
ACE Working Group G. Selander
Internet-Draft J. Mattsson
Intended Status: Standards Track Ericsson
Expires: April 30, 2015 L. Seitz
 SICS Swedish ICT

 October 27, 2014

Object Security for CoAP
draft-selander-ace-object-security-00

Abstract

 We present a format for data object security in Constrained
 Application Protocol CoAP, i.e. protection of individual request and
 response messages between client and server.

Status of this Memo

 This Internet-Draft is submitted to IETF in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as
 Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress".

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/1id-abstracts.html

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html

Copyright and License Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents

Selander, et al. Expires April 30, 2015 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/1id-abstracts.html
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

INTERNET DRAFT Object Security for ACE October 27, 2014

 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 4
1.1 Terminology . 4

2. Background . 5
3. The JWS Option . 6
3.1 Option Structure . 6
3.2 Integrity Protection and Verification 7
3.3 JOSE Header . 7
3.3.1 "seq" (Sequence Number) Header Parameter 8
3.3.2 Message Sequence Numbers 8

3.4 JWS Payload . 9
4. Proxy Behavior . 10
5. Examples . 10
5.1 GET . 10
5.2 POST . 12

6. Security Considerations . 13
7. Privacy Considerations . 14
8. IANA Considerations . 14
9. References . 14
9.1 Normative References 14
9.2 Informative References 15

Appendix A. Design Considerations 16
A.1 Reducing Message Size 16
A.2 REST Considerations . 17
A.3 Protection of CoAP Message Fields 17
A.3.1 CoAP Header . 18
A.3.2 CoAP Options . 18

Appendix B. Replay Protection - Special Cases 20
B.1 "isi" (Integrity Scope Indication) Header Parameter 21
B.1.1 "isi":"01" . 21
B.1.2 "isi":"10" . 21
B.1.3 "isi":"11" . 21
B.1.4 "isi":"00" . 22

B.2 Advance Caching . 22
B.2.1 Acquiring server sequence numbers 22
B.2.2 Proxy caching . 23

B.3 Observe . 24
 Authors' Addresses . 25

Selander, et al. Expires April 30, 2015 [Page 2]

INTERNET DRAFT Object Security for ACE October 27, 2014

Selander, et al. Expires April 30, 2015 [Page 3]

INTERNET DRAFT Object Security for ACE October 27, 2014

1. Introduction

 The Constrained Application Protocol CoAP [RFC7252] was designed with
 a constrained RESTful environment in mind. CoAP references DTLS
 [RFC6347] for securing the message exchange. However, transport
 layer security is problematic in use cases built on store-and-forward
 or publish-subscribe, which require end-to-end security. DTLS offers
 only hop-by-hop security and requires trusted intermediaries.
 Moreover DTLS incurs a noticeable overhead in constrained devices due
 to the handshake procedure.

 This memo presents an object security approach for secure messaging
 in constrained environments based on the protection of individual
 request and response messages.

 In this version of the draft we focus on end-to-end integrity
 protection, which addresses some of the use cases e.g. where it is
 necessary for endpoints or proxies to verify that the message is
 authentic. We plan to add encryption in a later version since this
 is essential for other use cases.

1.1 Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119]. These
 words may also appear in this document in lowercase, absent their
 normative meanings.

 Certain security-related terms are to be understood in the sense
 defined in RFC 4949 [RFC4949]. These terms include, but are not
 limited to, "authentication", "authorization", "confidentiality",
 "(data) integrity", "message authentication code", "signature", and
 "verify".

 RESTful terms including "resource", "representation", etc. are to be
 understood as used in HTTP [RFC7231] and CoAP [RFC7252].

 Terminology for constrained environments including "constrained
 device", "constrained-node network", "class 1", etc. are defined in
 [RFC7228].

 Client, Resource Server, and Authorization Server are defined in [I-
 D.seitz-ace-problem-description]. When we just use the term server,
 we refer to the Resource Server.

 JSON Web Signature (JWS), JOSE Header, JWS Payload, and JWS Signature
 are defined in [I-D.ietf-jose-json-web-signature].

https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc6347
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc4949
https://datatracker.ietf.org/doc/html/rfc4949
https://datatracker.ietf.org/doc/html/rfc7231
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7228

Selander, et al. Expires April 30, 2015 [Page 4]

INTERNET DRAFT Object Security for ACE October 27, 2014

 NOTE: A CoAP message has header, options and payload. A JWS object
 has header, payload, and signature. Hence the unqualified terms
 "header" and "payload" have two meanings.

 The JWS option is a CoAP option defined in this memo.

2. Background

 The background for this work is provided by the use cases and problem
 description in [I-D.seitz-ace-usecases] and [I-D.seitz-ace-problem-
 description]. The specific part of the problem statement we address
 in this memo relates to sections 4.6 - 4.7 of [I-D.seitz-ace-problem-
 description].

 The overall objective in securing access requests is that only
 authorized requests are granted and that the message content is
 protected (according to requirements of the particular use case)
 between client and server. As explained in the introduction, we are
 focusing on an efficient solution to protect requests and response
 end-to-end in constrained environments supporting e.g. store-and-
 forward use cases. To give a few examples, end-to-end integrity
 protection can be used to:

 o prevent manipulation and allow multiple clients to verify sensor
 readings stored in un-trusted intermediary nodes;

 o protect configuration data or firmware updates stored in an
 intermediate node, e.g. because the device was not connected at
 the time of the update request;

 o protect transport of authorization information ("access tokens")
 to sleepy devices.

