selected cipher
 suite to the application. The application can now derive
 application keys using the EDHOC-Exporter interface.

4.4.3. Party V Processing of Message 3

 Party V SHALL process message_3 as follows:

 o Decode message_3 (see Appendix A.1).

 o Retrieve the protocol state using the connection identifier C_V
 and/or other external information such as the CoAP Token and the
 5-tuple.

 o Decrypt and verify COSE_Encrypt0 as defined in Section 5.3 of
 [RFC8152], with the AEAD algorithm in the selected cipher suite,
 K_3, and IV_3.

 o Verify COSE_Sign1 as defined in Section 4.4 of [RFC8152], using
 the signature algorithm in the selected cipher suite and the
 public authentication key of Party U.

 If any verification step fails, Party V MUST send an EDHOC error
 message back, formatted as defined in Section 6, and the protocol
 MUST be discontinued.

 o Pass PAD_3, the connection identifiers (C_U, C_V), and the
 selected cipher suite to the application. The application can now
 derive application keys using the EDHOC-Exporter interface.

5. EDHOC Authenticated with Symmetric Keys

5.1. Overview

 EDHOC supports authentication with pre-shared keys. Party U and V
 are assumed to have a pre-shared key (PSK) with a good amount of
 randomness and the requirement that:

 o Only Party U and Party V SHALL have access to the PSK,

 o Party V is able to retrieve the PSK using ID_PSK.

 where the identifier ID_PSK is a COSE header_map (i.e. a CBOR map
 containing COSE Common Header Parameters, see [RFC8152]) containing

https://datatracker.ietf.org/doc/html/rfc8152#section-5.3
https://datatracker.ietf.org/doc/html/rfc8152#section-5.3
https://datatracker.ietf.org/doc/html/rfc8152#section-4.4
https://datatracker.ietf.org/doc/html/rfc8152

Selander, et al. Expires March 14, 2020 [Page 21]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) September 2019

 COSE header parameter that can identify a pre-shared key. Pre-shared
 keys are typically stored as COSE_Key objects and identified with a
 'kid' parameter (see [RFC8152]):

 o ID_PSK = { 4 : kid_value } , where kid_value : bstr

 The purpose of ID_PSK is to facilitate retrieval of the PSK and in
 the case a 'kid' parameter is used it may be very short. It is
 RECOMMENDED that it uniquely identify the PSK as the recipient may
 otherwise have to try several keys.

 EDHOC with symmetric key authentication is illustrated in Figure 5.

 Party U Party V
 | TYPE, SUITES_U, G_X, C_U, ID_PSK, UAD_1 |
 +-->|
 | message_1 |
 | |
 | C_U, G_Y, C_V, AEAD(K_2; TH_2, UAD_2) |
 |<--+
 | message_2 |
 | |
 | C_V, AEAD(K_3; TH_3, PAD_3) |
 +-->|
 | message_3 |

 Figure 5: Overview of EDHOC with symmetric key authentication.

 EDHOC with symmetric key authentication is very similar to EDHOC with
 asymmetric key authentication. In the following subsections the
 differences compared to EDHOC with asymmetric key authentication are
 described.

5.2. EDHOC Message 1

5.2.1. Formatting of Message 1

 message_1 SHALL be a CBOR Sequence (see Appendix A.1) as defined
 below

 message_1 = (
 TYPE : int,
 SUITES_U : suite / [index : uint, 2* suite],
 G_X : bstr,
 C_U : bstr,
 ID_PSK : header_map // kid_value : bstr,
 ? UAD_1 : bstr,
)

https://datatracker.ietf.org/doc/html/rfc8152

Selander, et al. Expires March 14, 2020 [Page 22]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) September 2019

 where:

 o TYPE = 4 * method + corr, where the method = 1 and the connection
 parameter corr is chosen based on the transport and determines
 which connection identifiers that are omitted (see Section 4.1).

 o ID_PSK - identifier to facilitate retrieval of the pre-shared key.
 If ID_PSK contains a single 'kid' parameter, i.e., ID_PSK = { 4 :
 kid_value }, with kid_value: bstr, only kid_value is conveyed.

5.3. EDHOC Message 2

5.3.1. Processing of Message 2

 o COSE_Sign1 is not used.

 o COSE_Encrypt0 is computed as defined in Section 5.3 of [RFC8152],
 with the AEAD algorithm in the selected cipher suite, K_2, IV_2,
 and the following parameters. The protected header SHALL be
 empty. The unprotected header MAY contain parameters (e.g.
 'alg').

 * external_aad = TH_2

 * plaintext = ? UAD_2

 * UAD_2 = bstr containing opaque unprotected application data

5.4. EDHOC Message 3

5.4.1. Processing of Message 3

 o COSE_Sign1 is not used.

 o COSE_Encrypt0 is computed as defined in Section 5.3 of [RFC8152],
 with the AEAD algorithm in the selected cipher suite, K_3, IV_3,
 and the following parameters. The protected header SHALL be
 empty. The unprotected header MAY contain parameters (e.g.
 'alg').

 * external_aad = TH_3

 * plaintext = ? PAD_3

 * PAD_3 = bstr containing opaque protected application data

https://datatracker.ietf.org/doc/html/rfc8152#section-5.3
https://datatracker.ietf.org/doc/html/rfc8152#section-5.3

Selander, et al. Expires March 14, 2020 [Page 23]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) September 2019

6. Error Handling

6.1. EDHOC Error Message

 This section defines a message format for the EDHOC error message,
 used during the protocol. An EDHOC error message can be sent by both
 parties as a reply to any non-error EDHOC message. After sending an
 error message, the protocol MUST be discontinued. Errors at the
 EDHOC layer are sent as normal successful messages in the lower
 layers (e.g. CoAP POST and 2.04 Changed). An advantage of using
 such a construction is to avoid issues created by usage of cross
 protocol proxies (e.g. UDP to TCP).

 error SHALL be a CBOR Sequence (see Appendix A.1) as defined below

 error = (
 ? C_x : bstr,
 ERR_MSG : tstr,
 ? SUITES_V : suite / [2* suite],
)

 where:

 o C_x - if error is sent by Party V and TYPE mod 4 equals 0 or 2
 then C_x is set to C_U, else if error is sent by Party U and TYPE
 mod 4 equals 0 or 1 then C_x is set to C_V, else C_x is omitted.

 o ERR_MSG - text string containing the diagnostic payload, defined
 in the same way as in Section 5.5.2 of [RFC7252]. ERR_MSG MAY be
 a 0-length text string.

 o SUITES_V - cipher suites from SUITES_U or the EDHOC cipher suites
 registry that V supports. Note that SUITES_V only contains the
 values from the EDHOC cipher suites registry and no index.
 SUITES_V MUST only be included in replies to message_1.

6.1.1. Example Use of EDHOC Error Message with SUITES_V

 Assuming that Party U supports the five cipher suites {5, 6, 7, 8, 9}
 in decreasing order of preference, Figures 6 and 7 show examples of
 how Party U can truncate SUITES_U and how SUITES_V is used by Party V
 to give Party U information about the cipher suites that Party V
 supports. In Figure 6, Party V supports cipher suite 6 but not the
 selected cipher suite 5.

https://datatracker.ietf.org/doc/html/rfc7252#section-5.5.2

Selander, et al. Expires March 14, 2020 [Page 24]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) September 2019

 Party U Party V
 | TYPE, SUITES_U {0, 5, 6, 7}, G_X, C_U, UAD_1 |
 +-->|
 | message_1 |
 | |
 | C_U, ERR_MSG, SUITES_V {6} |
 |<--+
 | error |
 | |
 | TYPE, SUITES_U {1, 5, 6}, G_X, C_U, UAD_1 |
 +-->|
 | message_1 |

 Figure 6: Example use of error message with SUITES_V.

 In Figure 7, Party V supports cipher suite 7 but not cipher suites 5
 and 6.

 Party U Party V
 | TYPE, SUITES_U {0, 5, 6}, G_X, C_U, UAD_1 |
 +-->|
 | message_1 |
 | |
 | C_U, ERR_MSG, SUITES_V {7, 9} |
 |<--+
 | error |
 | |
 | TYPE, SUITES_U {2, 5, 6, 7}, G_X, C_U, UAD_1 |
 +-->|
 | message_1 |

 Figure 7: Example use of error message with SUITES_V.

 As Party U's list of supported cipher suites and order of preference
 is fixed, and Party V only accepts message_1 if the selected cipher
 suite is the first cipher suite in SUITES_U that Party V supports,
 the parties can verify that the selected cipher suite is the most
 preferred (by Party U) cipher suite supported by both parties. If
 the selected cipher suite is not the first cipher suite in SUITES_U
 that Party V supports, Party V will discontinue the protocol.

7. Transferring EDHOC and Deriving Application Keys

7.1. Transferring EDHOC in CoAP

 It is recommended to transport EDHOC as an exchange of CoAP [RFC7252]
 messages. CoAP is a reliable transport that can preserve packet
 ordering and handle message duplication. CoAP can also perform

https://datatracker.ietf.org/doc/html/rfc7252

Selander, et al. Expires March 14, 2020 [Page 25]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) September 2019

 fragmentation and protect against denial of service attacks. It is
 recommended to carry the EDHOC flights in Confirmable messages,
 especially if fragmentation is used.

 By default, the CoAP client is Party U and the CoAP server is Party
 V, but the roles SHOULD be chosen to protect the most sensitive
 identity, see Section 8. By default, EDHOC is transferred in POST
 requests and 2.04 (Changed) responses to the Uri-Path: "/.well-known/
 edhoc", but an application may define its own path that can be
 discovered e.g. using resource directory
 [I-D.ietf-core-resource-directory].

 By default, the message flow is as follows: EDHOC message_1 is sent
 in the payload of a POST request from the client to the server's
 resource for EDHOC. EDHOC message_2 or the EDHOC error message is
 sent from the server to the client in the payload of a 2.04 (Changed)
 response. EDHOC message_3 or the EDHOC error message is sent from
 the client to the server's resource in the payload of a POST request.
 If needed, an EDHOC error message is sent from the server to the
 client in the payload of a 2.04 (Changed) response.

 An example of a successful EDHOC exchange using CoAP is shown in
 Figure 8. In this case the CoAP Token enables Party U to correlate
 message_1 and message_2 so the correlation parameter corr = 1.

 Client Server
 | |
 +--------->| Header: POST (Code=0.02)
 | POST | Uri-Path: "/.well-known/edhoc"
 | | Content-Format: application/edhoc
 | | Payload: EDHOC message_1
 | |
 |<---------+ Header: 2.04 Changed
 | 2.04 | Content-Format: application/edhoc
 | | Payload: EDHOC message_2
 | |
 +--------->| Header: POST (Code=0.02)
 | POST | Uri-Path: "/.well-known/edhoc"
 | | Content-Format: application/edhoc
 | | Payload: EDHOC message_3
 | |
 |<---------+ Header: 2.04 Changed
 | 2.04 |
 | |

 Figure 8: Transferring EDHOC in CoAP

Selander, et al. Expires March 14, 2020 [Page 26]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) September 2019

 The exchange in Figure 8 protects the client identity against active
 attackers and the server identity against passive attackers. An
 alternative exchange that protects the server identity against active
 attackers and the client identity against passive attackers is shown
 in Figure 9. In this case the CoAP Token enables Party V to
 correlate message_2 and message_3 so the correlation parameter corr =
 2.

 Client Server
 | |
 +--------->| Header: POST (Code=0.02)
 | POST | Uri-Path: "/.well-known/edhoc"
 | |
 |<---------+ Header: 2.04 Changed
 | 2.04 | Content-Format: application/edhoc
 | | Payload: EDHOC message_1
 | |
 +--------->| Header: POST (Code=0.02)
 | POST | Uri-Path: "/.well-known/edhoc"
 | | Content-Format: application/edhoc
 | | Payload: EDHOC message_2
 | |
 |<---------+ Header: 2.04 Changed
 | 2.04 | Content-Format: application/edhoc
 | | Payload: EDHOC message_3
 | |

 Figure 9: Transferring EDHOC in CoAP

 To protect against denial-of-service attacks, the CoAP server MAY
 respond to the first POST request with a 4.01 (Unauthorized)
 containing an Echo option [I-D.ietf-core-echo-request-tag]. This
 forces the initiator to demonstrate its reachability at its apparent
 network address. If message fragmentation is needed, the EDHOC
 messages may be fragmented using the CoAP Block-Wise Transfer
 mechanism [RFC7959].

