
ACE Working Group G. Selander
Internet-Draft J. Mattsson
Intended status: Standards Track F. Palombini
Expires: September 22, 2016 Ericsson AB
 L. Seitz
 SICS Swedish ICT
 March 21, 2016

Object Security of CoAP (OSCOAP)
draft-selander-ace-object-security-04

Abstract

 This memo defines Object Security of CoAP (OSCOAP), a method for
 application layer protection of message exchanges with the
 Constrained Application Protocol (CoAP), using the CBOR Encoded
 Message Syntax. OSCOAP provides end-to-end encryption, integrity and
 replay protection to CoAP payload, options, and header fields, as
 well as a secure binding between CoAP request and response messages.
 The use of OSCOAP is signaled with the CoAP option Object-Security,
 also defined in this memo.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 22, 2016.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of

Selander, et al. Expires September 22, 2016 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft Object Security of CoAP (OSCOAP) March 2016

 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
1.1. Terminology . 4

2. The Object-Security Option 5
3. The Security Context . 6
4. Protected CoAP Message Fields 8
5. The COSE Object . 10
5.1. Plaintext . 11
5.2. Additional Authenticated Data 12

6. Protecting CoAP Messages 13
6.1. Replay and Freshness Protection 13
6.2. Protecting the Request 13
6.3. Verifying the Request 14
6.4. Protecting the Response 15
6.5. Verifying the Response 16

7. Security Considerations 16
8. Privacy Considerations 18
9. IANA Considerations . 18
9.1. CoAP Option Number Registration 18
9.2. Media Type Registrations 19
9.3. CoAP Content Format Registration 20

10. Acknowledgments . 21
11. References . 21
11.1. Normative References 21
11.2. Informative References 21

Appendix A. Overhead . 22
A.1. Length of the Object-Security Option 22
A.2. Size of the COSE Object 23
A.3. Message Expansion . 24
A.4. Example . 24

Appendix B. Examples . 25
B.1. Secure Access to Actuator 25
B.2. Secure Subscribe to Sensor 27

Appendix C. Object Security of Content (OSCON) 28
C.1. Overhead OSCON . 30
C.2. MAC Only . 30
C.3. Signature Only . 31
C.4. Authenticated Encryption with Additional Data (AEAD) . . 32
C.5. Symmetric Encryption with Asymmetric Signature (SEAS) . . 33

 Authors' Addresses . 33

Selander, et al. Expires September 22, 2016 [Page 2]

Internet-Draft Object Security of CoAP (OSCOAP) March 2016

1. Introduction

 The Constrained Application Protocol (CoAP) [RFC7252] is a web
 application protocol, designed for constrained nodes and networks
 [RFC7228]. CoAP specifies the use of proxies, to improve
 scalability, efficiency, and uses. At the same time CoAP references
 DTLS [RFC6347] for security. Proxy operations on CoAP messages
 require DTLS to be terminated at the proxy. The proxy therefore not
 only has access to the data required for performing the intended
 proxy functionality, but is also able to eavesdrop on, or manipulate
 any part of the CoAP payload and metadata, in transit between client
 and server. The proxy can also inject, delete, or reorder packages
 without being protected or detected by DTLS.

 This memo defines Object Security of CoAP (OSCOAP), a data object
 based security protocol, protecting CoAP message exchanges end-to-
 end, across intermediary nodes. An analysis of end-to-end security
 for CoAP messages through intermediary nodes is performed in
 [I-D.hartke-core-e2e-security-reqs]; OSCOAP targets the requirements
 in Sections 3.1 and 3.2.

 OSCOAP builds on the CBOR Encoded Message Syntax (COSE)
 [I-D.ietf-cose-msg], providing end-to-end encryption, integrity, and
 replay protection. The use of OSCOAP is signaled with the CoAP
 option Object-Security, also defined in this memo.

 OSCOAP transforms an unprotected CoAP message into a protected CoAP
 message in the following way: the unprotected CoAP message is
 protected by including payload (if present), certain options, and
 header fields in a COSE object. The message fields that have been
 encrypted are removed from the message whereas the Object-Security
 option and the COSE object are added. We call the result the
 "protected" CoAP message. Thus OSCOAP is a security protocol based
 on the exchange of protected CoAP messages (see Figure 1).

https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7228
https://datatracker.ietf.org/doc/html/rfc6347

Selander, et al. Expires September 22, 2016 [Page 3]

Internet-Draft Object Security of CoAP (OSCOAP) March 2016

 Client Server
 | request: |
 | GET example.com |
 | [Header, Token, Options:{..., |
 | Object-Security:COSE object}] |
 +-->|
 | response: |
 | 2.05 (Content) |
 | [Header, Token, Options:{..., |
 | Object-Security:-}, Payload:COSE object] |
 |<--+
 | |

 Figure 1: Sketch of OSCOAP

 OSCOAP provides protection of CoAP payload, certain options, and
 header fields, as well as a secure binding between CoAP request and
 response messages, and freshness of requests and responses.

 OSCOAP may be used in constrained settings, where DTLS cannot be
 supported. Alternatively, OSCOAP can be combined with DTLS, thereby
 enabling end-to-end security of CoAP payload, in combination with
 hop-by-hop protection of the entire CoAP message, during transport
 between end-point and intermediary node. Examples of the use of
 OSCOAP are given in Appendix B.

 The message protection provided by OSCOAP can alternatively be
 applied to payload only of individual messages. We call this object
 security of content (OSCON) and it is defined in Appendix C. OSCON
 targets the requirements in Sections 3.3 - 3.5 of
 [I-D.hartke-core-e2e-security-reqs].

1.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119]. These
 words may also appear in this document in lowercase, absent their
 normative meanings.

 Readers are expected to be familiar with the terms and concepts
 described in [RFC7252] and [RFC7641].

 Terminology for constrained environments, such as "constrained
 device", "constrained-node network", is defined in [RFC7228].

 Two different scopes of object security are defined:

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7641
https://datatracker.ietf.org/doc/html/rfc7228

Selander, et al. Expires September 22, 2016 [Page 4]

Internet-Draft Object Security of CoAP (OSCOAP) March 2016

 o OSCOAP = object security of CoAP, signaled with the Object-
 Security option.

 o OSCON = object security of content, signaled with Content Format/
 Media Type set to application/oscon.