 The IETF has defined standardized content formats for
 cryptographically protected data (e.g. CMS [RFC5652], JWS [I-D.ietf-
 jose-json-web-signature]). Other more compact representations are in
 discussion in the IETF, see section 5 of [JoseWgIetf90]. One
 potential approach for defining data object security for constrained
 environments is to wrap application layer data using such a format
 and sending it as payload in a CoAP message. An alternative approach
 is to instead build data object security into the CoAP message
 format. The second approach is the one we propose in this memo.

 As is explained in Appendix A and B this approach enables some
 attractive features compared to transport of protected data on top of
 CoAP, including:

https://datatracker.ietf.org/doc/html/rfc5652

Selander, et al. Expires April 30, 2015 [Page 5]

INTERNET DRAFT Object Security for ACE October 27, 2014

 o Protection of certain CoAP header and option fields

 o Compliance with REST

 o Reduction of message size, by avoiding unnecessary duplication
 of data in payload and header/options

 o Reuse of CoAP specific mechanisms for caching and forwarding

 Independently of approach, the format needs to be complemented with a
 description how the client and the server establish the keys, and how
 the keys are used for wrapping and unwrapping the secured data
 object. One way to address key establishment is to assume that there
 is a trusted third party which can support client and server, such as
 the Authorization Server in [I-D.draft-seitz-ace-problem-

description]. The Authorization Server may, for example,
 authenticate the client on behalf of the server, or provide
 cryptographic keys or credentials to the client and/or server to
 secure the request/response procedure.

 We emphasize that the solution sketched in this memo can be combined
 with DTLS [RFC6347], thus enabling end-to-end integrity protection of
 CoAP payload, certain CoAP headers and options, in combination with
 hop-by-hop protection of the entire CoAP messages during transport
 between end-points and intermediary devices.

3. The JWS Option

 In order to integrity protect individual request and responses, as
 well as request-response message exchanges, we introduce a new CoAP
 option, the JWS option, essentially containing a digital signature or
 Message Authentication Code (MAC) of the CoAP message. Endpoints
 supporting this scheme MUST check for the presence of this option,
 and that the signature/MAC is valid before accepting a message as
 valid. The design considerations leading up to this solution are
 presented in Appendix A.

3.1 Option Structure

 The JWS option indicates that certain CoAP header fields, options,
 and payload (if present) are integrity protected using JWS [I-D.ietf-
 jose-json-web-signature]. The JWS option SHALL contain a detached
 signature (JOSE Header and JWS Signature) as described in [I-D.ietf-
 jose-json-web-signature] Appendix F, using JWS Compact Serialization
 (see section 3.1 of [I-D.ietf-jose-json-web-signature]).

 This option is critical, safe to forward, it is not part of a cache

https://datatracker.ietf.org/doc/html/draft-seitz-ace-problem-description
https://datatracker.ietf.org/doc/html/draft-seitz-ace-problem-description
https://datatracker.ietf.org/doc/html/rfc6347

Selander, et al. Expires April 30, 2015 [Page 6]

INTERNET DRAFT Object Security for ACE October 27, 2014

 key, and it is not repeatable. Table 1 illustrates the structure of
 this option.

 +-----+---+---+---+---+---------+--------+-----------+
 | No. | C | U | N | R | Name | Format | Length |
 +-----+---+---+---+---+---------+--------+-----------+
 | TBD | x | | x | | JWS | opaque | 125-256 B |
 +-----+---+---+---+---+---------+--------+-----------+

 C=Critical, U=Unsafe, N=NoCacheKey, R=Repeatable

 Table 1: The JWS Option

3.2 Integrity Protection and Verification

 A CoAP endpoint composing a message using the JWS option SHALL
 process the JWS Payload and JOSE Header, defined in the following
 sections, according to the specification for producing the
 signature/MAC of a JWS object as described in Section 5.1 of the JWS
 specification [I-D.ietf-jose-json-web-signature].

 A CoAP endpoint receiving a message containing the JWS option SHALL
 first recreate the JWS Payload as described in Section 3.4, and then
 verify the signature/MAC as defined in Section 5.2 of the JWS
 specification [I-D.ietf-jose-json-web-signature].

3.3 JOSE Header

 Even if a signature/MAC of a received message can be verified, the
 message may still be old, e.g. a replay of a previous message. As is
 noted in section 10.10 of [I-D.ietf-jose-json-web-signature]), one
 way to thwart replay attacks is to include a unique message
 identifier and having the recipient verify that the message has not
 been previously received or acted upon.

 As unique JWS message identifier we propose to use the combination of
 a unique key identifier and a sequence number. The JOSE Header of a
 JWS option SHALL contain either one of the "kid", "x5t", or
 "x5t#S256" header parameters to uniquely identify the key. In this
 section we define a new JOSE Header parameter "seq" (Sequence Number)
 enumerating the JWS objects/CoAP messages generated using the key
 referenced in the JOSE Header. In addition to replay protection, we
 want to be able to verify that a CoAP response is associated to a
 previously made CoAP request in order to ensure the freshness of a
 received response. For this purpose we require the responder to

Selander, et al. Expires April 30, 2015 [Page 7]

INTERNET DRAFT Object Security for ACE October 27, 2014

 include the sender's sequence number and key identifier in the JWS
 Payload.

 The header field and procedures described in this section could have
 been replaced by similar procedures based on time-stamps, if the
 devices in question had reliable and synchronized clocks.

3.3.1 "seq" (Sequence Number) Header Parameter

 The "seq" header parameter contains the sequence number associated to
 the key used to integrity protect the JWS object. The sequence
 number SHALL be a 32-bit number in hexadecimal representation
 including leading zeroes. The start sequence number SHALL be 0. For
 a given key, any sequence number MUST NOT be used in "seq" more than
 once.

 The "seq" header parameter SHALL be marked as critical using the
 "crit" header parameter of JWS (see section 4.1.11 of [I-D.ietf-
 jose-json-web-signature]), meaning that if a receiver does not
 understand this parameter it must reject the JWS.