7.1.1. Deriving an OSCORE Context from EDHOC

 When EDHOC is used to derive parameters for OSCORE [RFC8613], the
 parties must make sure that the EDHOC connection identifiers are
 unique, i.e. C_V MUST NOT be equal to C_U. The CoAP client and
 server MUST be able to retrieve the OSCORE protocol state using its
 chosen connection identifier and optionally other information such as
 the 5-tuple. In case that the CoAP client is party U and the CoAP
 server is party V:

https://datatracker.ietf.org/doc/html/rfc7959
https://datatracker.ietf.org/doc/html/rfc8613

Selander, et al. Expires March 14, 2020 [Page 27]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) September 2019

 o The client's OSCORE Sender ID is C_V and the server's OSCORE
 Sender ID is C_U, as defined in this document

 o The AEAD Algorithm and the HMAC algorithms are the AEAD and HMAC
 algorithms in the selected cipher suite.

 o The Master Secret and Master Salt are derived as follows where
 length is the key length (in bytes) of the AEAD Algorithm.

 Master Secret = EDHOC-Exporter("OSCORE Master Secret", length)
 Master Salt = EDHOC-Exporter("OSCORE Master Salt", 8)

7.2. Transferring EDHOC over Other Protocols

 EDHOC may be transported over a different transport than CoAP. In
 this case the lower layers need to handle message loss, reordering,
 message duplication, fragmentation, and denial of service protection.

8. Security Considerations

8.1. Security Properties

 EDHOC inherits its security properties from the theoretical SIGMA-I
 protocol [SIGMA]. Using the terminology from [SIGMA], EDHOC provides
 perfect forward secrecy, mutual authentication with aliveness,
 consistency, peer awareness, and identity protection. As described
 in [SIGMA], peer awareness is provided to Party V, but not to Party
 U. EDHOC also inherits Key Compromise Impersonation (KCI) resistance
 from SIGMA-I.

 EDHOC with asymmetric authentication offers identity protection of
 Party U against active attacks and identity protection of Party V
 against passive attacks. The roles should be assigned to protect the
 most sensitive identity, typically that which is not possible to
 infer from routing information in the lower layers.

 Compared to [SIGMA], EDHOC adds an explicit method type and expands
 the message authentication coverage to additional elements such as
 algorithms, application data, and previous messages. This protects
 against an attacker replaying messages or injecting messages from
 another session.

 EDHOC also adds negotiation of connection identifiers and downgrade
 protected negotiation of cryptographic parameters, i.e. an attacker
 cannot affect the negotiated parameters. A single session of EDHOC
 does not include negotiation of cipher suites, but it enables Party V
 to verify that the selected cipher suite is the most preferred cipher
 suite by U which is supported by both U and V.

Selander, et al. Expires March 14, 2020 [Page 28]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) September 2019

 As required by [RFC7258], IETF protocols need to mitigate pervasive
 monitoring when possible. One way to mitigate pervasive monitoring
 is to use a key exchange that provides perfect forward secrecy.
 EDHOC therefore only supports methods with perfect forward secrecy.
 To limit the effect of breaches, it is important to limit the use of
 symmetrical group keys for bootstrapping. EDHOC therefore strives to
 make the additional cost of using raw public keys and self-signed
 certificates as small as possible. Raw public keys and self-signed
 certificates are not a replacement for a public key infrastructure,
 but SHOULD be used instead of symmetrical group keys for
 bootstrapping.

 Compromise of the long-term keys (PSK or private authentication keys)
 does not compromise the security of completed EDHOC exchanges.
 Compromising the private authentication keys of one party lets the
 attacker impersonate that compromised party in EDHOC exchanges with
 other parties, but does not let the attacker impersonate other
 parties in EDHOC exchanges with the compromised party. Compromising
 the PSK lets the attacker impersonate Party U in EDHOC exchanges with
 Party V and impersonate Party V in EDHOC exchanges with Party U.
 Compromise of the HDKF input parameters (ECDH shared secret and/or
 PSK) leads to compromise of all session keys derived from that
 compromised shared secret. Compromise of one session key does not
 compromise other session keys.

8.2. Cryptographic Considerations

 The security of the SIGMA protocol requires the MAC to be bound to
 the identity of the signer. Hence the message authenticating
 functionality of the authenticated encryption in EDHOC is critical:
 authenticated encryption MUST NOT be replaced by plain encryption
 only, even if authentication is provided at another level or through
 a different mechanism. EDHOC implements SIGMA-I using the same Sign-
 then-MAC approach as TLS 1.3.

 To reduce message overhead EDHOC does not use explicit nonces and
 instead rely on the ephemeral public keys to provide randomness to
 each session. A good amount of randomness is important for the key
 generation, to provide liveness, and to protect against interleaving
 attacks. For this reason, the ephemeral keys MUST NOT be reused, and
 both parties SHALL generate fresh random ephemeral key pairs.

 The choice of key length used in the different algorithms needs to be
 harmonized, so that a sufficient security level is maintained for
 certificates, EDHOC, and the protection of application data. Party U
 and V should enforce a minimum security level.

https://datatracker.ietf.org/doc/html/rfc7258

Selander, et al. Expires March 14, 2020 [Page 29]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) September 2019

 The data rates in many IoT deployments are very limited. Given that
 the application keys are protected as well as the long-term
 authentication keys they can often be used for years or even decades
 before the cryptographic limits are reached. If the application keys
 established through EDHOC need to be renewed, the communicating
 parties can derive application keys with other labels or run EDHOC
 again.

8.3. Cipher Suites

 Cipher suite number 0 (AES-CCM-64-64-128, ECDH-SS + HKDF-256, X25519,
 Ed25519) is mandatory to implement. For many constrained IoT devices
 it is problematic to support more than one cipher suites, so some
 deployments with P-256 may not support the mandatory cipher suite.
 This is not a problem for local deployments.

 The HMAC algorithm HMAC 256/64 (HMAC w/ SHA-256 truncated to 64 bits)
 SHALL NOT be supported for use in EDHOC.

8.4. Unprotected Data

 Party U and V must make sure that unprotected data and metadata do
 not reveal any sensitive information. This also applies for
 encrypted data sent to an unauthenticated party. In particular, it
 applies to UAD_1, ID_CRED_V, UAD_2, and ERR_MSG in the asymmetric
 case, and ID_PSK, UAD_1, and ERR_MSG in the symmetric case. Using
 the same ID_PSK or UAD_1 in several EDHOC sessions allows passive
 eavesdroppers to correlate the different sessions. The communicating
 parties may therefore anonymize ID_PSK. Another consideration is
 that the list of supported cipher suites may be used to identify the
 application.

 Party U and V must also make sure that unauthenticated data does not
 trigger any harmful actions. In particular, this applies to UAD_1
 and ERR_MSG in the asymmetric case, and ID_PSK, UAD_1, and ERR_MSG in
 the symmetric case.

8.5. Denial-of-Service

 EDHOC itself does not provide countermeasures against Denial-of-
 Service attacks. By sending a number of new or replayed message_1 an
 attacker may cause Party V to allocate state, perform cryptographic
 operations, and amplify messages. To mitigate such attacks, an
 implementation SHOULD rely on lower layer mechanisms such as the Echo
 option in CoAP [I-D.ietf-core-echo-request-tag] that forces the
 initiator to demonstrate reachability at its apparent network
 address.

Selander, et al. Expires March 14, 2020 [Page 30]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) September 2019

8.6. Implementation Considerations

 The availability of a secure pseudorandom number generator and truly
 random seeds are essential for the security of EDHOC. If no true
 random number generator is available, a truly random seed must be
 provided from an external source. As each pseudoranom number must
 only be used once, an implementation need to get a new truly random
 seed after reboot, or continously store state in nonvolatile memory,
 see ([RFC8613], Appendix B.1.1) for issues and solution approaches
 for writing to nonvolatile memory. If ECDSA is supported,
 "deterministic ECDSA" as specified in [RFC6979] is RECOMMENDED.

 The referenced processing instructions in [SP-800-56A] must be
 complied with, including deleting the intermediate computed values
 along with any ephemeral ECDH secrets after the key derivation is
 completed. The ECDH shared secret, keys (K_2, K_3), and IVs (IV_2,
 IV_3) MUST be secret. Implementations should provide countermeasures
 to side-channel attacks such as timing attacks.

 Party U and V are responsible for verifying the integrity of
 certificates. The selection of trusted CAs should be done very
 carefully and certificate revocation should be supported. The
 private authentication keys and the PSK (even though it is used as
 salt) MUST be kept secret.

 Party U and V are allowed to select the connection identifiers C_U
 and C_V, respectively, for the other party to use in the ongoing
 EDHOC protocol as well as in a subsequent application protocol (e.g.
 OSCORE [RFC8613]). The choice of connection identifier is not
 security critical in EDHOC but intended to simplify the retrieval of
 the right security context in combination with using short
 identifiers. If the wrong connection identifier of the other party
 is used in a protocol message it will result in the receiving party
 not being able to retrieve a security context (which will terminate
 the protocol) or retrieve the wrong security context (which also
 terminates the protocol as the message cannot be verified).

 Party V MUST finish the verification step of message_3 before passing
 PAD_3 to the application.

 If two nodes unintentionally initiate two simultaneous EDHOC message
 exchanges with each other even if they only want to complete a single
 EDHOC message exchange, they MAY terminate the exchange with the
 lexicographically smallest G_X. If the two G_X values are equal, the
 received message_1 MUST be discarded to mitigate reflection attacks.
 Note that in the case of two simultaneous EDHOC exchanges where the
 nodes only complete one and where the nodes have different preferred

https://datatracker.ietf.org/doc/html/rfc8613#appendix-B.1.1
https://datatracker.ietf.org/doc/html/rfc6979
https://datatracker.ietf.org/doc/html/rfc8613

Selander, et al. Expires March 14, 2020 [Page 31]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) September 2019

 cipher suites, an attacker can affect which of the two nodes'
 preferred cipher suites will be used by blocking the other exchange.

8.7. Other Documents Referencing EDHOC

 EDHOC has been analyzed in several other documents. A formal
 verification of EDHOC was done in [SSR18], an analysis of EDHOC for
 certificate enrollment was done in [Kron18], the use of EDHOC in
 LoRaWAN is analyzed in [LoRa1] and [LoRa2], the use of EDHOC in IoT
 bootstrapping is analyzed in [Perez18], and the use of EDHOC in
 6TiSCH is described in [I-D.ietf-6tisch-dtsecurity-zerotouch-join].

9. IANA Considerations

9.1. EDHOC Cipher Suites Registry

 IANA has created a new registry titled "EDHOC Cipher Suites" under
 the new heading "EDHOC". The registration procedure is "Expert
 Review". The columns of the registry are Value, Array, Description,
 and Reference, where Value is an integer and the other columns are
 text strings. The initial contents of the registry are:

 Value: 1
 Array: [10, 5, 1, -7, 1]
 Desc: AES-CCM-16-64-128, HMAC 256/256, P-256, ES256, P-256
 Reference: [[this document]]

 Value: 0
 Array: [10, 5, 4, -8, 6]
 Desc: AES-CCM-16-64-128, HMAC 256/256, X25519, EdDSA, Ed25519
 Reference: [[this document]]

 Value: -5
 Array:
 Desc: Reserved for Private Use
 Reference: [[this document]]

 Value: -6
 Array:
 Desc: Reserved for Private Use
 Reference: [[this document]]

9.2. EDHOC Method Type Registry

 IANA has created a new registry titled "EDHOC Method Type" under the
 new heading "EDHOC". The registration procedure is "Expert Review".
 The columns of the registry are Value, Description, and Reference,

Selander, et al. Expires March 14, 2020 [Page 32]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) September 2019

 where Value is an integer and the other columns are text strings.
 The initial contents of the registry are:

+-------+--+-------------------+
| Value | Specification | Reference |
+-------+--+-------------------+
| 0 | EDHOC Authenticated with Asymmetric Keys | [[this document]] |
| 1 | EDHOC Authenticated with Symmetric Keys | [[this document]] |
+-------+--+-------------------+

9.3. The Well-Known URI Registry

 IANA has added the well-known URI 'edhoc' to the Well-Known URIs
 registry.

 o URI suffix: edhoc

 o Change controller: IETF

 o Specification document(s): [[this document]]

 o Related information: None

9.4. Media Types Registry

 IANA has added the media type 'application/edhoc' to the Media Types
 registry.

 o Type name: application

 o Subtype name: edhoc

 o Required parameters: N/A

 o Optional parameters: N/A

 o Encoding considerations: binary

 o Security considerations: See Section 7 of this document.

 o Interoperability considerations: N/A

 o Published specification: [[this document]] (this document)

 o Applications that use this media type: To be identified

 o Fragment identifier considerations: N/A

Selander, et al. Expires March 14, 2020 [Page 33]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) September 2019

 o Additional information:

 * Magic number(s): N/A

 * File extension(s): N/A

 * Macintosh file type code(s): N/A

 o Person & email address to contact for further information: See
 "Authors' Addresses" section.

 o Intended usage: COMMON

 o Restrictions on usage: N/A

 o Author: See "Authors' Addresses" section.

 o Change Controller: IESG

9.5. CoAP Content-Formats Registry

 IANA has added the media type 'application/edhoc' to the CoAP
 Content-Formats registry.

 o Media Type: application/edhoc

 o Encoding:

 o ID: TBD42

 o Reference: [[this document]]

9.6. Expert Review Instructions

 The IANA Registries established in this document is defined as
 "Expert Review". This section gives some general guidelines for what
 the experts should be looking for, but they are being designated as
 experts for a reason so they should be given substantial latitude.