 OSCON is defined in Appendix C.

2. The Object-Security Option

 The Object-Security option indicates that OSCOAP is used to protect
 the CoAP message exchange.

 The Object-Security option is critical, safe to forward, part of the
 cache key, and not repeatable. Figure 2 illustrates the structure of
 the Object-Security option.

 A CoAP proxy SHOULD NOT cache a response to a request with an Object-
 Security option, since the response is only applicable to the
 original client's request. The Object-Security option is included in
 the cache key for backward compatibility with proxies not recognizing
 the Object-Security option. The effect of this is that messages with
 the Object-Security option will never generate cache hits. To
 further prevent caching, a Max-Age option with value zero can be
 added to the protected CoAP responses.

 +-----+---+---+---+---+-----------------+--------+--------+
 | No. | C | U | N | R | Name | Format | Length |
 +-----+---+---+---+---+-----------------+--------+--------|
 | TBD | x | | | | Object-Security | opaque | 0- |
 +-----+---+---+---+---+-----------------+--------+--------+
 C=Critical, U=Unsafe, N=NoCacheKey, R=Repeatable

 Figure 2: The Object-Security Option

 The length of the Object-Security option depends on whether the
 unprotected message has payload, on the set of options that are
 included in the unprotected message, the length of the integrity tag,
 and the length of the information identifying the security context.

 o If the unprotected message has payload, then the COSE object is
 the payload of the protected message (see Section 6.2 and

Section 6.4), and the Object-Security option has length zero.

 o If the unprotected message does not have payload, then the COSE
 object is the value of the Object-Security option and the length
 of the Object-Security option is equal to the size of the COSE
 object.

Selander, et al. Expires September 22, 2016 [Page 5]

Internet-Draft Object Security of CoAP (OSCOAP) March 2016

 An example of option length is given in Appendix A.

3. The Security Context

 The security context is the set of information elements necessary to
 carry out the cryptographic operations in OSCOAP. A security context
 needs to be pre-established and agreed upon between client and
 server. How this is done is out of scope of this memo, an example is
 given in the appendices of [I-D.selander-ace-cose-ecdhe]. Each
 security context is identified by a Context Identifier, which is
 unique within a given server. A Context Identifier that is no longer
 in use can be reassigned to a new security context.

 The security context has a "Client Write" part and a "Server Write"
 part. The client initiating a transaction uses the Client Write part
 of the context to protect the request; the server receiving the
 request first uses the Client Write part of the context to verify the
 request, then the Server Write part of the context to protect the
 response. Finally, the client uses the Server Write part of the
 context to verify the response.

 OSCOAP is very similar to TLS and borrows mechanisms such as key
 derivation, and nonce construction from [I-D.ietf-tls-tls13]. The
 main differences is that OSCOAP uses COSE [I-D.ietf-cose-msg] instead
 of the TLS record layer, which allows OSCOAP to use a context
 identifier, and sequence numbers of variable length.

 It should be noted that how the context is retrieved within the
 client and server is linked to the resource discovery, may be
 implementation specific, and is out of scope of this memo.

 An example is shown in Figure 3.

Selander, et al. Expires September 22, 2016 [Page 6]

Internet-Draft Object Security of CoAP (OSCOAP) March 2016

 .---Cid = Cid1---. .---Cid = Cid1---.
 | context: | | context: |
 | Alg, | | Alg, |
 | Client Write, | | Client Write, |
 | Server Write | | Server Write |
 '----------------' '----------------'

 Client Server
 | |
 Retrieve context for | request: |
 target resource | [Token = Token1, |
 Protect request with | Cid=Cid1, ...] |
 Client Write +---------------------->| Retrieve context with
 | | Cid = Cid1
 | | Verify request with
 Retrieve context with | response: | Client Write
 Token = Token1 | [Token = Token1, ...]| Protect response with
 Verify request with |<----------------------+ Server Write
 Server Write | |

 Figure 3: Retrieval and use of the Security Context

 The security context structure contains the following parameters:

 o Context Identifier (Cid). Variable length byte string that
 identifies the security context. Immutable.

 o Algorithm (Alg). Value that identifies the COSE AEAD algorithm to
 use for encryption. Immutable.

 o Client Write Key. Byte string containing the symmetric key to use
 in client-sent messages. Length is determined by Algorithm.
 Immutable.

 o Client Write IV. Byte string containing the static IV to use in
 cryptographic operations on client-sent messages. Length is
 determined by Algorithm. Immutable.

 o Client Write Sequence Number. Non-negative integer enumerating
 the COSE objects that the client sent, associated to the Context
 Identifier. It is used for replay protection, and to generate
 unique nonces. Initiated to 0. Maximum value is determined by
 Algorithm.

 o Server Write Key. Byte string containing the symmetric key to use
 in server-sent messages. Length is determined by the Algorithm.
 Immutable.

Selander, et al. Expires September 22, 2016 [Page 7]

Internet-Draft Object Security of CoAP (OSCOAP) March 2016

 o Server Write IV. Byte string containing the static IV to use in
 cryptographic operations on server-sent messages. Length is
 determined by Algorithm. Immutable.

 o Server Write Sequence Number. Non-negative integer enumerating
 the COSE objects that the server sent, associated to the Context
 Identifier. It is used for replay protection, and to generate
 unique nonces. Initiated to 0. Maximum value is determined by
 Algorithm.

 o Replay Window. The replay protection window for messages
 received, equivalent to the functionality described in

Section 4.1.2.6 of [RFC6347]. The default window size is 64.

 The size of Cid depends on the number of simultaneous clients, and
 must be chosen so that the server can uniquely identify the
 requesting client. Cids of different lengths can be used by
 different client. In the case of an ACE-based authentication and
 authorization model [I-D.ietf-ace-oauth-authz], the Authorization
 Server can define the context identifier of all clients, interacting
 with a particular server, in which case the size of Cid can be
 proportional to the logarithm of the number of authorized clients.
 It is RECOMMENDED to start assigning Cids of length 1 byte (0x00,
 0x01, ..., 0xff), and then when all 1 byte Cids are in use, start
 handling out Cids with a length of two bytes (0x0000, 0x0001, ...,
 0xffff), and so on.