3.3.2 Message Sequence Numbers

 In order to protect from replay and verify freshness of responses, a
 CoAP endpoint maintains sequence numbers.

 A CoAP client supporting the JWS option SHALL store one sequence
 number per key it uses to protect the integrity of a message. A CoAP
 server supporting the JWS option SHALL store on sequence number per
 key it uses to verify the integrity of a message. Depending on use
 case, the endpoints MAY maintain a sliding receive window for
 sequence numbers associated to key identifiers in received messages,
 equivalent to the functionality described in section 4.1.2.6 of
 [RFC6347].

 Before composing a new message with a JWS option, a CoAP client SHALL
 step the associated sequence number and SHALL include it in the "seq"
 header parameter as defined in 3.3.1. However, if the sequence
 number counter wraps, the client must first acquire a new key. (The
 latter is out of scope of this memo.)

 A CoAP server supporting the JWS option SHALL verify the sequence
 number received in "seq" by comparing with the stored associated
 sequence number (or sliding window). If a CoAP server receives a
 valid request with a JWS option, then the response SHALL include the
 sequence number and key identifier of the request in the JWS Payload
 as defined in section 3.4.

https://datatracker.ietf.org/doc/html/rfc6347#section-4.1.2.6
https://datatracker.ietf.org/doc/html/rfc6347#section-4.1.2.6

Selander, et al. Expires April 30, 2015 [Page 8]

INTERNET DRAFT Object Security for ACE October 27, 2014

 If the CoAP client receives a response message with a JWS option,
 then the client SHALL generate the JWS Payload using the key
 identifier and the sequence number of its own associated request as
 defined in section 3.4

 In Appendix B, we show how this can be extended to account for proxy
 caching functionality as well as the CoAP Observe option.

3.4 JWS Payload

 The JWS Payload is type-value-length encoded and consists of:

 o the CoAP header field Code;

 o all CoAP options present which are marked as signed in Table 2
 (see Appendix A); and

 o the CoAP payload (if any).

 o if the message is a response, the sequence number "seq" from the
 request (see section 3.3.1);

 o if the message is a response, the key identifier from the
 request ("kid", "x5t" or "x5t#256", see section 3.3.2)

 To integrity protect the CoAP options requires the generation of a
 standalone representation of each option (without the option delta,
 see section 3.1 of [RFC7252]). The following procedure SHALL be
 applied to generate an option representation: Calculate the option
 number and represent it as a 8-bit unsigned integer. Then
 concatenate the 8-bit option value with a 16-bit unsigned integer in
 network byte order indicating the length of the Option Value, in
 bytes. Finally concatenate the option value (if any is present) with
 that bit-string.

 For a request, the JWS Payload SHALL be the concatenation of the 8-
 bit CoAP header field Code, the CoAP option representations (as
 described in the previous paragraph) which are marked signed in Table
 2 (see Appendix A) in the same order as given in the request, and
 finally a 16-bit unsigned integer in network byte order indicating
 the length of the CoAP payload, in bytes, and the CoAP payload of the
 message (if any present) as represented in the request.

 For a reply, the JWS Payload SHALL be generated as above, but
 additionally the server SHALL append the concatenation of the 32-bit
 sequence number from the request, an 8-bit unsigned integer in
 network byte order indicating the length of the key identifier, in

https://datatracker.ietf.org/doc/html/rfc7252#section-3.1

Selander, et al. Expires April 30, 2015 [Page 9]

INTERNET DRAFT Object Security for ACE October 27, 2014

 bytes, and the key identifier from the request.

4. Proxy Behavior

 As we target end-to-end security, we must ensure that the solution is
 compliant with message handling in intermediary nodes.

 CoAP distinguishes between two types of proxies; forward-proxies,
 which are explicitly selected by clients, and reverse-proxies, which
 handle requests transparently to the client. Since the client is not
 aware of any nodes behind a reverse-proxy, it perceives the reverse-
 proxy as an origin server which terminates the end-to-end security.

 Forward-proxies are in scope and we cover two cases here: the CoAP-
 CoAP forward proxy and the HTTP-CoAP cross-proxy. For CoAP-CoAP
 forward proxies, the JWS option SHALL be forwarded.

 Using an HTTP-CoAP proxy requires that the client understands how to
 formulate a CoAP request. In the "Default Mapping", the Target CoAP
 URI is appended as-is to a base URI [I-D.ietf-core-http-mapping].
 Analogously to a CoAP-CoAP forward proxy, the relevant options are
 copied from the HTTP URI. The JWS option SHALL be transported in the
 HTTP URI as a Query:

 ?JWS=...

 where the dots "..." should be replaced by the JWS option.

 Proxies not supporting the JWS option handle messages containing a
 JWS option according to the CoAP option processing rules, i.e. they
 will not process such messages themselves (since the option is marked
 "critical") but they will forward such messages (since the option is
 marked as "safe-to-forward").

5. Examples

 In this section we give examples in order to illustrate and clarify
 the intended use of the JWS option.

5.1 GET

 This example outlines a GET message exchange forwarded by a proxy.
 Integrity protection applies to Code, Uri-Path, Payload and other
 message fields.