 Expert reviewers should take into consideration the following points:

 o Clarity and correctness of registrations. Experts are expected to
 check the clarity of purpose and use of the requested entries.
 Expert needs to make sure the values of algorithms are taken from
 the right registry, when that's required. Expert should consider
 requesting an opinion on the correctness of registered parameters
 from relevant IETF working groups. Encodings that do not meet

Selander, et al. Expires March 14, 2020 [Page 34]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) September 2019

 these objective of clarity and completeness should not be
 registered.

 o Experts should take into account the expected usage of fields when
 approving point assignment. The length of the encoded value
 should be weighed against how many code points of that length are
 left, the size of device it will be used on, and the number of
 code points left that encode to that size.

 o Specifications are recommended. When specifications are not
 provided, the description provided needs to have sufficient
 information to verify the points above.

10. References

10.1. Normative References

 [I-D.ietf-cbor-7049bis]
 Bormann, C. and P. Hoffman, "Concise Binary Object
 Representation (CBOR)", draft-ietf-cbor-7049bis-07 (work
 in progress), August 2019.

 [I-D.ietf-cbor-sequence]
 Bormann, C., "Concise Binary Object Representation (CBOR)
 Sequences", draft-ietf-cbor-sequence-01 (work in
 progress), August 2019.

 [I-D.ietf-core-echo-request-tag]
 Amsuess, C., Mattsson, J., and G. Selander, "CoAP: Echo,
 Request-Tag, and Token Processing", draft-ietf-core-echo-

request-tag-05 (work in progress), May 2019.

 [I-D.ietf-cose-x509]
 Schaad, J., "CBOR Object Signing and Encryption (COSE):
 Headers for carrying and referencing X.509 certificates",

draft-ietf-cose-x509-03 (work in progress), August 2019.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC5116] McGrew, D., "An Interface and Algorithms for Authenticated
 Encryption", RFC 5116, DOI 10.17487/RFC5116, January 2008,
 <https://www.rfc-editor.org/info/rfc5116>.

https://datatracker.ietf.org/doc/html/draft-ietf-cbor-7049bis-07
https://datatracker.ietf.org/doc/html/draft-ietf-cbor-sequence-01
https://datatracker.ietf.org/doc/html/draft-ietf-core-echo-request-tag-05
https://datatracker.ietf.org/doc/html/draft-ietf-core-echo-request-tag-05
https://datatracker.ietf.org/doc/html/draft-ietf-cose-x509-03
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc5116
https://www.rfc-editor.org/info/rfc5116

Selander, et al. Expires March 14, 2020 [Page 35]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) September 2019

 [RFC5869] Krawczyk, H. and P. Eronen, "HMAC-based Extract-and-Expand
 Key Derivation Function (HKDF)", RFC 5869,
 DOI 10.17487/RFC5869, May 2010,
 <https://www.rfc-editor.org/info/rfc5869>.

 [RFC6090] McGrew, D., Igoe, K., and M. Salter, "Fundamental Elliptic
 Curve Cryptography Algorithms", RFC 6090,
 DOI 10.17487/RFC6090, February 2011,
 <https://www.rfc-editor.org/info/rfc6090>.

 [RFC6979] Pornin, T., "Deterministic Usage of the Digital Signature
 Algorithm (DSA) and Elliptic Curve Digital Signature
 Algorithm (ECDSA)", RFC 6979, DOI 10.17487/RFC6979, August
 2013, <https://www.rfc-editor.org/info/rfc6979>.

 [RFC7252] Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
 Application Protocol (CoAP)", RFC 7252,
 DOI 10.17487/RFC7252, June 2014,
 <https://www.rfc-editor.org/info/rfc7252>.

 [RFC7748] Langley, A., Hamburg, M., and S. Turner, "Elliptic Curves
 for Security", RFC 7748, DOI 10.17487/RFC7748, January
 2016, <https://www.rfc-editor.org/info/rfc7748>.

 [RFC7959] Bormann, C. and Z. Shelby, Ed., "Block-Wise Transfers in
 the Constrained Application Protocol (CoAP)", RFC 7959,
 DOI 10.17487/RFC7959, August 2016,
 <https://www.rfc-editor.org/info/rfc7959>.

 [RFC8152] Schaad, J., "CBOR Object Signing and Encryption (COSE)",
RFC 8152, DOI 10.17487/RFC8152, July 2017,

 <https://www.rfc-editor.org/info/rfc8152>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8610] Birkholz, H., Vigano, C., and C. Bormann, "Concise Data
 Definition Language (CDDL): A Notational Convention to
 Express Concise Binary Object Representation (CBOR) and
 JSON Data Structures", RFC 8610, DOI 10.17487/RFC8610,
 June 2019, <https://www.rfc-editor.org/info/rfc8610>.

 [RFC8613] Selander, G., Mattsson, J., Palombini, F., and L. Seitz,
 "Object Security for Constrained RESTful Environments
 (OSCORE)", RFC 8613, DOI 10.17487/RFC8613, July 2019,
 <https://www.rfc-editor.org/info/rfc8613>.

https://datatracker.ietf.org/doc/html/rfc5869
https://www.rfc-editor.org/info/rfc5869
https://datatracker.ietf.org/doc/html/rfc6090
https://www.rfc-editor.org/info/rfc6090
https://datatracker.ietf.org/doc/html/rfc6979
https://www.rfc-editor.org/info/rfc6979
https://datatracker.ietf.org/doc/html/rfc7252
https://www.rfc-editor.org/info/rfc7252
https://datatracker.ietf.org/doc/html/rfc7748
https://www.rfc-editor.org/info/rfc7748
https://datatracker.ietf.org/doc/html/rfc7959
https://www.rfc-editor.org/info/rfc7959
https://datatracker.ietf.org/doc/html/rfc8152
https://www.rfc-editor.org/info/rfc8152
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://datatracker.ietf.org/doc/html/rfc8610
https://www.rfc-editor.org/info/rfc8610
https://datatracker.ietf.org/doc/html/rfc8613
https://www.rfc-editor.org/info/rfc8613

Selander, et al. Expires March 14, 2020 [Page 36]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) September 2019

 [SIGMA] Krawczyk, H., "SIGMA - The 'SIGn-and-MAc' Approach to
 Authenticated Diffie-Hellman and Its Use in the IKE-
 Protocols (Long version)", June 2003,
 <http://webee.technion.ac.il/~hugo/sigma-pdf.pdf>.

 [SP-800-56A]
 Barker, E., Chen, L., Roginsky, A., Vassilev, A., and R.
 Davis, "Recommendation for Pair-Wise Key-Establishment
 Schemes Using Discrete Logarithm Cryptography",
 NIST Special Publication 800-56A Revision 3, April 2018,
 <https://doi.org/10.6028/NIST.SP.800-56Ar3>.

10.2. Informative References

 [CborMe] Bormann, C., "CBOR Playground", May 2018,
 <http://cbor.me/>.

 [I-D.hartke-core-e2e-security-reqs]
 Selander, G., Palombini, F., and K. Hartke, "Requirements
 for CoAP End-To-End Security", draft-hartke-core-e2e-

security-reqs-03 (work in progress), July 2017.

 [I-D.ietf-6tisch-dtsecurity-zerotouch-join]
 Richardson, M., "6tisch Zero-Touch Secure Join protocol",

draft-ietf-6tisch-dtsecurity-zerotouch-join-04 (work in
 progress), July 2019.

 [I-D.ietf-ace-oauth-authz]
 Seitz, L., Selander, G., Wahlstroem, E., Erdtman, S., and
 H. Tschofenig, "Authentication and Authorization for
 Constrained Environments (ACE) using the OAuth 2.0
 Framework (ACE-OAuth)", draft-ietf-ace-oauth-authz-24
 (work in progress), March 2019.

 [I-D.ietf-ace-oscore-profile]
 Palombini, F., Seitz, L., Selander, G., and M. Gunnarsson,
 "OSCORE profile of the Authentication and Authorization
 for Constrained Environments Framework", draft-ietf-ace-

oscore-profile-08 (work in progress), July 2019.

 [I-D.ietf-core-resource-directory]
 Shelby, Z., Koster, M., Bormann, C., Stok, P., and C.
 Amsuess, "CoRE Resource Directory", draft-ietf-core-

resource-directory-23 (work in progress), July 2019.

http://webee.technion.ac.il/~hugo/sigma-pdf.pdf
https://doi.org/10.6028/NIST.SP.800-56Ar3
http://cbor.me/
https://datatracker.ietf.org/doc/html/draft-hartke-core-e2e-security-reqs-03
https://datatracker.ietf.org/doc/html/draft-hartke-core-e2e-security-reqs-03
https://datatracker.ietf.org/doc/html/draft-ietf-6tisch-dtsecurity-zerotouch-join-04
https://datatracker.ietf.org/doc/html/draft-ietf-ace-oauth-authz-24
https://datatracker.ietf.org/doc/html/draft-ietf-ace-oscore-profile-08
https://datatracker.ietf.org/doc/html/draft-ietf-ace-oscore-profile-08
https://datatracker.ietf.org/doc/html/draft-ietf-core-resource-directory-23
https://datatracker.ietf.org/doc/html/draft-ietf-core-resource-directory-23

Selander, et al. Expires March 14, 2020 [Page 37]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) September 2019

 [I-D.ietf-lwig-security-protocol-comparison]
 Mattsson, J. and F. Palombini, "Comparison of CoAP
 Security Protocols", draft-ietf-lwig-security-protocol-

comparison-03 (work in progress), March 2019.

 [I-D.ietf-tls-dtls13]
 Rescorla, E., Tschofenig, H., and N. Modadugu, "The
 Datagram Transport Layer Security (DTLS) Protocol Version
 1.3", draft-ietf-tls-dtls13-32 (work in progress), July
 2019.

 [Kron18] Krontiris, A., "Evaluation of Certificate Enrollment over
 Application Layer Security", May 2018,
 <https://www.nada.kth.se/~ann/exjobb/

alexandros_krontiris.pdf>.

 [LoRa1] Sanchez-Iborra, R., Sanchez-Gomez, J., Perez, S.,
 Fernandez, P., Santa, J., Hernandez-Ramos, J., and A.
 Skarmeta, "Enhancing LoRaWAN Security through a
 Lightweight and Authenticated Key Management Approach",
 June 2018,
 <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6021899/pdf/

sensors-18-01833.pdf>.

 [LoRa2] Sanchez-Iborra, R., Sanchez-Gomez, J., Perez, S.,
 Fernandez, P., Santa, J., Hernandez-Ramos, J., and A.
 Skarmeta, "Internet Access for LoRaWAN Devices Considering
 Security Issues", June 2018,
 <https://ants.inf.um.es/~josesanta/doc/GIoTS1.pdf>.

 [OPTLS] Krawczyk, H. and H. Wee, "The OPTLS Protocol and TLS 1.3",
 October 2015, <https://eprint.iacr.org/2015/978.pdf>.

 [Perez18] Perez, S., Garcia-Carrillo, D., Marin-Lopez, R.,
 Hernandez-Ramos, J., Marin-Perez, R., and A. Skarmeta,
 "Architecture of security association establishment based
 on bootstrapping technologies for enabling critical IoT
 infrastructures", October 2018, <http://www.anastacia-
 h2020.eu/publications/Architecture_of_security_association
 _establishment_based_on_bootstrapping_technologies_for_ena
 bling_critical_IoT_infrastructures.pdf>.