 The ordered pair (Cid, Client Write Sequence Number) is called
 Transaction Identifier (Tid), and SHALL be unique for each COSE
 object and server. The Tid is used as a unique challenge in the COSE
 object of the protected CoAP request, and in part of the Additional
 Authenticated Data (AAD, see Section 5) of the protected CoAP
 response message.

4. Protected CoAP Message Fields

 This section defines how the CoAP message fields are protected.
 OSCOAP protects as much of the unprotected CoAP message as possible,
 while still allowing forward proxy operations
 [I-D.hartke-core-e2e-security-reqs].

 The CoAP Payload SHALL be encrypted and integrity protected.

 The CoAP Header fields Version and Code SHALL be integrity protected
 but not encrypted. The CoAP Message Layer parameters, Type and
 Message ID, as well as Token and Token Length SHALL neither be
 integrity protected nor encrypted.

https://datatracker.ietf.org/doc/html/rfc6347#section-4.1.2.6

Selander, et al. Expires September 22, 2016 [Page 8]

Internet-Draft Object Security of CoAP (OSCOAP) March 2016

 Protection of CoAP Options can be summarized as follows:

 o To prevent information leakage, Uri-Path and Uri-Query SHALL be
 encrypted. As a consequence, if Proxy-Uri is used, those parts of
 the URI SHALL be removed from the Proxy-Uri. The CoAP Options
 Uri-Host, Uri-Port, Proxy-Uri, and Proxy-Scheme SHALL neither be
 encrypted, nor integrity protected (cf. protection of request URI
 in Section 5.2).

 o The other CoAP options listed in Figure 4 SHALL be encrypted and
 integrity protected.

 +----+---+---+---+---+----------------+--------+--------+---+---+---+
 | No.| C | U | N | R | Name | Format | Length | E | I | D |
 +----+---+---+---+---+----------------+--------+--------+---+---+---+
1	x			x	If-Match	opaque	0-8	x	x	
3	x	x	-		Uri-Host	string	1-255			
4				x	ETag	opaque	1-8	x	x	
5	x				If-None-Match	empty	0	x	x	
6		x	-		Observe	uint	0-3	x	x	x
7	x	x	-		Uri-Port	uint	0-2			
8				x	Location-Path	string	0-255	x	x	
11	x	x	-	x	Uri-Path	string	0-255	x	x	
12					Content-Format	uint	0-2	x	x	
14		x	-		Max-Age	uint	0-4	x	x	x
15	x	x	-	x	Uri-Query	string	0-255	x	x	
17	x				Accept	uint	0-2	x	x	
20				x	Location-Query	string	0-255	x	x	
35	x	x	-		Proxy-Uri	string	1-1034			
39	x	x	-		Proxy-Scheme	string	1-255			
60			x		Size1	uint	0-4	x	x	
 +----+---+---+---+---+----------------+--------+--------+---+---+---+
 C=Critical, U=Unsafe, N=NoCacheKey, R=Repeatable,
 E=Encrypt, I=Integrity Protect, D=Duplicate.

 Figure 4: Protected CoAP Options

 Unless specified otherwise, CoAP options not listed in Figure 4 SHALL
 be encrypted and integrity protected.

 Specifications of new CoAP options SHOULD specify how they are
 processed with OSCOAP. New COAP options SHOULD be encrypted and
 integrity protected. New COAP options SHALL be integrity protected
 unless a proxy needs to change the option, and SHALL be encrypted
 unless a proxy needs to read the option.

 The encrypted options are in general omitted from the protected CoAP
 message and not visible to intermediary nodes (see Section 6.2 and

Selander, et al. Expires September 22, 2016 [Page 9]

Internet-Draft Object Security of CoAP (OSCOAP) March 2016

Section 6.4). Hence the actions resulting from the use of
 corresponding options is analogous to the case of communicating
 directly with the endpoint. For example, a client using an ETag
 option will not be served by a proxy.

 However, some options which are encrypted need to be present in the
 protected CoAP message to support certain proxy functions. A CoAP
 option which may be both encrypted in the COSE object of the
 protected CoAP message, and also unencrypted as CoAP option in the
 protected CoAP message, is called "duplicate". The "encrypted" value
 of a duplicate option is intended for the destination endpoint and
 the "unecrypted" value is intended for a proxy. The unencrypted
 value is not integrity protected.

 o The Max-Age option is duplicate. The unencrypted Max-Age SHOULD
 have value zero to prevent caching of responses. The encrypted
 Max-Age is used as defined in [RFC7252] taking into account that
 it is not accessible proxies.

 o The Observe option is duplicate. If used, then the encrypted
 Observe and the unencrypted Observe SHALL have the same value.
 The Observe option as used here targets the requirements of
 Section 3.2 of [I-D.hartke-core-e2e-security-reqs].

 Specifications of new CoAP options SHOULD specify if the option is
 duplicate and how it are processed with OSCOAP. New COAP options
 SHOULD NOT be duplicate.

5. The COSE Object

 This section defines how to use the COSE format [I-D.ietf-cose-msg]
 to wrap and protect data in the unprotected CoAP message. OSCOAP
 uses the COSE_Encrypted structure with an Authenticated Encryption
 with Additional Data (AEAD) algorithm.

 The mandatory to support AEAD algorithm is AES-CCM-64-64-128 defined
 in Section 10.2 of [I-D.ietf-cose-msg]. For AES-CCM-64-64-128 the
 length of Client Write Key and the Server Write Key SHALL be 128
 bits, the length of the nonce, Client Write IV, and the Server Write
 IV SHALL be 7 bytes, and the maximum Client Write Sequence Number and
 Server Write Sequence Number SHALL be 2^56-1. The nonce is
 constructed exactly like in Section 5.2.2 of [I-D.ietf-tls-tls13],
 i.e. by padding the Client Write Sequence Number or the Server Write
 Sequence Number with zeroes and XORing it with the static Client
 Write IV or Server Write IV, respectively.

 Since OSCOAP only makes use of a single COSE structure, there is no
 need to explicitly specify the structure, and OSCOAP uses the

https://datatracker.ietf.org/doc/html/rfc7252

Selander, et al. Expires September 22, 2016 [Page 10]

Internet-Draft Object Security of CoAP (OSCOAP) March 2016

 untagged version of the COSE_Encrypted structure (Section 2. of
 [I-D.ietf-cose-msg]). If the COSE object has a different structure,
 the receiver MUST reject the message, treating it as malformed.