Selander, et al. Expires April 30, 2015 [Page 10]

INTERNET DRAFT Object Security for ACE October 27, 2014

 Client Proxy Server
 | | |
 | | |
 +----->| | Header: GET (Code=0.01) Token: 0x8c
 | GET | | Uri-Path: "temperature"
 | | | JWS: (JOSE Header: { "seq":"00000142" } ...)
 | | |
 | | |
 | +----->| Header: GET (Code=0.01) Token: 0x7b
 | | GET | Uri-Path: "temperature"
 | | | JWS: (JOSE Header: { "seq":"00000142" } ...)
 | | |
 | | |
 | |<-----+ Header: 2.05 Content (Code=2.05) Token: 0x7b
 | | 2.05 | JWS: (...)
 | | | Payload: "23.1 C"
 | | |
 | | |
 |<-----+ | Header: 2.05 Content (Code=2.05) Token: 0x8c
 | 2.05 | | JWS: (...)
 | | | Payload: "23.1 C"
 | | |

 where the signature and other details are omitted. The complete JOSE
 header for the request is:

 {"alg":"HS256",
 "kid":"a1534e3c5fdc09bd",
 "crit":["seq"],
 "seq":"00000142"
 }

 and the JWS Payload consists of:

 * 000 00001 (the header field code GET)

 * 0x0B (option number 11, Uri-Path)

 * 0x000B (length of the option value: 11)

 * "temperature" (the option value)

 * (Other options are omitted for brevity.)

 and for the response is:

 {"alg":"HS256",

Selander, et al. Expires April 30, 2015 [Page 11]

INTERNET DRAFT Object Security for ACE October 27, 2014

 "kid":"c1a6fa909502dd82"
 }

 The "kid" is a hint to the receiver indicating which key was used to
 secure the JWS, and may be used as an identifier for a secret key or
 a public key. It may e.g. be the hash of a public key. Even if "kid"
 are different in request and response, it may reference the same
 symmetric key.

 The JWS Payload for the response consists of:

 * 010 00101 (the header field code 2.05 Content)

 * 0x0006 (length of the payload: 6)

 * "23.1 C" (the payload value)

 * "a1534e3c5fdc09bd" (the key identifier from the request)

 * 0x00000142 (the sequence number from the request

5.2 POST

 This example outlines a POST message exchange forwarded by a proxy.
 Integrity protection applies to Code, Uri-Path, Payload and other
 message fields.

 Client Proxy Server
 | | |
 | | |
 | | |
 +----->| | Header: POST (T=CON, Code=0.02, MID=0xf124)
 | POST | | Token: 0x8c
 | | | Uri-Path: "lock"
 | | | JWS: (JOSE Header: { "x5t":"a9095...a32a7b",
 | | | "seq":"0000036f", ...} ...)
 | | | Payload: "open"
 | | |
 | +----->| Header: POST (T=CON, Code=0.02, MID=0xf124)
 | | POST | Token: 0x8c
 | | | Uri-Path: "lock"
 | | | JWS: (JOSE Header: { "x5t":"a9095...a32a7b",
 | | | "seq":"0000036f", ...} ...)
 | | | Payload: "open"
 | | |
 | |<-----+ Header: 2.04 Changed (T=ACK, Code=2.04,
 | | 2.04 | MID=0xf124) Token: 0x8c
 | | | JWS: (JOSE Header: { "x5t":"9f2a...8520",

Selander, et al. Expires April 30, 2015 [Page 12]

INTERNET DRAFT Object Security for ACE October 27, 2014

 | | | ...} ...)
 | | |
 |<-----+ | Header: 2.04 Changed (T=ACK, Code=2.04,
 | 2.04 | | MID=0xf124) Token: 0x8c
 | | | JWS: (JOSE Header: { "x5t":"9f2a...8520",
 | | | ...} ...)
 | | |

 Note that in this case the client and the server are using X.509
 certificates, which need to be available to both participants, so
 that they can look up the right public key using the thumbprint. If
 the proxy also has the public keys available, it can perform
 signature verification and discard invalid messages, in order to
 offload work from the client and server.

6. Security Considerations

 In scenarios with proxies, gateways, or caching, DTLS only protects
 data hop-by-hop meaning that all intermediary nodes can modify
 information. The trust model where all participating nodes are
 considered trustworthy is problematic not only from a privacy
 perspective but also from a security perspective as the
 intermediaries are free to delete resources on sensors and falsify
 commands to actuators (such as "unlock door", "start fire alarm",
 "raise bridge"). Even in the rare cases where all the owners of the
 intermediary nodes are fully trusted, attacks and data breaches makes
 such an architecture weak.

 DTLS protects the entire CoAP message including header, options and
 payload, whereas this proposal only protects selected message fields.
 DTLS, however, also incurs a large overhead cost, due to the
 handshake procedure. While that cost can be amortized in scenarios
 with long lived connections, in cases where a device will have
 connections with varying clients, using secured objects instead of
 session security can provide a significant performance gain.

 Using blockwise transfer [I-D.ietf-core-coap-block], the integrity
 protection as provided by the method described here only covers the
 individual blocks, not the entire request or response. One way to
 handle this would to allow the JWS option to be repeatable, and in
 one or several of the block transfer carry a MAC or signature that
 covers the entire request or response.

 Since the Version header field is not integrity protected, in case of
 future versions of CoAP it may in theory be possible to launch a
 cross-version attack, e.g. something analogously to a bidding down
 attack. Future updates of CoAP should take this into account.

Selander, et al. Expires April 30, 2015 [Page 13]

INTERNET DRAFT Object Security for ACE October 27, 2014

7. Privacy Considerations

 End-to-end integrity protection provides certain privacy properties,
 e.g. protects communication with sensor and actuator from
 manipulation which may affect the personal sphere.

 As a next step we plan to extend this scheme by add encryption for
 addressing other privacy concerns, such as confidentiality of
 personal data and prevention of pervasive monitoring.