 [RFC7228] Bormann, C., Ersue, M., and A. Keranen, "Terminology for
 Constrained-Node Networks", RFC 7228,
 DOI 10.17487/RFC7228, May 2014,
 <https://www.rfc-editor.org/info/rfc7228>.

https://datatracker.ietf.org/doc/html/draft-ietf-lwig-security-protocol-comparison-03
https://datatracker.ietf.org/doc/html/draft-ietf-lwig-security-protocol-comparison-03
https://datatracker.ietf.org/doc/html/draft-ietf-tls-dtls13-32
https://www.nada.kth.se/~ann/exjobb/alexandros_krontiris.pdf
https://www.nada.kth.se/~ann/exjobb/alexandros_krontiris.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6021899/pdf/sensors-18-01833.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6021899/pdf/sensors-18-01833.pdf
https://ants.inf.um.es/~josesanta/doc/GIoTS1.pdf
https://eprint.iacr.org/2015/978.pdf
http://www.anastacia-
https://datatracker.ietf.org/doc/html/rfc7228
https://www.rfc-editor.org/info/rfc7228

Selander, et al. Expires March 14, 2020 [Page 38]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) September 2019

 [RFC7258] Farrell, S. and H. Tschofenig, "Pervasive Monitoring Is an
 Attack", BCP 188, RFC 7258, DOI 10.17487/RFC7258, May
 2014, <https://www.rfc-editor.org/info/rfc7258>.

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

 [SSR18] Bruni, A., Sahl Joergensen, T., Groenbech Petersen, T.,
 and C. Schuermann, "Formal Verification of Ephemeral
 Diffie-Hellman Over COSE (EDHOC)", November 2018,
 <https://www.springerprofessional.de/en/formal-

verification-of-ephemeral-diffie-hellman-over-cose-
edhoc/16284348>.

Appendix A. Use of CBOR, CDDL and COSE in EDHOC

 This Appendix is intended to simplify for implementors not familiar
 with CBOR [I-D.ietf-cbor-7049bis], CDDL [RFC8610], COSE [RFC8152],
 and HKDF [RFC5869].

A.1. CBOR and CDDL

 The Concise Binary Object Representation (CBOR)
 [I-D.ietf-cbor-7049bis] is a data format designed for small code size
 and small message size. CBOR builds on the JSON data model but
 extends it by e.g. encoding binary data directly without base64
 conversion. In addition to the binary CBOR encoding, CBOR also has a
 diagnostic notation that is readable and editable by humans. The
 Concise Data Definition Language (CDDL) [RFC8610] provides a way to
 express structures for protocol messages and APIs that use CBOR.
 [RFC8610] also extends the diagnostic notation.

 CBOR data items are encoded to or decoded from byte strings using a
 type-length-value encoding scheme, where the three highest order bits
 of the initial byte contain information about the major type. CBOR
 supports several different types of data items, in addition to
 integers (int, uint), simple values (e.g. null), byte strings (bstr),
 and text strings (tstr), CBOR also supports arrays [] of data items,
 maps {} of pairs of data items, and sequences
 [I-D.ietf-cbor-sequence] of data items. Some examples are given
 below. For a complete specification and more examples, see
 [I-D.ietf-cbor-7049bis] and [RFC8610]. We recommend implementors to
 get used to CBOR by using the CBOR playground [CborMe].

https://datatracker.ietf.org/doc/html/bcp188
https://datatracker.ietf.org/doc/html/rfc7258
https://www.rfc-editor.org/info/rfc7258
https://datatracker.ietf.org/doc/html/rfc8446
https://www.rfc-editor.org/info/rfc8446
https://www.springerprofessional.de/en/formal-verification-of-ephemeral-diffie-hellman-over-cose-edhoc/16284348
https://www.springerprofessional.de/en/formal-verification-of-ephemeral-diffie-hellman-over-cose-edhoc/16284348
https://www.springerprofessional.de/en/formal-verification-of-ephemeral-diffie-hellman-over-cose-edhoc/16284348
https://datatracker.ietf.org/doc/html/rfc8610
https://datatracker.ietf.org/doc/html/rfc8152
https://datatracker.ietf.org/doc/html/rfc5869
https://datatracker.ietf.org/doc/html/rfc8610
https://datatracker.ietf.org/doc/html/rfc8610
https://datatracker.ietf.org/doc/html/rfc8610

Selander, et al. Expires March 14, 2020 [Page 39]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) September 2019

 Diagnostic Encoded Type
 --
 1 0x01 unsigned integer
 24 0x1818 unsigned integer
 -24 0x37 negative integer
 -25 0x3818 negative integer
 null 0xf6 simple value
 h'12cd' 0x4212cd byte string
 '12cd' 0x4431326364 byte string
 "12cd" 0x6431326364 text string
 { 4 : h'cd' } 0xa10441cd map
 << 1, 2, null >> 0x430102f6 byte string
 [1, 2, null] 0x830102f6 array
 (1, 2, null) 0x0102f6 sequence
 1, 2, null 0x0102f6 sequence
 --

 EDHOC messages are CBOR Sequences [I-D.ietf-cbor-sequence]. The
 message format specification uses the construct '.cbor' enabling
 conversion between different CDDL types matching different CBOR items
 with different encodings. Some examples are given below.

 A type (e.g. an uint) may be wrapped in a byte string (bstr):

 CDDL Type Diagnostic Encoded
 --
 uint 24 0x1818
 bstr .cbor uint << 24 >> 0x421818
 --

A.2. COSE

 CBOR Object Signing and Encryption (COSE) [RFC8152] describes how to
 create and process signatures, message authentication codes, and
 encryption using CBOR. COSE builds on JOSE, but is adapted to allow
 more efficient processing in constrained devices. EDHOC makes use of
 COSE_Key, COSE_Encrypt0, COSE_Sign1, and COSE_KDF_Context objects.

Appendix B. EDHOC Authenticated withDiffie-Hellman Keys

 The SIGMA protocol is mainly optimized for PKI and certificates. The
 OPTLS protocol [OPTLS] shows how authentication can be provided by a
 MAC computed from an ephemeral-static ECDH shared secret. Instead of
 signature authentication keys, U and V would have Diffie-Hellman
 authentication keys G_U and G_V, respectively. This type of
 authentication keys could easily be used with RPK and would provide
 significant reductions in message sizes as the 64 bytes signature
 would be replaced by an 8 bytes MAC.

https://datatracker.ietf.org/doc/html/rfc8152

Selander, et al. Expires March 14, 2020 [Page 40]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) September 2019

 EDHOC authenticated with asymmetric Diffie-Hellman keys should have
 similar security properties as EDHOC authenticated with asymmetric
 signature keys with a few differences:

 o Repudiation: In EDHOC authenticated with asymmetric signature
 keys, Party U could theoretically prove that Party V performed a
 run of the protocol by presenting the private ephemeral key, and
 vice versa. Note that storing the private ephemeral keys violates
 the protocol requirements. With asymmetric Diffie-Hellman key
 authentication, both parties can always deny having participated
 in the protocol, this is similar to EDHOC with symmetric key
 authentication.

 o Key compromise impersonation (KCI): In EDHOC authenticated with
 asymmetric signature keys, EDHOC provides KCI protection against
 an attacker having access to the long term key or the ephemeral
 secret key. In EDHOC authenticated with symmetric keys, EDHOC
 provides KCI protection against an attacker having access to the
 ephemeral secret key, but not against an attacker having access to
 the long-term PSK. With asymmetric Diffie-Hellman key
 authentication, KCI protection would be provided against an
 attacker having access to the long-term Diffie-Hellman key, but
 not to an attacker having access to the ephemeral secret key.
 Note that the term KCI has typically been used for compromise of
 long-term keys, and that an attacker with access to the ephemeral
 secret key can only attack that specific protocol run.

 TODO: Initial suggestion for key derivation, message formats, and
 processing

Appendix C. Test Vectors

 This appendix provides detailed test vectors to ease implementation
 and ensure interoperability. In addition to hexadecimal, all CBOR
 data items and sequences are given in CBOR diagnostic notation. The
 test vectors use 1 byte key identifiers, 1 byte connection IDs, and
 the default mapping to CoAP where Party U is CoAP client (this means
 that corr = 1).

C.1. Test Vectors for EDHOC Authenticated with Asymmetric Keys (RPK)

 Asymmetric EDHOC is used:

 method (Asymmetric Authentication)
 0

 CoAP is used as transport:

Selander, et al. Expires March 14, 2020 [Page 41]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) September 2019

 corr (Party U is CoAP client)
 1

 No unprotected opaque application data is sent in the message
 exchanges.

 The pre-defined Cipher Suite 0 is in place both on Party U and Party
 V, see Section 3.1.

C.1.1. Input for Party U

 The following are the parameters that are set in Party U before the
 first message exchange.

Party U's private authentication key (32 bytes)
53 21 fc 01 c2 98 20 06 3a 72 50 8f c6 39 25 1d c8 30 e2 f7 68 3e b8 e3 8a
f1 64 a5 b9 af 9b e3

Party U's public authentication key (32 bytes)
42 4c 75 6a b7 7c c6 fd ec f0 b3 ec fc ff b7 53 10 c0 15 bf 5c ba 2e c0 a2
36 e6 65 0c 8a b9 c7

 kid value to identify U's public authentication key (1 bytes)
 a2

 This test vector uses COSE_Key objects to store the raw public keys.
 Moreover, EC2 keys with curve Ed25519 are used. That is in agreement
 with the Cipher Suite 0.

CRED_U =
<< {
 1: 1,
 -1: 6,
 -2: h'424c756ab77cc6fdecf0b3ecfcffb75310c015bf5cba2ec0a236e6650c8ab9c7'
} >>

CRED_U (COSE_Key) (CBOR-encoded) (42 bytes)
58 28 a3 01 01 20 06 21 58 20 42 4c 75 6a b7 7c c6 fd ec f0 b3 ec fc ff b7
53 10 c0 15 bf 5c ba 2e c0 a2 36 e6 65 0c 8a b9 c7

 Because COSE_Keys are used, and because kid = h'a2':

 ID_CRED_U =
 {
 4: h'a2'
 }

Selander, et al. Expires March 14, 2020 [Page 42]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) September 2019

 Note that since the map for ID_CRED_U contains a single 'kid'
 parameter, ID_CRED_U is used when transported in the protected header
 of the COSE Object, but only the kid_value is used when added to the
 plaintext (see Section 4.4.2):

 ID_CRED_U (in protected header) (CBOR-encoded) (4 bytes)
 a1 04 41 a2

 kid_value (in plaintext) (CBOR-encoded) (2 bytes)
 41 a2

C.1.2. Input for Party V

 The following are the parameters that are set in Party V before the
 first message exchange.

Party V's private authentication key (32 bytes)
74 56 b3 a3 e5 8d 8d 26 dd 36 bc 75 d5 5b 88 63 a8 5d 34 72 f4 a0 1f 02 24
62 1b 1c b8 16 6d a9

Party V's public authentication key (32 bytes)
1b 66 1e e5 d5 ef 16 72 a2 d8 77 cd 5b c2 0f 46 30 dc 78 a1 14 de 65 9c 7e
50 4d 0f 52 9a 6b d3

 kid value to identify U's public authentication key (1 bytes)
 a3

 This test vector uses COSE_Key objects to store the raw public keys.
 Moreover, EC2 keys with curve Ed25519 are used. That is in agreement
 with the Cipher Suite 0.

CRED_V =
<< {
 1: 1,
 -1: 6,
 -2: h'1b661ee5d5ef1672a2d877cd5bc20f4630dc78a114de659c7e504d0f529a6bd3'
} >>

CRED_V (COSE_Key) (CBOR-encoded) (42 bytes)
58 28 a3 01 01 20 06 21 58 20 1b 66 1e e5 d5 ef 16 72 a2 d8 77 cd 5b c2 0f
46 30 dc 78 a1 14 de 65 9c 7e 50 4d 0f 52 9a 6b d3

 Because COSE_Keys are used, and because kid = h'a3':

 ID_CRED_V =
 {
 4: h'a3'
 }

Selander, et al. Expires March 14, 2020 [Page 43]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) September 2019

 Note that since the map for ID_CRED_U contains a single 'kid'
 parameter, ID_CRED_U is used when transported in the protected header
 of the COSE Object, but only the kid_value is used when added to the
 plaintext (see Section 4.4.2):

 ID_CRED_V (in protected header) (CBOR-encoded) (4 bytes)
 a1 04 41 a3

 kid_value (in plaintext) (CBOR-encoded) (2 bytes)
 41 a3

C.1.3. Message 1

 From the input parameters (in Appendix C.1.1):

 TYPE (4 * method + corr)
 1

 suite
 0

 SUITES_U : suite
 0

G_X (X-coordinate of the ephemeral public key of Party U) (32 bytes)
b1 a3 e8 94 60 e8 8d 3a 8d 54 21 1d c9 5f 0b 90 3f f2 05 eb 71 91 2d 6d b8
f4 af 98 0d 2d b8 3a

 C_U (Connection identifier chosen by U) (1 bytes)
 c3

 No UAD_1 is provided, so UAD_1 is absent from message_1.