 We denote by Plaintext the data that is encrypted and integrity
 protected, and by Additional Authenticated Data (AAD) the data that
 is integrity protected only, in the COSE object.

 The fields of COSE_Encrypted structure are defined as follows (see
 example in Appendix C.4).

 o The "Headers" field is formed by:

 * The "protected" field, which SHALL include:

 + The "Partial Initialization Vector" parameter. The value is
 set to the Client Write Sequence Number, or the Server Write
 Sequence Number, depending on whether the client or server
 is sending the message. The Partial IV is a byte string
 (type: bstr), where the length is the minimum length needed
 to encode the sequence number.

 + If the message is a CoAP request, the "kid" parameter. The
 value is set to the Context Identifier (see Section 3).

 * The "unprotected" field, which SHALL be empty.

 o The "ciphertext" field is computed from the Plaintext and the
 Additional Authenticated Data (AAD) and encoded as a byte string
 (type: bstr), following Section 5.2 of [I-D.ietf-cose-msg].

5.1. Plaintext

 The Plaintext is formatted as a CoAP message without Header (see
 Figure 5) consisting of:

 o all CoAP Options present in the unprotected message which are
 encrypted (see Section 4), in the order as given by the Option
 number (each Option with Option Header including delta to previous
 included encrypted option); and

 o the CoAP Payload, if present, and in that case prefixed by the
 one-byte Payload Marker (0xFF).

Selander, et al. Expires September 22, 2016 [Page 11]

Internet-Draft Object Security of CoAP (OSCOAP) March 2016

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Options to Encrypt (if any) ... ~
 +-+
 |1 1 1 1 1 1 1 1| Payload (if any) ... ~
 +-+

 Figure 5: Plaintext

5.2. Additional Authenticated Data

 The Additional Authenticated Data ("Enc_structure") as described is
 Section 5.3 of [I-D.ietf-cose-msg] includes (see Figure 6):

 o the "context" parameter, which has value "Encrypted"

 o the "protected" parameter, which includes the "protected" part of
 the "Headers" field;

 o the "external_aad" includes:

 * the two first bytes of the CoAP header in the unprotected
 message (including Version and Code) with Type and Token Length
 bits set to 0;

 * The Algorithm from the security context used for the exchange;

 * the plaintext request URI composed from the request scheme and
 Uri-* options according to the method described in Section 6.5
 of [RFC7252], if the message is a CoAP request; and

 * the Transaction Identifier (Tid) of the associated CoAP
 request, if the message is a CoAP response (see Section 3).

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |Ver|0 0 0 0 0 0| Code | Alg | ... ~
 +-+
 ~ request URI (if request) / request Tid (if response) ~
 +-+

 Figure 6: Additional Authenticated Data

 The encryption process is described in Section 5.3 of
 [I-D.ietf-cose-msg].

https://datatracker.ietf.org/doc/html/rfc7252#section-6.5
https://datatracker.ietf.org/doc/html/rfc7252#section-6.5

Selander, et al. Expires September 22, 2016 [Page 12]

Internet-Draft Object Security of CoAP (OSCOAP) March 2016

6. Protecting CoAP Messages

6.1. Replay and Freshness Protection

 In order to protect from replay of messages and verify freshness, a
 CoAP endpoint SHALL maintain a Client Write Sequence Number, and a
 Server Write Sequence Number associated to a security context, which
 is identified with a Context Identifier (Cid). The two sequence
 numbers are the highest sequence number the endpoint has sent and the
 highest sequence number the endpoint has received. A client uses the
 Client Write Sequence Number for protecting sent messages and the
 Server Write Sequence Number for verifying received messages, and
 vice versa for the server, as described in Section 3.

 Depending on use case and ordering of messages provided by underlying
 layers, an endpoint MAY maintain a sliding replay window for Sequence
 Numbers of received messages associated to each Cid.

 A receiving endpoint SHALL verify that the Sequence Number received
 in the COSE object has not been received before in the security
 context identified by the Cid. Note that for the server, the relevant
 Sequence Number here is the Client Write Sequence Number and vice
 versa for the client.

 OSCOAP is a challenge-response protocol, where the response is
 verified to match a prior request, by including the unique
 transaction identifier (Tid as defined in Section 3) of the request
 in the Additional Authenticated Data of the response message.

 If a CoAP server receives a request with the Object-Security option,
 then the server SHALL include the Tid of the request in the AAD of
 the response, as described in Section 6.4.

 If the CoAP client receives a response with the Object-Security
 option, then the client SHALL verify the integrity of the response,
 using the Tid of its own associated request in the AAD, as described
 in Section 6.5.

6.2. Protecting the Request

 Given an unprotected CoAP request, including header, options and
 payload, the client SHALL perform the following steps to create a
 protected CoAP request using a security context associated with the
 target resource:

 1. Increment the Client Write Sequence Number by one (note that this
 means that sequence number 0 is never used). If the Client Write
 Sequence Number exceeds the maximum number for the AEAD

Selander, et al. Expires September 22, 2016 [Page 13]

Internet-Draft Object Security of CoAP (OSCOAP) March 2016

 algorithm, the client MUST NOT process any requests with the
 given security context. The client SHOULD acquire a new security
 context before this happens. The latter is out of scope of this
 memo.

 2. Compute the COSE object as specified in Section 5

 * the nonce in the AEAD is created by XORing the static IV
 (Client Write IV) with the partial IV (Client Write Sequence
 Number).

 3. Format the protected CoAP message as an ordinary CoAP message,
 with the following Header, Options, and Payload, based on the
 unprotected CoAP message:

 * The CoAP header is the same as the unprotected CoAP message.

 * The CoAP options which are encrypted and not duplicate
 (Section 4) are removed. Any duplicate option which is
 present has its unencrypted value. The Object-Security option
 is added.

 * If the unprotected CoAP message has no Payload, then the value
 of the Object-Security option is the COSE object. If the
 unprotected CoAP message has Payload, then the Object-Security
 option is empty and the Payload of the protected CoAP message
 is the COSE object.

 The Client SHALL be able to find the correct security context with
 use of the Token of the message exchange.