8. IANA Considerations

 The following entry is added to the CoAP Option Numbers registry:

 +--------+---------+-------------------+
 | Number | Name | Reference |
 +--------+---------+-------------------+
 | TBD | JWS | [[this document]] |
 +--------+---------+-------------------+

 The following entries are added to the JSON Web Signature and
 Encryption Header Parameters registry for Header Parameter names:

 o Header Parameter Name: "seq"
 o Header Parameter Description: Message sequence number
 o Header Parameter Usage Location(s): JWS
 o Change Controller: IESG
 o Specification Document(s): Section 3.3.1 of
 [[this document]]]

9. References

9.1 Normative References

 [I-D.ietf-jose-json-web-signature]
 Jones, M., Bradley, J., and Sakimura N., "JSON Web Signature (JWS)",

draft-ietf-jose-json-web-signature-36 (work in progress), October
 2014.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC6347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security Version 1.2", RFC 6347, January 2012.

 [RFC7252] Shelby, Z., Hartke, K., and C. Bormann, "The Constrained

https://datatracker.ietf.org/doc/html/draft-ietf-jose-json-web-signature-36
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc6347

Selander, et al. Expires April 30, 2015 [Page 14]

INTERNET DRAFT Object Security for ACE October 27, 2014

 Application Protocol (CoAP)", RFC 7252, June 2014.

9.2 Informative References

 [I-D.seitz-ace-problem-description]
 Seitz, L., and G. Selander, "Problem Description for
 Authorization in Constrained Environments", draft-seitz-

ace-problem-description-01 (work in progress), July 2014.

 [I-D.seitz-ace-usecases]
 Seitz, L., Gerdes, S., Selander, G., Mani, M., and S.
 Kumar, "ACE use cases", draft-seitz-ace-usecases-01 (work
 in progress), July 2014.

 [JoseWgIetf90]
 Minutes of the JOSE WG meeting at IETF 90,

http://www.ietf.org/proceedings/90/minutes/minutes-90-jose

 [I-D.ietf-core-http-mapping]
 Castellani, A., Loreto, S., Rahman, A., Fossati, T., and
 E. Dijk, "Guidelines for HTTP-CoAP Mapping
 Implementations", draft-ietf-core-http-mapping-05 (work in
 progress), October 2014.

 [I-D.ietf-core-coap-block]
 Bormann, C., and Z. Shelby, "Blockwise transfers in CoAP",

draft-ietf-core-block-15 (work in progress), July 2014.

 [I-D.ietf-jose-cookbook]
 M. Miller, "Examples of Protecting Content using
 JavaScript Object Signing and Encryption (JOSE)", draft-

ietf-jose-cookbook-05 (work in progress), October 2014.

 [I-D.ietf-core-observe]
 K. Hartke, "Observing Resources in CoAP", draft-ietf-

core-observe-14 (work in progress), June 2014.

 [RFC4949] Shirey, R., "Internet Security Glossary, Version 2", FYI
 36, RFC 4949, August 2007.

 [RFC5652] Housley, R., "Cryptographic Message Syntax (CMS)", STD 70,
RFC 5652, September 2009.

 [RFC7228] Bormann, C., Ersue, M., and A. Keranen, "Terminology for
 Constrained-Node Networks", RFC 7228, May 2014.

 [RFC7231] Fielding, R., Ed., and J. Reschke, Ed., "Hypertext

https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/draft-seitz-ace-problem-description-01
https://datatracker.ietf.org/doc/html/draft-seitz-ace-problem-description-01
https://datatracker.ietf.org/doc/html/draft-seitz-ace-usecases-01
http://www.ietf.org/proceedings/90/minutes/minutes-90-jose
https://datatracker.ietf.org/doc/html/draft-ietf-core-http-mapping-05
https://datatracker.ietf.org/doc/html/draft-ietf-core-block-15
https://datatracker.ietf.org/doc/html/draft-ietf-jose-cookbook-05
https://datatracker.ietf.org/doc/html/draft-ietf-jose-cookbook-05
https://datatracker.ietf.org/doc/html/draft-ietf-core-observe-14
https://datatracker.ietf.org/doc/html/draft-ietf-core-observe-14
https://datatracker.ietf.org/doc/html/rfc4949
https://datatracker.ietf.org/doc/html/rfc5652
https://datatracker.ietf.org/doc/html/rfc7228

Selander, et al. Expires April 30, 2015 [Page 15]

INTERNET DRAFT Object Security for ACE October 27, 2014

 Transfer Protocol (HTTP/1.1): Semantics and Content",
RFC 7231, June 2014.

Appendix A. Design Considerations

 In this section we provide some motivation for the chosen solution.
 The pedagogical attempt of this section is by means of iterative
 modifications of the trivial solution consisting of a secure object
 carried in the payload.

A.1 Reducing Message Size

 We noted in Section 2 that end-to-end security may be provided on
 application layer on top of CoAP by including, say, a JWS object [I-
 D.ietf-jose-json-web-signature] in the CoAP payload. The JWS
 represents content secured with digital signatures or Message
 Authentication Codes (MACs) using JavaScript Object Notation (JSON)
 based data structures.

 However, if the content of the JWS object is independent from the
 CoAP message, it does not integrity protect CoAP header fields or
 options. To address this, one solution is to repeat certain
 information, contained within CoAP header fields and options, in the
 JWS object. However, this would not be optimal since some data would
 be duplicated in header/options and payload. For example, a resource
 identifier would be transported both as a CoAP URI-Path/URI-Query
 option (to comply with the CoAP message format), and in the payload
 (to integrity protect the intended resource which the request is
 targeting).

 Fortunately, there is a solution to this problem known as "detached
 content" (Appendix F, [I-D.ietf-jose-json-web-signature]) a.k.a.
 "detached signature" ([I-D.ietf-jose-cookbook]). As is described in
 these references, the detached signature is constructed from "a JWS
 object in the normal fashion using a representation of the content as
 the payload, but then delete the payload representation from the
 JWS". With the outcome that "the resulting JWS object do not include
 the integrity protected content. Instead, the application is expected
 to locate it elsewhere."