 Message_1 is constructed, as the CBOR Sequence of the CBOR data items
 above.

 message_1 =
 (
 1,
 0,
 h'b1a3e89460e88d3a8d54211dc95f0b903ff205eb71912d6db8f4af980d2db83a',
 h'c3'
)

message_1 (CBOR Sequence) (38 bytes)
01 00 58 20 b1 a3 e8 94 60 e8 8d 3a 8d 54 21 1d c9 5f 0b 90 3f f2 05 eb 71
91 2d 6d b8 f4 af 98 0d 2d b8 3a 41 c3

Selander, et al. Expires March 14, 2020 [Page 44]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) September 2019

C.1.4. Message 2

 Since TYPE mod 4 equals 1, C_U is omitted from data_2.

G_Y (X-coordinate of the ephemeral public key of Party V) (32 bytes)
8d b5 77 f9 b9 c2 74 47 98 98 7d b5 57 bf 31 ca 48 ac d2 05 a9 db 8c 32 0e
5d 49 f3 02 a9 64 74

 C_V (Connection identifier chosen by V) (1 bytes)
 c4

 Data_2 is constructed, as the CBOR Sequence of the CBOR data items
 above.

 data_2 =
 (
 h'8db577f9b9c2744798987db557bf31ca48acd205a9db8c320e5d49f302a96474',
 h'c4'
)

data_2 (CBOR Sequence) (36 bytes)
58 20 8d b5 77 f9 b9 c2 74 47 98 98 7d b5 57 bf 31 ca 48 ac d2 05 a9 db 8c
32 0e 5d 49 f3 02 a9 64 74 41 c4

 From data_2 and message_1 (from Appendix C.1.3), compute the input to
 the transcript hash TH_2 = H(message_1, data_2), as a CBOR Sequence
 of these 2 data items.

(message_1, data_2) (CBOR Sequence)
(74 bytes)
01 00 58 20 b1 a3 e8 94 60 e8 8d 3a 8d 54 21 1d c9 5f 0b 90 3f f2 05 eb 71
91 2d 6d b8 f4 af 98 0d 2d b8 3a 41 c3 58 20 8d b5 77 f9 b9 c2 74 47 98 98
7d b5 57 bf 31 ca 48 ac d2 05 a9 db 8c 32 0e 5d 49 f3 02 a9 64 74 41 c4

 And from there, compute the transcript hash TH_2 = SHA-256(
 message_1, data_2)

TH_2 value (32 bytes)
55 50 b3 dc 59 84 b0 20 9a e7 4e a2 6a 18 91 89 57 50 8e 30 33 2b 11 da 68
1d c2 af dd 87 03 55

 When encoded as a CBOR bstr, that gives:

TH_2 (CBOR-encoded) (34 bytes)
58 20 55 50 b3 dc 59 84 b0 20 9a e7 4e a2 6a 18 91 89 57 50 8e 30 33 2b 11
da 68 1d c2 af dd 87 03 55

Selander, et al. Expires March 14, 2020 [Page 45]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) September 2019

C.1.4.1. Signature Computation

 COSE_Sign1 is computed with the following parameters. From
Appendix C.1.2:

 o protected = bstr .cbor ID_CRED_V

 o payload = CRED_V

 And from Appendix C.1.4:

 o external_aad = TH_2

 The Sig_structure M_V to be signed is: ["Signature1",
 << ID_CRED_V >>, TH_2, CRED_V] , as defined in Section 4.3.2:

M_V =
[
 "Signature1",
 << { 4: h'a3' } >>,
 h'5550b3dc5984b0209ae74ea26a18918957508e30332b11da681dc2afdd870355',
 << {
 1: 1,
 -1: 6,
 -2: h'1b661ee5d5ef1672a2d877cd5bc20f4630dc78a114de659c7e504d0f529a6b
 d3'
 } >>
]

 Which encodes to the following byte string ToBeSigned:

M_V (message to be signed with Ed25519) (CBOR-encoded) (93 bytes)
84 6a 53 69 67 6e 61 74 75 72 65 31 44 a1 04 41 a3 58 20 55 50 b3 dc 59 84
b0 20 9a e7 4e a2 6a 18 91 89 57 50 8e 30 33 2b 11 da 68 1d c2 af dd 87 03
55 58 28 a3 01 01 20 06 21 58 20 1b 66 1e e5 d5 ef 16 72 a2 d8 77 cd 5b c2
0f 46 30 dc 78 a1 14 de 65 9c 7e 50 4d 0f 52 9a 6b d3

 The message is signed using the private authentication key of V, and
 produces the following signature:

V's signature (64 bytes)
52 3d 99 6d fd 9e 2f 77 c7 68 71 8a 30 c3 48 77 8c 5e b8 64 dd 53 7e 55 5e
4a 00 05 e2 09 53 07 13 ca 14 62 0d e8 18 7e 81 99 6e e8 04 d1 53 b8 a1 f6
08 49 6f dc d9 3d 30 fc 1c 8b 45 be cc 06

Selander, et al. Expires March 14, 2020 [Page 46]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) September 2019

C.1.4.2. Key and Nonce Computation

 The key and nonce for calculating the ciphertext are calculated as
 follows, as specified in Section 3.3.

 HKDF SHA-256 is the HKDF used (as defined by cipher suite 0).

 PRK = HMAC-SHA-256(salt, G_XY)

 Since this is the asymmetric case, salt is the empty byte string.

 G_XY is the shared secret, and since the curve25519 is used, the ECDH
 shared secret is the output of the X25519 function.

G_XY (32 bytes)
c6 1e 09 09 a1 9d 64 24 01 63 ec 26 2e 9c c4 f8 8c e7 7b e1 23 c5 ab 53 8d
26 b0 69 22 a5 20 67

 From there, PRK is computed:

PRK (32 bytes)
ba 9c 2c a1 c5 62 14 a6 e0 f6 13 ed a8 91 86 8a 4c a3 e3 fa bc c7 79 8f dc
01 60 80 07 59 16 71

 Key K_2 is the output of HKDF-Expand(PRK, info, L).

 info is defined as follows:

info for K_2
[
 10,
 [null, null, null],
 [null, null, null],
 [128, h'', h'5550b3dc5984b0209ae74ea26a18918957508e30332b11da681dc2afdd
 870355']
]

 Which as a CBOR encoded data item is:

info (K_2) (CBOR-encoded) (48 bytes)
84 0a 83 f6 f6 f6 83 f6 f6 f6 83 18 80 40 58 20 55 50 b3 dc 59 84 b0 20 9a
e7 4e a2 6a 18 91 89 57 50 8e 30 33 2b 11 da 68 1d c2 af dd 87 03 55

 L is the length of K_2, so 16 bytes.

 From these parameters, K_2 is computed:

Selander, et al. Expires March 14, 2020 [Page 47]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) September 2019

 K_2 (16 bytes)
 da d7 44 af 07 c4 da 27 d1 f0 a3 8a 0c 4b 87 38

 Nonce IV_2 is the output of HKDF-Expand(PRK, info, L).

 info is defined as follows:

info for IV_2
[
 "IV-GENERATION",
 [null, null, null],
 [null, null, null],
 [104, h'', h'5550b3dc5984b0209ae74ea26a18918957508e30332b11da681dc2afdd
 870355']
]

 Which as a CBOR encoded data item is:

info (IV_2) (CBOR-encoded) (61 bytes)
84 6d 49 56 2d 47 45 4e 45 52 41 54 49 4f 4e 83 f6 f6 f6 83 f6 f6 f6 83 18
68 40 58 20 55 50 b3 dc 59 84 b0 20 9a e7 4e a2 6a 18 91 89 57 50 8e 30 33
2b 11 da 68 1d c2 af dd 87 03 55

 L is the length of IV_2, so 13 bytes.

 From these parameters, IV_2 is computed:

 IV_2 (13 bytes)
 fb a1 65 d9 08 da a7 8e 4f 84 41 42 d0

C.1.4.3. Ciphertext Computation

 COSE_Encrypt0 is computed with the following parameters. Note that
 UAD_2 is omitted.

 o empty protected header

 o external_aad = TH_2

 o plaintext = CBOR Sequence of the items kid_value, signature, in
 this order.

 with kid_value taken from Appendix C.1.2, and signature as calculated
 in Appendix C.1.4.1.

 The plaintext is the following:

Selander, et al. Expires March 14, 2020 [Page 48]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) September 2019

P_2 (68 bytes)
41 a3 58 40 52 3d 99 6d fd 9e 2f 77 c7 68 71 8a 30 c3 48 77 8c 5e b8 64 dd
53 7e 55 5e 4a 00 05 e2 09 53 07 13 ca 14 62 0d e8 18 7e 81 99 6e e8 04 d1
53 b8 a1 f6 08 49 6f dc d9 3d 30 fc 1c 8b 45 be cc 06

 From the parameters above, the Enc_structure A_2 is computed.

 A_2 =
 [
 "Encrypt0",
 h'',
 h'5550b3dc5984b0209ae74ea26a18918957508e30332b11da681dc2afdd870355'
]

 Which encodes to the following byte string to be used as Additional
 Authenticated Data:

A_2 (CBOR-encoded) (45 bytes)
83 68 45 6e 63 72 79 70 74 30 40 58 20 55 50 b3 dc 59 84 b0 20 9a e7 4e a2
6a 18 91 89 57 50 8e 30 33 2b 11 da 68 1d c2 af dd 87 03 55

 The key and nonce used are defined in Appendix C.1.4.2:

 o key = K_2

 o nonce = IV_2

 Using the parameters above, the ciphertext CIPHERTEXT_2 can be
 computed:

CIPHERTEXT_2 (76 bytes)
1e 6b fe 0e 77 99 ce f0 66 a3 4f 08 ef aa 90 00 6d b4 4c 90 1c f7 9b 23 85
3a b9 7f d8 db c8 53 39 d5 ed 80 87 78 3c f7 a4 a7 e0 ea 38 c2 21 78 9f a3
71 be 64 e9 3c 43 a7 db 47 d1 e3 fb 14 78 8e 96 7f dd 78 d8 80 78 e4 9b 78
bf

C.1.4.4. message_2

 From the parameter computed in Appendix C.1.4 and Appendix C.1.4.3,
 message_2 is computed, as the CBOR Sequence of the following items:
 (G_Y, C_V, CIPHERTEXT_2).

Selander, et al. Expires March 14, 2020 [Page 49]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) September 2019

message_2 =
(
 h'8db577f9b9c2744798987db557bf31ca48acd205a9db8c320e5d49f302a96474',
 h'c4',
 h'1e6bfe0e7799cef066a34f08efaa90006db44c901cf79b23853ab97fd8dbc85339d5ed
 8087783cf7a4a7e0ea38c221789fa371be64e93c43a7db47d1e3fb14788e967fdd78d880
 78e49b78bf'
)

 Which encodes to the following byte string:

message_2 (CBOR Sequence) (114 bytes)
58 20 8d b5 77 f9 b9 c2 74 47 98 98 7d b5 57 bf 31 ca 48 ac d2 05 a9 db 8c
32 0e 5d 49 f3 02 a9 64 74 41 c4 58 4c 1e 6b fe 0e 77 99 ce f0 66 a3 4f 08
ef aa 90 00 6d b4 4c 90 1c f7 9b 23 85 3a b9 7f d8 db c8 53 39 d5 ed 80 87
78 3c f7 a4 a7 e0 ea 38 c2 21 78 9f a3 71 be 64 e9 3c 43 a7 db 47 d1 e3 fb
14 78 8e 96 7f dd 78 d8 80 78 e4 9b 78 bf

C.1.5. Message 3

 Since TYPE mod 4 equals 1, C_V is not omitted from data_3.

 C_V (1 bytes)
 c4

 Data_3 is constructed, as the CBOR Sequence of the CBOR data item
 above.

 data_3 =
 (
 h'c4'
)

 data_3 (CBOR Sequence) (2 bytes)
 41 c4

 From data_3, CIPHERTEXT_2 (Appendix C.1.4.3), and TH_2
 (Appendix C.1.4), compute the input to the transcript hash TH_2 =
 H(TH_2 , CIPHERTEXT_2, data_3), as a CBOR Sequence of these 3 data
 items.