6.3. Verifying the Request

 A CoAP server receiving a message containing the Object-Security
 option SHALL perform the following steps, using the security context
 identified by the Context Identifier in the "kid" parameter in the
 received COSE object:

 1. Verify the Sequence Number in the Partial IV parameter, as
 described in Section 6.1. If it cannot be verified that the
 Sequence Number has not been received before, the server MUST
 stop processing the request.

 2. Recreate the Additional Authenticated Data, as described in
Section 5.

 3. Compose the nonce by XORing the static IV (Client Write IV) with
 the Partial IV parameter, received in the COSE Object.

Selander, et al. Expires September 22, 2016 [Page 14]

Internet-Draft Object Security of CoAP (OSCOAP) March 2016

 4. Retrieve the Client Write Key.

 5. Verify and decrypt the message. If the verification fails, the
 server MUST stop processing the request.

 6. If the message verifies, update the Client Write Sequence Number
 or Replay Window, as described in Section 6.1.

 7. Restore the unprotected request by adding any decrypted options
 or payload from the plaintext. Any duplicate options (Section 4)
 are overwritten. The Object-Security option is removed.

6.4. Protecting the Response

 A server receiving a valid request with a protected CoAP message
 (i.e. containing an Object-Security option) SHALL respond with a
 protected CoAP message.

 Given an unprotected CoAP response, including header, options, and
 payload, the server SHALL perform the following steps to create a
 protected CoAP response, using the security context identified by the
 Context Identifier of the received request:

 1. Increment the Server Write Sequence Number by one (note that this
 means that sequence number 0 is never used). If the Server Write
 Sequence Number exceeds the maximum number for the AEAD
 algorithm, the server MUST NOT process any more responses with
 the given security context. The server SHOULD acquire a new
 security context before this happens. The latter is out of scope
 of this memo.

 2. Compute the COSE object as specified in Section Section 5

 * The nonce in the AEAD is created by XORing the static IV
 (Server Write IV) and the Server Write Sequence Number.

 3. Format the protected CoAP message as an ordinary CoAP message,
 with the following Header, Options, and Payload based on the
 unprotected CoAP message:

 * The CoAP header is the same as the unprotected CoAP message.

 * The CoAP options which are encrypted and not duplicate
 (Section 4) are removed. Any duplicate option which is
 present has its unencrypted value. The Object-Security option
 is added.

Selander, et al. Expires September 22, 2016 [Page 15]

Internet-Draft Object Security of CoAP (OSCOAP) March 2016

 * If the unprotected CoAP message has no Payload, then the value
 of the Object-Security option is the COSE object. If the
 unprotected CoAP message has Payload, then the Object-Security
 option is empty, and the Payload of the protected CoAP message
 is the COSE object.

 Note the differences between generating a protected request, and a
 protected response, for example whether "kid" is present in the
 header, or whether Destination URI or Tid is present in the AAD, of
 the COSE object.

6.5. Verifying the Response

 A CoAP client receiving a message containing the Object-Security
 option SHALL perform the following steps, using the security context
 identified by the Token of the received response:

 1. Verify the Sequence Number in the Partial IV parameter as
 described in Section 6.1. If it cannot be verified that the
 Sequence Number has not been received before, the client MUST
 stop processing the response.

 2. Recreate the Additional Authenticated Data as described in
Section 5.

 3. Compose the nonce by XORing the static IV (Server Write IV) with
 the Partial IV parameter, received in the COSE Object.

 4. Retrieve the Server Write Key.

 5. Verify and decrypt the message. If the verification fails, the
 client MUST stop processing the response.

 6. If the message verifies, update the Client Write Sequence Number
 or Replay Window, as described in Section 6.1.

 7. Restore the unprotected response by adding any decrypted options
 or payload from the plaintext. Any duplicate options (Section 4)
 are overwritten. The Object-Security option is removed.

7. Security Considerations

 In scenarios with intermediary nodes such as proxies or brokers,
 transport layer security such as DTLS only protects data hop-by-hop.
 As a consequence the intermediary nodes can read and modify
 information. The trust model where all intermediate nodes are
 considered trustworthy is problematic, not only from a privacy
 perspective, but also from a security perspective, as the

Selander, et al. Expires September 22, 2016 [Page 16]

Internet-Draft Object Security of CoAP (OSCOAP) March 2016

 intermediaries are free to delete resources on sensors and falsify
 commands to actuators (such as "unlock door", "start fire alarm",
 "raise bridge"). Even in the rare cases, where all the owners of the
 intermediary nodes are fully trusted, attacks and data breaches make
 such an architecture brittle.

 DTLS protects hop-by-hop the entire CoAP message, including header,
 options, and payload. OSCOAP protects end-to-end the payload, and
 all information in the options and header, that is not required for
 forwarding (see Section 4). DTLS and OSCOAP can be combined.

 The CoAP message layer, however, cannot be protected end-to-end
 through intermediary devices since the parameters Type and Message
 ID, as well as Token and Token Length may be changed by a proxy.
 Moreover, messages that are not possible to verify should for
 security reasons not always be acknowledged but in some cases be
 silently dropped. This would not comply with CoAP message layer, but
 does not have an impact on the application layer security solution,
 since message layer is excluded from that.

 The specification in this memo assumes that there is an established
 security context. [I-D.ietf-ace-oauth-authz] presents a method for a
 trusted third party (Authorization Server) to enable key
 establishment between potentially constrained nodes, using OAuth and
 PoP Tokens. [I-D.selander-ace-cose-ecdhe] describes a Diffie-Hellman
 key exchange, authenticated with pre-established keys, and a key
 derivation method for producing a security context, suitable for
 OSCOAP. The two methods can be combined, enabling a client and
 server with relation to a trusted third party to establish a security
 context with forward secrecy.

 For symmetric encryption it is required to have a unique nonce for
 each message, for which the sequence numbers in the COSE message
 field "Partial IV" is used. The nonce SHALL be the XOR of a static
 IV and the sequence number. The static IVs (Client Write IV and
 Server Write IV) SHOULD be established between sender and receiver
 before the message is sent, to avoid the overhead of sending it in
 each message, for example using the method in
 [I-D.selander-ace-cose-ecdhe].