 Using JWS detached signature together with a specification for what
 message fields should be included in the digital signature or MAC, we
 can get integrity protection of relevant CoAP message fields without
 unnecessary duplication of message fields.

https://datatracker.ietf.org/doc/html/rfc7231

Selander, et al. Expires April 30, 2015 [Page 16]

INTERNET DRAFT Object Security for ACE October 27, 2014

A.2 REST Considerations

 As we saw in the previous section, a JWS detached signature in the
 CoAP payload would provide integrity protection and optimized message
 format. However, not all CoAP request and response messages support
 payload. E.g. GET and DELETE requests may not have defined body
 semantics and that could to some extent violate RESTful design.
 Furthermore, some CoAP response messages are not allowed to have
 payload or are only intended to carry resource representations.

 We therefore propose to pass a JWS detached signature as a new CoAP
 option, as described in section 3.

 NOTE: The choice of JWS is based on its relative compactness. Even
 compacter formats, as recently has been discussed [JoseWgIetf90],
 would be favorable.

A.3 Protection of CoAP Message Fields

 Having motivated how a signature or MAC should be carried, we now
 turn to the question what information should be integrity protected.

 Integrity protection should cover relevant message fields that are
 not supposed to change between client and server. This must also
 take into account that there may be intermediary devices caching
 and/or forwarding requests or responses.

 In this section we study the message format (see Figure 1) and list
 the fields that need to be integrity protected as well as describe
 the procedure. Clearly the payload should be protected, but not all
 headers fields or options.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |Ver| T | TKL | Code | Message ID |
 +-+
 | Token (if any, TKL bytes) ...
 +-+
 | Options (if any) ...
 +-+
 |1 1 1 1 1 1 1 1| Payload (if any) ...
 +-+

 Figure 1: CoAP message Format

Selander, et al. Expires April 30, 2015 [Page 17]

INTERNET DRAFT Object Security for ACE October 27, 2014

A.3.1 CoAP Header

 We now describe which fields in the CoAP header that needs to be
 protected.

 o Version (Ver): This field is fixed for a given implementation.
 However, to allow backward compatibility with future versions of
 CoAP, Version SHALL NOT be integrity protected.

 o Type (T) and Message ID: These fields are only relevant on CoAP
 messaging layer. Different Types (CON, NON, ACK, RST) or
 Message IDs may be used to transport the same request/response
 and hence SHALL NOT be integrity protected.

 o Token Length (TKL) and Token: CoAP is using the Token as a
 request identifier to match responses against requests. In the
 case of multi-hop using intermediaries, the Token may be
 different between the hops and is not preserved end-to-end.
 These fields SHALL NOT be integrity protected.

 o Code: This field is an 8-bit unsigned integer, identifying
 request method or response code which should not change and
 hence SHALL be integrity protected.

 Summarizing: Only the Code header field is included in the JWS
 Payload of the JWS option.

A.3.2 CoAP Options

 The options need to be integrity protected as follows:

 o ETag: This option defines resource local identifier of
 representation and hence SHALL be integrity protected.

 o If-Match, If-None-Match: These options are conditional control
 logic for requests which thus SHALL be integrity protected.

 o Observe: This option is elective and unsafe so may be discarded
 by a proxy. Hence it SHALL NOT be integrity protected.

 o Location-Path, Location-Query: These options are essentially
 the identifier of a new resource and hence SHALL be integrity
 protected.

 o Accept, Content-Format: These options indicates representation
 format of payload and hence SHALL be integrity protected.

Selander, et al. Expires April 30, 2015 [Page 18]

INTERNET DRAFT Object Security for ACE October 27, 2014

 o Max-Age: The Max-Age option in the response is intended to be
 decreased by an intermediary device caching the response.
 Moreover it is elective and unsafe to forward. It SHALL NOT be
 integrity protected.

 o Size1: This option provides size information about the resource
 representation in a request and SHALL be integrity protected.

 o Proxy-Uri: This option contains the request URI, which
 identifies the requested resource, and hence it SHALL be
 integrity protected, see last item in this list.

 o Proxy-Scheme: This option contains the intended scheme to be
 used by a proxy, and hence it SHALL be integrity protected, see
 also last item in this list.

 o Uri-Host, Uri-Port, Uri-Path and Uri-Query: In a request to an
 origin server the request URI is decomposed into these options.
 In the case of requests made to an origin server, these options
 contain the complete information about the request URI. On the
 other hand in a proxy request, the request URI is specified by
 the client as a string in the Proxy-Uri option. The proxy which
 makes this a request to the origin server decomposes the Proxy-
 Uri into Uri-Host, Uri-Port, Uri-Path, and Uri-Query options.
 However, the full URI can be reconstructed at any involved
 endpoint.

 To allow integrity verification of the request URI, the client
 and forward proxies SHALL use explicit Uri-Host and Uri-Port
 options. The server SHALL compose the URI from options
 according to the method described in section 6.5 of the CoAP
 specification [RFC7252]. The so obtained URI is put into a
 Proxy-Uri option (no. 35), which is included in the integrity
 calculation.

 Table 2 summarizes which options to include in the integrity
 calculation. Options marked with "x" are included. Options marked
 with "d" are composed into a URI as described above and included as
 the Proxy-Uri option for the purpose of calculating the signature.
 (Proxy-Uri and the options marked with "d" are mutually exclusive.)