(TH_2, CIPHERTEXT_2, data_3)
(CBOR Sequence) (114 bytes)
58 20 55 50 b3 dc 59 84 b0 20 9a e7 4e a2 6a 18 91 89 57 50 8e 30 33 2b 11
da 68 1d c2 af dd 87 03 55 58 4c 1e 6b fe 0e 77 99 ce f0 66 a3 4f 08 ef aa
90 00 6d b4 4c 90 1c f7 9b 23 85 3a b9 7f d8 db c8 53 39 d5 ed 80 87 78 3c
f7 a4 a7 e0 ea 38 c2 21 78 9f a3 71 be 64 e9 3c 43 a7 db 47 d1 e3 fb 14 78
8e 96 7f dd 78 d8 80 78 e4 9b 78 bf 41 c4

Selander, et al. Expires March 14, 2020 [Page 50]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) September 2019

 And from there, compute the transcript hash TH_3 = SHA-256(TH_2 ,
 CIPHERTEXT_2, data_3)

TH_3 value (32 bytes)
21 cc b6 78 b7 91 14 96 09 55 88 5b 90 a2 b8 2e 3b 2c a2 7e 8e 37 4a 79 07
f3 e7 85 43 67 fc 22

 When encoded as a CBOR bstr, that gives:

TH_3 (CBOR-encoded) (34 bytes)
58 20 21 cc b6 78 b7 91 14 96 09 55 88 5b 90 a2 b8 2e 3b 2c a2 7e 8e 37 4a
79 07 f3 e7 85 43 67 fc 22

C.1.5.1. Signature Computation

 COSE_Sign1 is computed with the following parameters. From
Appendix C.1.2:

 o protected = bstr .cbor ID_CRED_U

 o payload = CRED_U

 And from Appendix C.1.4:

 o external_aad = TH_3

 The Sig_structure M_V to be signed is: ["Signature1",
 << ID_CRED_U >>, TH_3, CRED_U] , as defined in Section 4.4.2:

M_U =
[
 "Signature1",
 << { 4: h'a2' } >>,
 h'734bef323d867a12956127c2e62ade42c0f119e5487750c0c31fd093376dceed',
 << {
 1: 1,
 -1: 6,
 -2: h'424c756ab77cc6fdecf0b3ecfcffb75310c015bf5cba2ec0a236e6650c8ab9
 c7'
 } >>
]

 Which encodes to the following byte string ToBeSigned:

Selander, et al. Expires March 14, 2020 [Page 51]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) September 2019

M_U (message to be signed with Ed25519) (CBOR-encoded) (93 bytes)
84 6a 53 69 67 6e 61 74 75 72 65 31 44 a1 04 41 a2 58 20 73 4b ef 32 3d 86
7a 12 95 61 27 c2 e6 2a de 42 c0 f1 19 e5 48 77 50 c0 c3 1f d0 93 37 6d ce
ed 58 28 a3 01 01 20 06 21 58 20 42 4c 75 6a b7 7c c6 fd ec f0 b3 ec fc ff
b7 53 10 c0 15 bf 5c ba 2e c0 a2 36 e6 65 0c 8a b9 c7

 The message is signed using the private authentication key of U, and
 produces the following signature:

U's signature (64 bytes)
5c 7d 7d 64 c9 61 c5 f5 2d cf 33 91 25 92 a1 af f0 2c 33 62 b0 e7 55 0e 4b
c5 66 b7 0c 20 61 f3 c5 f6 49 e5 ed 32 3d 30 a2 6c 61 2f bb 5c bd 25 f3 1c
27 22 8c ea ec 64 29 31 95 41 fe 07 8e 0e

C.1.5.2. Key and Nonce Computation

 The key and nonce for calculating the ciphertext are calculated as
 follows, as specified in Section 3.3.

 HKDF SHA-256 is the HKDF used (as defined by cipher suite 0).

 PRK = HMAC-SHA-256(salt, G_XY)

 Since this is the asymmetric case, salt is the empty byte string.

 G_XY is the shared secret, and since the curve25519 is used, the ECDH
 shared secret is the output of the X25519 function.

G_XY (32 bytes)
c6 1e 09 09 a1 9d 64 24 01 63 ec 26 2e 9c c4 f8 8c e7 7b e1 23 c5 ab 53 8d
26 b0 69 22 a5 20 67

 From there, PRK is computed:

PRK (32 bytes)
ba 9c 2c a1 c5 62 14 a6 e0 f6 13 ed a8 91 86 8a 4c a3 e3 fa bc c7 79 8f dc
01 60 80 07 59 16 71

 Key K_3 is the output of HKDF-Expand(PRK, info, L).

 info is defined as follows:

Selander, et al. Expires March 14, 2020 [Page 52]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) September 2019

info for K_3
[
 10,
 [null, null, null],
 [null, null, null],
 [128, h'', h'21ccb678b79114960955885b90a2b82e3b2ca27e8e374a7907f3e78543
 67fc22']
]

 Which as a CBOR encoded data item is:

info (K_3) (CBOR-encoded) (48 bytes)
84 0a 83 f6 f6 f6 83 f6 f6 f6 83 18 80 40 58 20 21 cc b6 78 b7 91 14 96 09
55 88 5b 90 a2 b8 2e 3b 2c a2 7e 8e 37 4a 79 07 f3 e7 85 43 67 fc 22

 L is the length of K_3, so 16 bytes.

 From these parameters, K_3 is computed:

 K_3 (16 bytes)
 e1 ac d4 76 f5 96 a4 60 72 44 a8 da 8c ff 49 df

 Nonce IV_3 is the output of HKDF-Expand(PRK, info, L).

 info is defined as follows:

info for IV_3
[
 "IV-GENERATION",
 [null, null, null],
 [null, null, null],
 [104, h'', h'21ccb678b79114960955885b90a2b82e3b2ca27e8e374a7907f3e78543
 67fc22']
]

 Which as a CBOR encoded data item is:

info (IV_3) (CBOR-encoded) (61 bytes)
84 6d 49 56 2d 47 45 4e 45 52 41 54 49 4f 4e 83 f6 f6 f6 83 f6 f6 f6 83 18
68 40 58 20 21 cc b6 78 b7 91 14 96 09 55 88 5b 90 a2 b8 2e 3b 2c a2 7e 8e
37 4a 79 07 f3 e7 85 43 67 fc 22

 L is the length of IV_3, so 13 bytes.

 From these parameters, IV_3 is computed:

 IV_3 (13 bytes)
 de 53 02 13 ab a2 6a 47 1a 51 f3 d6 fb

Selander, et al. Expires March 14, 2020 [Page 53]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) September 2019

C.1.5.3. Ciphertext Computation

 COSE_Encrypt0 is computed with the following parameters. Note that
 PAD_3 is omitted.

 o empty protected header

 o external_aad = TH_3

 o plaintext = CBOR Sequence of the items kid_value, signature, in
 this order.

 with kid_value taken from Appendix C.1.1, and signature as calculated
 in Appendix C.1.5.1.

 The plaintext is the following:

P_3 (68 bytes)
41 a2 58 40 5c 7d 7d 64 c9 61 c5 f5 2d cf 33 91 25 92 a1 af f0 2c 33 62 b0
e7 55 0e 4b c5 66 b7 0c 20 61 f3 c5 f6 49 e5 ed 32 3d 30 a2 6c 61 2f bb 5c
bd 25 f3 1c 27 22 8c ea ec 64 29 31 95 41 fe 07 8e 0e

 From the parameters above, the Enc_structure A_3 is computed.

 A_3 =
 [
 "Encrypt0",
 h'',
 h'21ccb678b79114960955885b90a2b82e3b2ca27e8e374a7907f3e7854367fc22'
]

 Which encodes to the following byte string to be used as Additional
 Authenticated Data:

A_2 (CBOR-encoded) (45 bytes)
83 68 45 6e 63 72 79 70 74 30 40 58 20 21 cc b6 78 b7 91 14 96 09 55 88 5b
90 a2 b8 2e 3b 2c a2 7e 8e 37 4a 79 07 f3 e7 85 43 67 fc 22

 The key and nonce used are defined in Appendix C.1.4.2:

 o key = K_3

 o nonce = IV_3

 Using the parameters above, the ciphertext CIPHERTEXT_3 can be
 computed:

Selander, et al. Expires March 14, 2020 [Page 54]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) September 2019

CIPHERTEXT_3 (76 bytes)
de 4a 83 3d 48 b6 64 74 14 2c c9 bd ce 87 d9 3a f8 35 57 9c 2d bf 1b 9e 2f
b4 dc 66 60 0d ba c6 bb 3c c0 5c 29 0e f3 5d 51 5b 4d 7d 64 83 f5 09 61 43
b5 56 44 cf af d1 ff aa 7f 2b a3 86 36 57 83 1d d2 e5 bd 04 04 38 60 14 0d
c8

C.1.5.4. message_3

 From the parameter computed in Appendix C.1.5 and Appendix C.1.5.3,
 message_3 is computed, as the CBOR Sequence of the following items:
 (C_V, CIPHERTEXT_3).

message_3 =
(
 h'c4',
 h'de4a833d48b66474142cc9bdce87d93af835579c2dbf1b9e2fb4dc66600dbac6bb3cc0
 5c290ef35d515b4d7d6483f5096143b55644cfafd1ffaa7f2ba3863657831dd2e5bd0404
 3860140dc8'
)

 Which encodes to the following byte string:

message_3 (CBOR Sequence) (80 bytes)
41 c4 58 4c de 4a 83 3d 48 b6 64 74 14 2c c9 bd ce 87 d9 3a f8 35 57 9c 2d bf 1b 9e 2f b4 dc 66 60 0d ba c6 bb 3c c0 5c 29 0e f3 5d 51 5b 4d 7d 64 83 f5 09 61 43 b5 56 44 cf af d1 ff aa 7f 2b a3 86 36 57 83 1d d2 e5 bd 04 04 38 60 14 0d c8

C.1.5.5. OSCORE Security Context Derivation

 From the previous message exchange, the Common Security Context for
 OSCORE [RFC8613] can be derived, as specified in Section 3.3.1.

 First af all, TH_4 is computed: TH_4 = H(TH_3, CIPHERTEXT_3), where
 the input to the hash function is the CBOR Sequence of TH_3 and
 CIPHERTEXT_3

(TH_3, CIPHERTEXT_3)
(CBOR Sequence) (112 bytes)
58 20 21 cc b6 78 b7 91 14 96 09 55 88 5b 90 a2 b8 2e 3b 2c a2 7e 8e 37 4a
79 07 f3 e7 85 43 67 fc 22 58 4c de 4a 83 3d 48 b6 64 74 14 2c c9 bd ce 87
d9 3a f8 35 57 9c 2d bf 1b 9e 2f b4 dc 66 60 0d ba c6 bb 3c c0 5c 29 0e f3
5d 51 5b 4d 7d 64 83 f5 09 61 43 b5 56 44 cf af d1 ff aa 7f 2b a3 86 36 57
83 1d d2 e5 bd 04 04 38 60 14 0d c8

 And from there, compute the transcript hash TH_4 = SHA-256(TH_3,
 CIPHERTEXT_3)

TH_4 value (32 bytes)
51 ed 39 32 bc ba e8 90 1c 1d 4d eb 94 bd 67 3a b4 d3 8c 34 81 96 09 ee 0d
5c 9d a6 e9 80 7f e5

https://datatracker.ietf.org/doc/html/rfc8613

Selander, et al. Expires March 14, 2020 [Page 55]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) September 2019

 When encoded as a CBOR bstr, that gives:

TH_4 (CBOR-encoded) (34 bytes)
58 20 51 ed 39 32 bc ba e8 90 1c 1d 4d eb 94 bd 67 3a b4 d3 8c 34 81 96 09
ee 0d 5c 9d a6 e9 80 7f e5

 To derive the Master Secret and Master Salt the same HKDF-Expand
 (PRK, info, L) is used, with different info and L.