 As the receiver accepts any sequence number larger than the one
 previously received, the problem of sequence number synchronization
 is avoided. The alternatives have issues: very constrained devices
 may not be able to support accurate time, or to generate and store
 large numbers of random nonces. The requirement to change key at
 counter wrap is a complication, but it also forces the user of this
 specification to think about implementing key renewal.

Selander, et al. Expires September 22, 2016 [Page 17]

Internet-Draft Object Security of CoAP (OSCOAP) March 2016

 Block-wise transfers as currently defined in [I-D.ietf-core-block]
 cannot be protected end-to-end because the payload as well as the
 Block1/Block2 options may be changed in an unpredictable way by a
 proxy. Since [I-D.ietf-core-block] allows for any proxy to fragment
 the payload, an endpoint receiving a message fragment with a block
 option is not able to verify integrity of that fragment. As a
 consequence, block-wise disables end-to-end security: an adversary
 may inject an unlimited number of messages with a block option
 claiming it to be a sequence of message fragments without the
 receiving endpoint being able to disprove the claim.

 If instead the payload and block options Block1/Block2 were not
 allowed to be changed by intermediate devices, then the message
 fragments could be integrity protected end-to-end. In that case each
 individual block can be securely verified by the receiver,
 retransmission securely requested etc. Since the blocks are
 enumerated sequentially, and carry information about whether this
 fragment is the last, when all blocks have been securely received is
 enough to prove that the entire message has been securely
 transferred.

8. Privacy Considerations

 Privacy threats executed through intermediate nodes are considerably
 reduced by means of OSCOAP. End-to-end integrity protection and
 encryption of CoAP payload and all options that are not used for
 forwarding, provides mitigation against attacks on sensor and
 actuator communication, which may have a direct impact the personal
 sphere.

 CoAP headers sent in plaintext allow for example matching of CON and
 ACK (CoAP Message Identifier), matching of request and responses
 (Token) and traffic analysis.

9. IANA Considerations

 Note to RFC Editor: Please replace all occurrences of "[[this
 document]]" with the RFC number of this specification.

9.1. CoAP Option Number Registration

 The Object-Security option is added to the CoAP Option Numbers
 registry:

Selander, et al. Expires September 22, 2016 [Page 18]

Internet-Draft Object Security of CoAP (OSCOAP) March 2016

 +--------+-----------------+-------------------+
 | Number | Name | Reference |
 +--------+-----------------+-------------------+
 | TBD | Object-Security | [[this document]] |
 +--------+-----------------+-------------------+

9.2. Media Type Registrations

 The "application/oscon" media type is added to the Media Types
 registry:

Selander, et al. Expires September 22, 2016 [Page 19]

Internet-Draft Object Security of CoAP (OSCOAP) March 2016

 Type name: application

 Subtype name: cose

 Required parameters: N/A

 Optional parameters: N/A

 Encoding considerations: binary

 Security considerations: See the Security Considerations section
 of [[this document]].

 Interoperability considerations: N/A

 Published specification: [[this document]]

 Applications that use this media type: To be identified

 Fragment identifier considerations: N/A

 Additional information:

 * Magic number(s): N/A

 * File extension(s): N/A

 * Macintosh file type code(s): N/A

 Person & email address to contact for further information:
 iesg@ietf.org

 Intended usage: COMMON

 Restrictions on usage: N/A

 Author: Goeran Selander, goran.selander@ericsson.com

 Change Controller: IESG

 Provisional registration? No

9.3. CoAP Content Format Registration

 The "application/oscon" content format is added to the CoAP Content
 Format registry:

Selander, et al. Expires September 22, 2016 [Page 20]

Internet-Draft Object Security of CoAP (OSCOAP) March 2016

 +-------------------+----------+----+-------------------+
 | Media type | Encoding | ID | Reference |
 +-------------------+----------+----+-------------------+
 | application/oscon | - | 70 | [[this document]] |
 +-------------------+----------+----+-------------------+

10. Acknowledgments

 Klaus Hartke has independently been working on the same problem and a
 similar solution: establishing end-to-end security across proxies by
 adding a CoAP option. We are grateful to Malisa Vucinic for
 providing helpful and timely reviews of previous versions of the
 draft.

11. References

11.1. Normative References

 [I-D.ietf-cose-msg]
 Schaad, J., "CBOR Encoded Message Syntax", draft-ietf-

cose-msg-10 (work in progress), February 2016.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC6347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347,
 January 2012, <http://www.rfc-editor.org/info/rfc6347>.

 [RFC7252] Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
 Application Protocol (CoAP)", RFC 7252,
 DOI 10.17487/RFC7252, June 2014,
 <http://www.rfc-editor.org/info/rfc7252>.

 [RFC7641] Hartke, K., "Observing Resources in the Constrained
 Application Protocol (CoAP)", RFC 7641,
 DOI 10.17487/RFC7641, September 2015,
 <http://www.rfc-editor.org/info/rfc7641>.

11.2. Informative References

 [I-D.hartke-core-e2e-security-reqs]
 Selander, G., Palombini, F., Hartke, K., and L. Seitz,
 "Requirements for CoAP End-To-End Security", draft-hartke-

core-e2e-security-reqs-00 (work in progress), March 2016.

https://datatracker.ietf.org/doc/html/draft-ietf-cose-msg-10
https://datatracker.ietf.org/doc/html/draft-ietf-cose-msg-10
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc6347
http://www.rfc-editor.org/info/rfc6347
https://datatracker.ietf.org/doc/html/rfc7252
http://www.rfc-editor.org/info/rfc7252
https://datatracker.ietf.org/doc/html/rfc7641
http://www.rfc-editor.org/info/rfc7641
https://datatracker.ietf.org/doc/html/draft-hartke-core-e2e-security-reqs-00
https://datatracker.ietf.org/doc/html/draft-hartke-core-e2e-security-reqs-00

Selander, et al. Expires September 22, 2016 [Page 21]

Internet-Draft Object Security of CoAP (OSCOAP) March 2016

 [I-D.ietf-ace-oauth-authz]
 Seitz, L., Selander, G., Wahlstroem, E., Erdtman, S., and
 H. Tschofenig, "Authorization for the Internet of Things
 using OAuth 2.0", draft-ietf-ace-oauth-authz-01 (work in
 progress), February 2016.