 +-----+---+---+---+---+----------------+--------+--------+--------+
 | No. | C | U | N | R | Name | Format | Length | Signed |
 +-----+---+---+---+---+----------------+--------+--------+--------+
 | 1 | x | | | x | If-Match | opaque | 0-8 | x |
 | 3 | x | x | - | | Uri-Host | string | 1-255 | d |

https://datatracker.ietf.org/doc/html/rfc7252

Selander, et al. Expires April 30, 2015 [Page 19]

INTERNET DRAFT Object Security for ACE October 27, 2014

4				x	ETag	opaque	1-8	x
5	x				If-None-Match	empty	0	x
6		x	-		Observe	uint	0-3	
7	x	x	-		Uri-Port	uint	0-2	d
8				x	Location-Path	string	0-255	x
11	x	x	-	x	Uri-Path	string	0-255	d
12					Content-Format	uint	0-2	x
14		x	-		Max-Age	uint	0-4	
15	x	x	-	x	Uri-Query	string	0-255	d
17	x				Accept	uint	0-2	x
20				x	Location-Query	string	0-255	x
35	x	x	-		Proxy-Uri	string	1-1034	x
39	x	x	-		Proxy-Scheme	string	1-255	x
60			x		Size1	uint	0-4	x
+-----+---+---+---+---+----------------+--------+--------+--------+								
TBD	x		x		JWS	opaque	125-256	
 +-----+---+---+---+---+----------------+--------+--------+--------+

 C=Critical, U=Unsafe, N=NoCacheKey, R=Repeatable

 Table 2: Which options to integrity protect.

Appendix B. Replay Protection - Special Cases

 In this section we show how one can use the JWS option to handle
 advance caching and subscribe (CoAP Observe) responses to GET
 requests. Please note that this is work in progress.

 The general problem introduced in these settings is that there is no
 longer an end-to-end challenge-response protocol:

 o An intermediary forward proxies may cache a response to a
 corresponding GET request, and serve that response to another
 client's GET request.

 o A server may produce multiple responses to one GET Observe
 request, i.e. there is no unique matching request for each
 response.

 This induces a number of changes:

 o In general, we can't hope to prove freshness, but can still
 protect from replayed responses using server sequence numbers,
 indicated with the "seq" header parameter.

 o However, to define an initial server sequence number we propose

Selander, et al. Expires April 30, 2015 [Page 20]

INTERNET DRAFT Object Security for ACE October 27, 2014

 to rely on an end-to-end challenge-response protocol.

 o A response message containing a challenge, is neither available
 nor meaningful to other clients. Since we are using both server
 sequence numbers and challenge-response, we need to indicate
 which of these freshness/replay protection parameter is used in
 a given response. We introduce an indicator in section B.1.

 o Since the resource identifier cannot be inferred from a default
 CoAP response message when there is no associated integrity
 protected challenge, we need to add this explicitly when we rely
 on server sequence numbers.

 o Note that since there may be multiple receivers of a response,
 this scenario makes most sense with asymmetric crypto, i.e. that
 the signature of the response can verified using the public key
 of the server.

B.1 "isi" (Integrity Scope Indication) Header Parameter

 We introduce a new JOSE Header parameter indicating in requests, what
 freshness/replay parameter to integrity protect, and in responses,
 what freshness/replay protection parameter is integrity protected.

 The "isi" header parameter is a 2-bit indication of what value shall
 be or is integrity protected in the response. The "isi" header
 parameter SHALL be marked as critical.

B.1.1 "isi":"01"

 This indicates that the key identifier and sequence number of the
 request is placed in the JWS Payload of the response, and thus
 integrity protected. There is no server sequence number in the
 response. This the same procedure described in section 3.

B.1.2 "isi":"10"

 This indicates that the server sequence number is in the "seq" header
 parameter of the response, and thus integrity protected. The key
 identifier and sequence number of the request is not included in the
 JWS payload. The response SHALL contain the request URI in the
 proxy-URI option.

B.1.3 "isi":"11"

 This is a combination of the previous two. This indicates that the
 key identifier and sequence number of the request is placed in the
 JWS Payload, and the server sequence number is placed in the "seq"

Selander, et al. Expires April 30, 2015 [Page 21]

INTERNET DRAFT Object Security for ACE October 27, 2014

 header parameter of the response. Thus both parameters are integrity
 protected.

B.1.4 "isi":"00"

 This value is reserved for future use.

B.2 Advance Caching

B.2.1 Acquiring server sequence numbers

 Client Proxy Server
 | | |
 | | |
 | | |
 +----->| | Header: GET (Code=0.01) Token: 0x8c
 | GET | | Uri-Path: "temperature"
 | | | JWS: (JOSE Header: { "kid":"b00d4272ae41433e",
 | | | "seq":"00000142",
 | | | "isi":"11",
 | | | ...} ...)
 | | |
 | +----->| Header: GET (Code=0.01) Token: 0x4b
 | | GET | Uri-Path: "temperature"
 | | | JWS: (JOSE Header: { "kid":"b00d4272ae41433e",
 | | | "seq":"00000142",
 | | | "isi":"11",
 | | | ...} ...)
 | | |
 | | |
 | |<-----+ Header: 2.05 Content (Code=2.05) Token: 0x4b
 | | 2.05 | JWS: (JOSE Header: { "kid":"c1a6fa909502dd82",
 | | | "seq":"000000D7",
 | | | "isi":"11",
 | | | ...} ...)
 | | | Payload: "23.1 C"
 | | |
 | | |
 |<-----+ | Header: 2.05 Content (Code=2.05) Token: 0x8c
 | 2.05 | | JWS: (JOSE Header: { "kid":"c1a6fa909502dd82",
 | | | "seq":"000000D7",
 | | | "isi":"11",
 | | | ...} ...)
 | | | Payload: "23.1 C"
 | | |

Selander, et al. Expires April 30, 2015 [Page 22]

INTERNET DRAFT Object Security for ACE October 27, 2014

 In this case, the proxy recognizes that it cannot serve a verifiably
 fresh cached answer to the client and therefore obtains a new one by
 forwarding the client's request.