 For Master Secret:

 L for Master Secret = 16

Info for Master Secret =
[
 "OSCORE Master Secret",
 [null, null, null],
 [null, null, null],
 [128, h'', h'51ed3932bcbae8901c1d4deb94bd673ab4d38c34819609ee0d5c9da6e9
 807fe5']
]

 When encoded as a CBOR bstr, that gives:

info (OSCORE Master Secret) (CBOR-encoded) (68 bytes)
84 74 4f 53 43 4f 52 45 20 4d 61 73 74 65 72 20 53 65 63 72 65 74 83 f6 f6
f6 83 f6 f6 f6 83 18 80 40 58 20 51 ed 39 32 bc ba e8 90 1c 1d 4d eb 94 bd
67 3a b4 d3 8c 34 81 96 09 ee 0d 5c 9d a6 e9 80 7f e5

 Finally, the Master Secret value computed is:

 OSCORE Master Secret (16 bytes)
 09 02 9d b0 0c 3e 01 27 42 c3 a8 69 04 07 4c 0e

 For Master Salt:

 L for Master Secret = 8

Info for Master Salt =
[
 "OSCORE Master Salt",
 [null, null, null],
 [null, null, null],
 [64, h'', h'51ed3932bcbae8901c1d4deb94bd673ab4d38c34819609ee0d5c9da6e98
 07fe5']
]

 When encoded as a CBOR bstr, that gives:

Selander, et al. Expires March 14, 2020 [Page 56]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) September 2019

info (OSCORE Master Salt) (CBOR-encoded) (66 bytes)
84 72 4f 53 43 4f 52 45 20 4d 61 73 74 65 72 20 53 61 6c 74 83 f6 f6 f6 83
f6 f6 f6 83 18 40 40 58 20 51 ed 39 32 bc ba e8 90 1c 1d 4d eb 94 bd 67 3a
b4 d3 8c 34 81 96 09 ee 0d 5c 9d a6 e9 80 7f e5

 Finally, the Master Secret value computed is:

 OSCORE Master Salt (8 bytes)
 81 02 97 22 a2 30 4a 06

 The Client's Sender ID takes the value of C_V:

 Client's OSCORE Sender ID (1 bytes)
 c4

 The Server's Sender ID takes the value of C_U:

 Server's OSCORE Sender ID (1 bytes)
 c3

 The algorithms are those negociated in the cipher suite:

 AEAD Algorithm
 10

 HMAC Algorithm
 5

C.2. Test Vectors for EDHOC Authenticated with Symmetric Keys (PSK)

 Symmetric EDHOC is used:

 method (Symmetric Authentication)
 1

 CoAP is used as transport:

 corr (Party U is CoAP client)
 1

 No unprotected opaque application data is sent in the message
 exchanges.

 The pre-defined Cipher Suite 0 is in place both on Party U and Party
 V, see Section 3.1.

Selander, et al. Expires March 14, 2020 [Page 57]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) September 2019

C.2.1. Input for Party U

 The following are the parameters that are set in Party U before the
 first message exchange.

Party U's ephemeral private key (32 bytes)
f4 0c ea f8 6e 57 76 92 33 32 b8 d8 fd 3b ef 84 9c ad b1 9c 69 96 bc 27 2a
f1 f6 48 d9 56 6a 4c

Party U's ephemeral public key (value of X_U) (32 bytes)
ab 2f ca 32 89 83 22 c2 08 fb 2d ab 50 48 bd 43 c3 55 c6 43 0f 58 88 97 cb
57 49 61 cf a9 80 6f

 Connection identifier chosen by U (value of C_U) (1 bytes)
 c1

 Pre-shared Key (PSK) (16 bytes)
 a1 1f 8f 12 d0 87 6f 73 6d 2d 8f d2 6e 14 c2 de

 kid value to identify PSK (1 bytes)
 a1

 So ID_PSK is defined as the following:

 ID_PSK =
 {
 4: h'a1'
 }

 This test vector uses COSE_Key objects to store the pre-shared key.

 Note that since the map for ID_PSK contains a single 'kid' parameter,
 ID_PSK is used when transported in the protected header of the COSE
 Object, but only the kid_value is used when added to the plaintext
 (see Section 5.1):

 ID_PSK (in protected header) (CBOR-encoded) (4 bytes)
 a1 04 41 a1

 kid_value (in plaintext) (CBOR-encoded) (2 bytes)
 41 a1

C.2.2. Input for Party V

 The following are the parameters that are set in Party U before the
 first message exchange.

Selander, et al. Expires March 14, 2020 [Page 58]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) September 2019

Party V's ephemeral private key (32 bytes)
d9 81 80 87 de 72 44 ab c1 b5 fc f2 8e 55 e4 2c 7f f9 c6 78 c0 60 51 81 f3
7a c5 d7 41 4a 7b 95

Party V's ephemeral public key (value of X_V) (32 bytes)
fc 3b 33 93 67 a5 22 5d 53 a9 2d 38 03 23 af d0 35 d7 81 7b 6d 1b e4 7d 94
6f 6b 09 a9 cb dc 06

 Connection identifier chosen by V (value of C_V) (1 bytes)
 c2

 Pre-shared Key (PSK) (16 bytes)
 a1 1f 8f 12 d0 87 6f 73 6d 2d 8f d2 6e 14 c2 de

 kid value to identify PSK (1 bytes)
 a1

 So ID_PSK is defined as the following:

 ID_PSK =
 {
 4: h'a1'
 }

 This test vector uses COSE_Key objects to store the pre-shared key.

 Note that since the map for ID_PSK contains a single 'kid' parameter,
 ID_PSK is used when transported in the protected header of the COSE
 Object, but only the kid_value is used when added to the plaintext
 (see Section 5.1):

 ID_PSK (in protected header) (CBOR-encoded) (4 bytes)
 a1 04 41 a1

 kid_value (in plaintext) (CBOR-encoded) (2 bytes)
 41 a1

C.2.3. Message 1

 From the input parameters (in Appendix C.2.1):

 TYPE (4 * method + corr)
 5

 suite
 0

Selander, et al. Expires March 14, 2020 [Page 59]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) September 2019

 SUITES_U : suite
 0

G_X (X-coordinate of the ephemeral public key of Party U) (32 bytes)
ab 2f ca 32 89 83 22 c2 08 fb 2d ab 50 48 bd 43 c3 55 c6 43 0f 58 88 97 cb
57 49 61 cf a9 80 6f

 C_U (Connection identifier chosen by U) (CBOR encoded) (2 bytes)
 41 c1

 kid_value of ID_PSK (CBOR encoded) (2 bytes)
 41 a1

 No UAD_1 is provided, so UAD_1 is absent from message_1.

 Message_1 is constructed, as the CBOR Sequence of the CBOR data items
 above.

 message_1 =
 (
 5,
 0,
 h'ab2fca32898322c208fb2dab5048bd43c355c6430f588897cb574961cfa9806f',
 h'c1',
 h'a1'
)

message_1 (CBOR Sequence) (40 bytes)
05 00 58 20 ab 2f ca 32 89 83 22 c2 08 fb 2d ab 50 48 bd 43 c3 55 c6 43 0f
58 88 97 cb 57 49 61 cf a9 80 6f 41 c1 41 a1

C.2.4. Message 2

 Since TYPE mod 4 equals 1, C_U is omitted from data_2.

G_Y (X-coordinate of the ephemeral public key of Party V) (32 bytes)
fc 3b 33 93 67 a5 22 5d 53 a9 2d 38 03 23 af d0 35 d7 81 7b 6d 1b e4 7d 94
6f 6b 09 a9 cb dc 06

 C_V (Connection identifier chosen by V) (1 bytes)
 c2

 Data_2 is constructed, as the CBOR Sequence of the CBOR data items
 above.

Selander, et al. Expires March 14, 2020 [Page 60]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) September 2019

 data_2 =
 (
 h'fc3b339367a5225d53a92d380323afd035d7817b6d1be47d946f6b09a9cbdc06',
 h'c2'
)

data_2 (CBOR Sequence) (36 bytes)
58 20 fc 3b 33 93 67 a5 22 5d 53 a9 2d 38 03 23 af d0 35 d7 81 7b 6d 1b e4
7d 94 6f 6b 09 a9 cb dc 06 41 c2

 From data_2 and message_1 (from Appendix C.2.3), compute the input to
 the transcript hash TH_2 = H(message_1, data_2), as a CBOR Sequence
 of these 2 data items.

(message_1, data_2) (CBOR Sequence)
(76 bytes)
05 00 58 20 ab 2f ca 32 89 83 22 c2 08 fb 2d ab 50 48 bd 43 c3 55 c6 43 0f
58 88 97 cb 57 49 61 cf a9 80 6f 41 c1 41 a1 58 20 fc 3b 33 93 67 a5 22 5d
53 a9 2d 38 03 23 af d0 35 d7 81 7b 6d 1b e4 7d 94 6f 6b 09 a9 cb dc 06 41
c2

 And from there, compute the transcript hash TH_2 = SHA-256(
 message_1, data_2)

TH_2 value (32 bytes)
16 4f 44 d8 56 dd 15 22 2f a4 63 f2 02 d9 c6 0b e3 c6 9b 40 f7 35 8d 34 1c
db 7b 07 de e1 70 ca

 When encoded as a CBOR bstr, that gives:

TH_2 (CBOR-encoded) (34 bytes)
58 20 16 4f 44 d8 56 dd 15 22 2f a4 63 f2 02 d9 c6 0b e3 c6 9b 40 f7 35 8d
34 1c db 7b 07 de e1 70 ca

C.2.4.1. Key and Nonce Computation

 The key and nonce for calculating the ciphertext are calculated as
 follows, as specified in Section 3.3.

 HKDF SHA-256 is the HKDF used (as defined by cipher suite 0).

 PRK = HMAC-SHA-256(salt, G_XY)

 Since this is the symmetric case, salt is the PSK:

 salt (16 bytes)
 a1 1f 8f 12 d0 87 6f 73 6d 2d 8f d2 6e 14 c2 de

Selander, et al. Expires March 14, 2020 [Page 61]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) September 2019

 G_XY is the shared secret, and since the curve25519 is used, the ECDH
 shared secret is the output of the X25519 function.

G_XY (32 bytes)
d5 75 05 50 6d 8f 30 a8 60 a0 63 d0 1b 5b 7a d7 6a 09 4f 70 61 3b 4a e6 6c
5a 90 e5 c2 1f 23 11

 From there, PRK is computed:

PRK (32 bytes)
aa b2 f1 3c cb 1a 4f f7 96 a9 7a 32 a4 d2 fb 62 47 ef 0b 6b 06 da 04 d3 d1
06 39 4b 28 76 e2 8c

 Key K_2 is the output of HKDF-Expand(PRK, info, L).

 info is defined as follows:

info for K_2
[
 10,
 [null, null, null],
 [null, null, null],
 [128, h'', h'164f44d856dd15222fa463f202d9c60be3c69b40f7358d341cdb7b07de
 e170ca']
]

 Which as a CBOR encoded data item is:

info (K_2) (CBOR-encoded) (48 bytes)
84 0a 83 f6 f6 f6 83 f6 f6 f6 83 18 80 40 58 20 16 4f 44 d8 56 dd 15 22 2f
a4 63 f2 02 d9 c6 0b e3 c6 9b 40 f7 35 8d 34 1c db 7b 07 de e1 70 ca

 L is the length of K_2, so 16 bytes.

 From these parameters, K_2 is computed:

 K_2 (16 bytes)
 ac 42 6e 5e 7d 7a d6 ae 3b 19 aa bd e0 f6 25 57

 Nonce IV_2 is the output of HKDF-Expand(PRK, info, L).

 info is defined as follows:

Selander, et al. Expires March 14, 2020 [Page 62]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) September 2019

info for IV_2
[
 "IV-GENERATION",
 [null, null, null],
 [null, null, null],
 [104, h'', h'164f44d856dd15222fa463f202d9c60be3c69b40f7358d341cdb7b07de
 e170ca']
]

 Which as a CBOR encoded data item is:

info (IV_2) (CBOR-encoded) (61 bytes)
84 6d 49 56 2d 47 45 4e 45 52 41 54 49 4f 4e 83 f6 f6 f6 83 f6 f6 f6 83 18
68 40 58 20 16 4f 44 d8 56 dd 15 22 2f a4 63 f2 02 d9 c6 0b e3 c6 9b 40 f7
35 8d 34 1c db 7b 07 de e1 70 ca

 L is the length of IV_2, so 13 bytes.

 From these parameters, IV_2 is computed:

 IV_2 (13 bytes)
 ff 11 2e 1c 26 8a a2 a7 7c c3 ee 6c 4d

C.2.4.2. Ciphertext Computation

 COSE_Encrypt0 is computed with the following parameters. Note that
 UAD_2 is omitted.

 o empty protected header

 o external_aad = TH_2

 o empty plaintext, since UAD_2 is omitted

 From the parameters above, the Enc_structure A_2 is computed.