 [I-D.ietf-core-block]
 Bormann, C. and Z. Shelby, "Block-wise transfers in CoAP",

draft-ietf-core-block-18 (work in progress), September
 2015.

 [I-D.ietf-tls-tls13]
 Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", draft-ietf-tls-tls13-11 (work in progress),
 December 2015.

 [I-D.selander-ace-cose-ecdhe]
 Selander, G., Mattsson, J., and F. Palombini, "Ephemeral
 Diffie-Hellman Over COSE (EDHOC)", draft-selander-ace-

cose-ecdhe-00 (work in progress), March 2016.

 [RFC7228] Bormann, C., Ersue, M., and A. Keranen, "Terminology for
 Constrained-Node Networks", RFC 7228,
 DOI 10.17487/RFC7228, May 2014,
 <http://www.rfc-editor.org/info/rfc7228>.

Appendix A. Overhead

 OSCOAP transforms an unprotected CoAP message to a protected CoAP
 message, and the protected CoAP message is larger than the
 unprotected CoAP message. This appendix illustrates the message
 expansion.

A.1. Length of the Object-Security Option

 The protected CoAP message contains the COSE object. The COSE object
 is included in the payload if the unprotected CoAP message has
 payload or else in the Object-Security option. In the former case
 the Object-Security option is empty. So the length of the Object-
 Security option is either zero or the size of the COSE object,
 depending on whether the CoAP message has payload or not.

 Length of Object-Security option = { 0, size of COSE Object }

https://datatracker.ietf.org/doc/html/draft-ietf-ace-oauth-authz-01
https://datatracker.ietf.org/doc/html/draft-ietf-core-block-18
https://datatracker.ietf.org/doc/html/draft-ietf-tls-tls13-11
https://datatracker.ietf.org/doc/html/draft-selander-ace-cose-ecdhe-00
https://datatracker.ietf.org/doc/html/draft-selander-ace-cose-ecdhe-00
https://datatracker.ietf.org/doc/html/rfc7228
http://www.rfc-editor.org/info/rfc7228

Selander, et al. Expires September 22, 2016 [Page 22]

Internet-Draft Object Security of CoAP (OSCOAP) March 2016

A.2. Size of the COSE Object

 The size of the COSE object is the sum of the sizes of

 o the Header parameters,

 o the Ciphertext (excluding the Tag),

 o the Tag, and

 o data incurred by the COSE format itself (including CBOR encoding).

 Let's analyse the contributions one at a time:

 o The header parameters of the COSE object are the Context
 Identifier (Cid) and the Sequence Number (Seq) (also known as the
 Transaction Identifier (Tid)) if the message is a request, and Seq
 only if the message is a response (see Section 5).

 * The size of Cid depends on the number of simultaneous clients,
 and must be chosen so that the server can uniquely identify the
 requesting client. For example, in the case of an ACE-based
 authentication and authorization model
 [I-D.ietf-ace-oauth-authz], the Authorization Server or the
 server itself can define the context identifier of all clients
 interacting with a particular server, in which case the size of
 Cid can be proportional to the logarithm of number of
 authorized clients.

 + As Cids of different lengths can be used by different
 client, it is RECOMMENDED to start assigning Cids of length
 1 byte (0x00, 0x01, ..., 0xff), and then when all 1 byte
 Cids are in use, start handling out Cids with a length of
 two bytes (0x0000, 0x0001, ..., 0xffff).

 * The size of Seq is variable, and increases with the number of
 messages exchanged.

 * As the nonce is generated from the padded Sequence Number and a
 previously agreed upon static IV it is not required to send the
 whole nonce in the message.

 o The Ciphertext, excluding the Tag, is the encryption of the
 payload and the encrypted options Section 4, which are present in
 the unprotected CoAP message.

 o The size of the Tag depends on the Algorithm. For the OSCOAP
 mandatory algorithm AES-CCM-64-64-128, the Tag is 8 bytes.

Selander, et al. Expires September 22, 2016 [Page 23]

Internet-Draft Object Security of CoAP (OSCOAP) March 2016

 o The overhead from the COSE format itself depends on the sizes of
 the previous fields, and is of the order of 10 bytes.

A.3. Message Expansion

 The message expansion is not the size of the COSE object. The
 ciphertext in the COSE object is encrypted payload and options of the
 unprotected CoAP message - the plaintext of which is removed from the
 protected CoAP message. Since the size of the ciphertext is the same
 as the corresponding plaintext, there is no message expansion due to
 encryption; payload and options are just represented in a different
 way in the protected CoAP message:

 o The encrypted payload is in the payload of the protected CoAP
 message

 o The encrypted options are in the Object-Security option or within
 the payload.

 Therefore the OSCOAP message expansion is due to Cid (if present),
 Seq, Tag, and COSE overhead:

 Message Overhead = Cid + Seq + Tag + COSE Overhead

 Figure 7: OSCOAP message expansion

A.4. Example

 This section gives an example of message expansion in a request with
 OSCOAP.

 In this example we assume an extreme 4-byte Cid, based on the
 assumption of an ACE deployment with billions of clients requesting
 access to this particular server. (A typical Cid, will be 1-2 byte
 as is discussed in Appendix A.2.)

 o Cid: 0xa1534e3c

 In the example the sequence number is 225, requiring 1 byte to
 encode. (The size of Seq could be larger depending on how many
 messages that has been sent as is discussed in Appendix A.2.)

 o Seq: 225

 The example is based on AES-CCM-64-64-128.

 o Tag is 8 bytes

Selander, et al. Expires September 22, 2016 [Page 24]

Internet-Draft Object Security of CoAP (OSCOAP) March 2016

 The COSE object is represented in Figure 8 using CBOR's diagnostic
 notation.

 [
 h'a20444a1534e3c0641e2', # protected:
 {04:h'a1534e3c',
 06:h'e2'}
 {}, # unprotected: -
 Tag # ciphertext + 8 byte authentication tag
]

 Figure 8: Example of message expansion

 Note that the encrypted CoAP options and payload are omitted since we
 target the message expansion (see Appendix A.3). Therefore the size
 of the COSE Ciphertext equals the size of the Tag, which is 8 bytes.