 The CoAP server SHALL step the associated sequence number and SHALL
 include it in the "seq" header parameter. However, if the sequence
 number counter wraps, the server must first acquire a new key. (The
 latter is out of scope of this memo.)

 The server includes the key identifier and sequence number of the
 request in the JWS payload as described in section 3. The client can
 thus verify the freshness of the response and conclude the sequence
 number is fresh. Here either symmetric and asymmetric keys may be
 used.

B.2.2 Proxy caching

 Client Proxy Server
 | | |
 | | |
 | +----->| Header: GET (Code=0.01) Token: 0x4c
 | | GET | Uri-Path: "temperature"
 | | | JWS: (JOSE Header: { "kid":"a1534e3c5fdc09bd",
 | | | "seq":"00000070",
 | | | "isi":"10",
 | | | ...} ...)
 | | |
 | |<-----+ Header: 2.05 Content (Code=2.05) Token: 0x4c
 | | 2.05 | JWS: (JOSE Header: { "kid":"c1a6fa909502dd82",
 | | | "seq":"000000DA",
 | | | "isi":"10",
 | | | ...} ...)
 | | | Payload: "22.7 C"
 | | |
 | | |
 | | |
 +----->| | Header: GET (Code=0.01) Token: 0x8d
 | GET | | Uri-Path: "temperature"
 | | | JWS: (JOSE Header: { "kid":"b00d4272ae41433e",
 | | | "seq":"00000044",
 | | | "isi":"10",
 | | | ...} ...)
 | | |
 |<-----+ | Header: 2.05 Content (Code=2.05) Token: 0x8d
 | 2.05 | | JWS: (JOSE Header: { "kid":"c1a6fa909502dd82",
 | | | "seq":"000000DA",
 | | | "isi":"10",

Selander, et al. Expires April 30, 2015 [Page 23]

INTERNET DRAFT Object Security for ACE October 27, 2014

 | | | ...} ...)
 | | | Payload: "22.7 C"
 | | |

 In this case the proxy requests a response which includes the server
 sequence number but not the key identifier and the sequence number of
 the request. The response also contains the resource URI for
 identification of resource.

 When the proxy gets a request with an "isi" header parameter that is
 not required to be forwarded it is matched against the cached
 responses, and since a corresponding response is present, it is
 forwarded to the client.

 This setting makes most sense in the case of response "kid"
 identifies a public key of the server.

B.3 Observe

 In certain cases, there may be more than one response associated to a
 request, e.g. in the case of the CoAP option Observe ([I-D.ietf-core-
 observe]). To securely distinguish between multiple responses and
 protect from replay of responses we propose the following approach:

 Client Server
 | |
 | |
 +----->| Header: GET (Code=0.02) Token: 0x4a
 | GET | Uri-Path: "temperature"
 | | Observe: register
 | | JWS: (JOSE Header: { "kid":"a1534e3c5fdc09bd",
 | | "seq":"0000006F",
 | | "isi":"11", ...} ...)
 | |
 | |
 |<-----+ Header: 2.05 Content (Code=2.05) Token: 0x4a
 | 2.05 | Observe: 12
 | | JWS: (JOSE Header: { "kid":"c1a6fa909502dd82",
 | | "seq":"000001D6",
 | | "isi":"11", ...} ...)
 | | Payload: "22.9 C"
 | |
 |<-----+ Header: 2.05 Content (Code=2.05) Token: 0x4a
 | 2.05 | Observe: 44
 | | JWS: (JOSE Header: { "kid":"c1a6fa909502dd82",
 | | "seq":"000001D7",
 | | "isi":"10", ...} ...)

Selander, et al. Expires April 30, 2015 [Page 24]

INTERNET DRAFT Object Security for ACE October 27, 2014

 | | Payload: "22.8 C"
 | |
 |<-----+ Header: 2.05 Content (Code=2.05) Token: 0x4a
 | 2.05 | Observe: 60
 | | JWS: (JOSE Header: { "kid":"c1a6fa909502dd82",
 | | "seq":"000001D8",
 | | "isi":"10", ...} ...)
 | | Payload: "23.1 C"
 | |

 The "GET Observe: register" request SHALL contain the "isi" header
 parameter with value "11". The response to the "GET Observe:
 register" shall contain the the "isi" header parameter with value
 "11". This response SHALL NOT be cached. GET Observe responses
 without a matching request SHALL contain the the "isi" header
 parameter with value "10", i.e. the response SHALL contain server
 sequence value "seq" in JOSE Header and no request key identifier and
 sequence number in the JWS payload.

 This procedure for replay protection of Observe also works in the
 presence of proxies by combining the procedures in section B.1 and
 B.2. This applies both to the cases of a client observing a resource
 through a proxy, and a proxy observing a resource to keep its cache
 up to date (section A.2 of [I-D.ietf-core-observe]).

Authors' Addresses

 Goeran Selander
 Ericsson
 Farogatan 6
 16480 Kista
 SWEDEN
 EMail: goran.selander@ericsson.com

 Ludwig Seitz
 SICS Swedish ICT AB
 Scheelevagen 17
 22370 Lund
 SWEDEN
 EMail: ludwig@sics.se

 John Mattsson
 Ericsson
 Farogatan 6
 16480 Kista
 SWEDEN
 EMail: john.mattsson@ericsson.com

Selander, et al. Expires April 30, 2015 [Page 25]

INTERNET DRAFT Object Security for ACE October 27, 2014

Selander, et al. Expires April 30, 2015 [Page 26]