 A_2 =
 [
 "Encrypt0",
 h'',
 h'164f44d856dd15222fa463f202d9c60be3c69b40f7358d341cdb7b07dee170ca'
]

 Which encodes to the following byte string to be used as Additional
 Authenticated Data:

Selander, et al. Expires March 14, 2020 [Page 63]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) September 2019

A_2 (CBOR-encoded) (45 bytes)
83 68 45 6e 63 72 79 70 74 30 40 58 20 16 4f 44 d8 56 dd 15 22 2f a4 63 f2
02 d9 c6 0b e3 c6 9b 40 f7 35 8d 34 1c db 7b 07 de e1 70 ca

 The key and nonce used are defined in Appendix C.2.4.1:

 o key = K_2

 o nonce = IV_2

 Using the parameters above, the ciphertext CIPHERTEXT_2 can be
 computed:

 CIPHERTEXT_2 (8 bytes)
 ba 38 b9 a3 fc 1a 58 e9

C.2.4.3. message_2

 From the parameter computed in Appendix C.2.4 and Appendix C.2.4.2,
 message_2 is computed, as the CBOR Sequence of the following items:
 (G_Y, C_V, CIPHERTEXT_2).

 message_2 =
 (
 h'fc3b339367a5225d53a92d380323afd035d7817b6d1be47d946f6b09a9cbdc06',
 h'c2',
 h'ba38b9a3fc1a58e9'
)

 Which encodes to the following byte string:

message_2 (CBOR Sequence) (45 bytes)
58 20 fc 3b 33 93 67 a5 22 5d 53 a9 2d 38 03 23 af d0 35 d7 81 7b 6d 1b e4
7d 94 6f 6b 09 a9 cb dc 06 41 c2 48 ba 38 b9 a3 fc 1a 58 e9

C.2.5. Message 3

 Since TYPE mod 4 equals 1, C_V is not omitted from data_3.

 C_V (1 bytes)
 c2

 Data_3 is constructed, as the CBOR Sequence of the CBOR data item
 above.

Selander, et al. Expires March 14, 2020 [Page 64]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) September 2019

 data_3 =
 (
 h'c2'
)

 data_3 (CBOR Sequence) (2 bytes)
 41 c2

 From data_3, CIPHERTEXT_2 (Appendix C.2.4.2), and TH_2
 (Appendix C.2.4), compute the input to the transcript hash TH_2 =
 H(TH_2 , CIPHERTEXT_2, data_3), as a CBOR Sequence of these 3 data
 items.

(TH_2, CIPHERTEXT_2, data_3) (CBOR Sequence) (45 bytes)
58 20 16 4f 44 d8 56 dd 15 22 2f a4 63 f2 02 d9 c6 0b e3 c6 9b 40 f7 35 8d
34 1c db 7b 07 de e1 70 ca 48 ba 38 b9 a3 fc 1a 58 e9 41 c2

 And from there, compute the transcript hash TH_3 = SHA-256(TH_2 ,
 CIPHERTEXT_2, data_3)

TH_3 value (32 bytes)
11 98 aa b3 ed db 61 b8 a1 b1 93 a9 e5 60 2b 5d 5f ea 76 bc 28 52 89 54 81
b5 2b 8a f5 66 d7 fe

 When encoded as a CBOR bstr, that gives:

TH_3 (CBOR-encoded) (34 bytes)
58 20 11 98 aa b3 ed db 61 b8 a1 b1 93 a9 e5 60 2b 5d 5f ea 76 bc 28 52 89
54 81 b5 2b 8a f5 66 d7 fe

C.2.5.1. Key and Nonce Computation

 The key and nonce for calculating the ciphertext are calculated as
 follows, as specified in Section 3.3.

 HKDF SHA-256 is the HKDF used (as defined by cipher suite 0).

 PRK = HMAC-SHA-256(salt, G_XY)

 Since this is the symmetric case, salt is the PSK:

 salt (16 bytes)
 a1 1f 8f 12 d0 87 6f 73 6d 2d 8f d2 6e 14 c2 de

 G_XY is the shared secret, and since the curve25519 is used, the ECDH
 shared secret is the output of the X25519 function.

Selander, et al. Expires March 14, 2020 [Page 65]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) September 2019

G_XY (32 bytes)
d5 75 05 50 6d 8f 30 a8 60 a0 63 d0 1b 5b 7a d7 6a 09 4f 70 61 3b 4a e6 6c
5a 90 e5 c2 1f 23 11

 From there, PRK is computed:

PRK (32 bytes)
aa b2 f1 3c cb 1a 4f f7 96 a9 7a 32 a4 d2 fb 62 47 ef 0b 6b 06 da 04 d3 d1
06 39 4b 28 76 e2 8c

 Key K_3 is the output of HKDF-Expand(PRK, info, L).

 info is defined as follows:

info for K_3
[
 10,
 [null, null, null],
 [null, null, null],
 [128, h'', h'1198aab3eddb61b8a1b193a9e5602b5d5fea76bc2852895481b52b8af5
 66d7fe']
]

 Which as a CBOR encoded data item is:

info (K_3) (CBOR-encoded) (48 bytes)
84 0a 83 f6 f6 f6 83 f6 f6 f6 83 18 80 40 58 20 11 98 aa b3 ed db 61 b8 a1
b1 93 a9 e5 60 2b 5d 5f ea 76 bc 28 52 89 54 81 b5 2b 8a f5 66 d7 fe

 L is the length of K_3, so 16 bytes.

 From these parameters, K_3 is computed:

 K_3 (16 bytes)
 fe 75 e3 44 27 f8 3a ad 84 16 83 c6 6f a3 8a 62

 Nonce IV_3 is the output of HKDF-Expand(PRK, info, L).

 info is defined as follows:

info for IV_3
[
 "IV-GENERATION",
 [null, null, null],
 [null, null, null],
 [104, h'', h'1198aab3eddb61b8a1b193a9e5602b5d5fea76bc2852895481b52b8af5
 66d7fe']
]

Selander, et al. Expires March 14, 2020 [Page 66]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) September 2019

 Which as a CBOR encoded data item is:

info (IV_3) (CBOR-encoded) (61 bytes)
84 6d 49 56 2d 47 45 4e 45 52 41 54 49 4f 4e 83 f6 f6 f6 83 f6 f6 f6 83 18
68 40 58 20 11 98 aa b3 ed db 61 b8 a1 b1 93 a9 e5 60 2b 5d 5f ea 76 bc 28
52 89 54 81 b5 2b 8a f5 66 d7 fe

 L is the length of IV_3, so 13 bytes.

 From these parameters, IV_3 is computed:

 IV_3 (13 bytes)
 60 0a 33 b4 16 de 08 23 52 67 71 ec 8a

C.2.5.2. Ciphertext Computation

 COSE_Encrypt0 is computed with the following parameters. Note that
 PAD_2 is omitted.

 o empty protected header

 o external_aad = TH_3

 o empty plaintext, since PAD_2 is omitted

 From the parameters above, the Enc_structure A_3 is computed.

 A_3 =
 [
 "Encrypt0",
 h'',
 h'1198aab3eddb61b8a1b193a9e5602b5d5fea76bc2852895481b52b8af566d7fe'
]

 Which encodes to the following byte string to be used as Additional
 Authenticated Data:

A_3 (CBOR-encoded) (45 bytes)
83 68 45 6e 63 72 79 70 74 30 40 58 20 11 98 aa b3 ed db 61 b8 a1 b1 93 a9
e5 60 2b 5d 5f ea 76 bc 28 52 89 54 81 b5 2b 8a f5 66 d7 fe

 The key and nonce used are defined in Appendix C.2.5.1:

 o key = K_3

 o nonce = IV_3

Selander, et al. Expires March 14, 2020 [Page 67]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) September 2019

 Using the parameters above, the ciphertext CIPHERTEXT_3 can be
 computed:

 CIPHERTEXT_3 (8 bytes)
 51 29 07 92 61 45 40 04

C.2.5.3. message_3

 From the parameter computed in Appendix C.2.5 and Appendix C.2.5.2,
 message_3 is computed, as the CBOR Sequence of the following items:
 (C_V, CIPHERTEXT_3).

 message_3 =
 (
 h'c2',
 h'5129079261454004'
)

 Which encodes to the following byte string:

 message_3 (CBOR Sequence) (11 bytes)
 41 c2 48 51 29 07 92 61 45 40 04

C.2.5.4. OSCORE Security Context Derivation

 From the previous message exchange, the Common Security Context for
 OSCORE [RFC8613] can be derived, as specified in Section 3.3.1.

 First af all, TH_4 is computed: TH_4 = H(TH_3, CIPHERTEXT_3), where
 the input to the hash function is the CBOR Sequence of TH_3 and
 CIPHERTEXT_3

(TH_3, CIPHERTEXT_3)
(CBOR Sequence) (43 bytes)
58 20 11 98 aa b3 ed db 61 b8 a1 b1 93 a9 e5 60 2b 5d 5f ea 76 bc 28 52 89
54 81 b5 2b 8a f5 66 d7 fe 48 51 29 07 92 61 45 40 04

 And from there, compute the transcript hash TH_4 = SHA-256(TH_3,
 CIPHERTEXT_3)

TH_4 value (32 bytes)
df 7c 9b 06 f5 dc 0e e8 86 0b 39 6c 78 c5 be b7 57 41 3f a7 b6 a9 cf 28 3d
db 4c d4 c1 fd e4 3c

 When encoded as a CBOR bstr, that gives:

https://datatracker.ietf.org/doc/html/rfc8613

Selander, et al. Expires March 14, 2020 [Page 68]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) September 2019

TH_4 (CBOR-encoded) (34 bytes)
58 20 df 7c 9b 06 f5 dc 0e e8 86 0b 39 6c 78 c5 be b7 57 41 3f a7 b6 a9 cf
28 3d db 4c d4 c1 fd e4 3c

 To derive the Master Secret and Master Salt the same HKDF-Expand
 (PRK, info, L) is used, with different info and L.

 For Master Secret:

 L for Master Secret = 16

Info for Master Secret =
[
 "OSCORE Master Secret",
 [null, null, null],
 [null, null, null],
 [128, h'', h'df7c9b06f5dc0ee8860b396c78c5beb757413fa7b6a9cf283ddb4cd4c1
 fde43c']
]

 When encoded as a CBOR bstr, that gives:

info (OSCORE Master Secret) (CBOR-encoded) (68 bytes)
84 74 4f 53 43 4f 52 45 20 4d 61 73 74 65 72 20 53 65 63 72 65 74 83 f6 f6
f6 83 f6 f6 f6 83 18 80 40 58 20 df 7c 9b 06 f5 dc 0e e8 86 0b 39 6c 78 c5
be b7 57 41 3f a7 b6 a9 cf 28 3d db 4c d4 c1 fd e4 3c

 Finally, the Master Secret value computed is:

 OSCORE Master Secret (16 bytes)
 8d 36 8f 09 26 2d c5 52 7f e7 19 e6 6c 91 63 75

 For Master Salt:

 L for Master Secret = 8

Info for Master Salt =
[
 "OSCORE Master Salt",
 [null, null, null],
 [null, null, null],
 [64, h'', h'df7c9b06f5dc0ee8860b396c78c5beb757413fa7b6a9cf283ddb4cd4c1f
 de43c']
]

 When encoded as a CBOR bstr, that gives:

Selander, et al. Expires March 14, 2020 [Page 69]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) September 2019

info (OSCORE Master Salt) (CBOR-encoded) (66 bytes)
84 72 4f 53 43 4f 52 45 20 4d 61 73 74 65 72 20 53 61 6c 74 83 f6 f6 f6 83
f6 f6 f6 83 18 40 40 58 20 df 7c 9b 06 f5 dc 0e e8 86 0b 39 6c 78 c5 be b7
57 41 3f a7 b6 a9 cf 28 3d db 4c d4 c1 fd e4 3c

 Finally, the Master Secret value computed is:

 OSCORE Master Salt (8 bytes)
 4d b7 06 58 c5 e9 9f b6

 The Client's Sender ID takes the value of C_V:

 Client's OSCORE Sender ID (1 bytes)
 c2

 The Server's Sender ID takes the value of C_U:

 Server's OSCORE Sender ID (1 bytes)
 c1

 The algorithms are those negociated in the cipher suite:

 AEAD Algorithm
 10

 HMAC Algorithm
 5

Acknowledgments

 The authors want to thank Alessandro Bruni, Martin Disch, Theis
 Groenbech Petersen, Dan Harkins, Klaus Hartke, Russ Housley,
 Alexandros Krontiris, Ilari Liusvaara, Karl Norrman, Salvador Perez,
 Eric Rescorla, Michael Richardson, Thorvald Sahl Joergensen, Jim
 Schaad, Carsten Schuermann, Ludwig Seitz, Stanislav Smyshlyaev,
 Valery Smyslov, Rene Struik, and Erik Thormarker for reviewing and
 commenting on intermediate versions of the draft. We are especially
 indebted to Jim Schaad for his continuous reviewing and
 implementation of different versions of the draft.

Authors' Addresses

 Goeran Selander
 Ericsson AB

 Email: goran.selander@ericsson.com

Selander, et al. Expires March 14, 2020 [Page 70]

Internet-Draft Ephemeral Diffie-Hellman Over COSE (EDHOC) September 2019

 John Mattsson
 Ericsson AB

 Email: john.mattsson@ericsson.com

 Francesca Palombini
 Ericsson AB

 Email: francesca.palombini@ericsson.com

Selander, et al. Expires March 14, 2020 [Page 71]