 The COSE object encodes to a total size of 22 bytes, which is the
 message expansion in this example. The COSE overhead in this example
 is 22 - (4 + 1 + 8) = 9 bytes, according to the formula in Figure 7.
 Note that in this example two bytes in the COSE overhead are used to
 encode the length of Cid and the length of Seq.

 Figure 9 summarizes these results.

 +---------+---------+----------+------------+
 | Tid | Tag | COSE OH | Message OH |
 +---------+---------+----------+------------+
 | 5 bytes | 8 bytes | 9 bytes | 22 bytes |
 +---------+---------+----------+------------+

 Figure 9: Message overhead for a 5-byte Tid and 8-byte Tag.

Appendix B. Examples

 This section gives examples of OSCOAP. The message exchanges are
 made, based on the assumption that there is a security context
 established between client and server. For simplicity, these
 examples only indicate the content of the messages without going into
 detail of the COSE message format.

B.1. Secure Access to Actuator

 Here is an example targeting the scenario in Section 3.1 of
 [I-D.hartke-core-e2e-security-reqs]. The example illustrates a
 client requesting valve 34 to be turned to position 3 (PUT /valve34
 with payload value "3"), and getting a confirmation. The CoAP
 options Uri-Path and Payload are encrypted and integrity protected,

Selander, et al. Expires September 22, 2016 [Page 25]

Internet-Draft Object Security of CoAP (OSCOAP) March 2016

 and the CoAP header field Code is integrity protected (see
Section 4).

 Client Proxy Server
 | | |
 +----->| | Code: 0.03 (PUT)
 | PUT | | Token: 0x8c
 | | | Object-Security: -
 | | | Payload: [cid:5fdc, seq:42,
 | | | {Uri-Path:"valve34", "3"},
 | | | <Tag>]
 | | |
 | +----->| Code: 0.03 (PUT)
 | | PUT | Token: 0x7b
 | | | Object-Security: -
 | | | Payload: [cid:5fdc, seq:42,
 | | | {Uri-Path:"valve34", "3"},
 | | | <Tag>]
 | | |
 | |<-----+ Code: 2.04 (Changed)
 | | 2.04 | Token: 0x7b
 | | | Max-Age: 0
 | | | Object-Security: [seq:56, <Tag>]
 | | | Payload: -
 | | |
 |<-----+ | Code: 2.04 (Changed)
 | 2.04 | | Token: 0x8c
 | | | Max-Age: 0
 | | | Object-Security: [seq:56, <Tag>]
 | | | Payload: -
 | | |

 Figure 10: Indication of CoAP PUT protected with OSCOAP. The
 brackets [...] indicate a COSE object. The brackets { ... }
 indicate encrypted data.

 Since the unprotected request message (PUT) has payload ("3"), the
 COSE object (indicated with [...]) is carried as the CoAP payload.
 Since the unprotected response message (Changed) has no payload, the
 Object-Security option carries the COSE object as its value.

 The COSE header of the request contains a Context Identifier
 (cid:5fdc), indicating which security context was used to protect the
 message and a Sequence Number (seq:42).

 The option Uri-Path (valve34) and payload ("3") are formatted as
 indicated in Section 5, and encrypted in the COSE Ciphertext
 (indicated with { ... }).

Selander, et al. Expires September 22, 2016 [Page 26]

Internet-Draft Object Security of CoAP (OSCOAP) March 2016

 The server verifies that the Sequence Number has not been received
 before (see Section 6.1). The client verifies that the Sequence
 Number has not been received before and that the response message is
 generated as a response to the sent request message (see

Section 6.1).

B.2. Secure Subscribe to Sensor

 Here is an example targeting the scenario in Section 3.2 of
 [I-D.hartke-core-e2e-security-reqs]. The example illustrates a
 client requesting subscription to a blood sugar measurement resource
 (GET /glucose), and first receiving the value 220 mg/dl, and then a
 second reading with value 180 mg/dl. The CoAP options Observe, Uri-
 Path, Content-Format, and Payload are encrypted and integrity
 protected, and the CoAP header field Code is integrity protected (see

Section 4).

 Client Proxy Server
 | | |
 +----->| | Code: 0.01 (GET)
 | GET | | Token: 0x83
 | | | Observe: 0
 | | | Object-Security: [cid:ca, seq:15b7, {Observe:0,
 | | | Uri-Path:"glucose"}, <Tag>]
 | | | Payload: -
 | | |
 | +----->| Code: 0.01 (GET)
 | | GET | Token: 0xbe
 | | | Observe: 0
 | | | Object-Security: [cid:ca, seq:15b7, {Observe:0,
 | | | Uri-Path:"glucose"}, <Tag>]
 | | | Payload: -
 | | |
 | |<-----+ Code: 2.05 (Content)
 | | 2.05 | Token: 0xbe
 | | | Max-Age: 0
 | | | Observe: 1
 | | | Object-Security: -
 | | | Payload: [seq:32c2, {Observe:1,
 | | | Content-Format:0, "220"}, <Tag>]
 | | |
 |<-----+ | Code: 2.05 (Content)
 | 2.05 | | Token: 0x83
 | | | Max-Age: 0
 | | | Observe: 1
 | | | Object-Security: -
 | | | Payload: [seq:32c2, {Observe:1,
 | | | Content-Format:0, "220"}, <Tag>]

Selander, et al. Expires September 22, 2016 [Page 27]

Internet-Draft Object Security of CoAP (OSCOAP) March 2016

 | | |
 | |<-----+ Code: 2.05 (Content)
 | | 2.05 | Token: 0xbe
 | | | Max-Age: 0
 | | | Observe: 2
 | | | Object-Security: -
 | | | Payload: [seq:32c6, {Observe:2,
 | | | Content-Format:0, "180"}, <Tag>]
 | | |
 |<-----+ | Code: 2.05 (Content)
 | 2.05 | | Token: 0x83
 | | | Max-Age: 0
 | | | Observe: 2
 | | | Object-Security: -
 | | | Payload: [seq:32c6, {Observe:2,
 | | | Content-Format:0, "180"}, <Tag>]
 | | |

 Figure 11: Indication of CoAP GET protected with OSCOAP. The
 brackets [...] indicates COSE object. The bracket { ... }
 indicates encrypted data.

 Since the unprotected request message (GET) has no payload, the COSE
 object (indicated with [...]) is carried in the Object-Security
 option value. Since the unprotected response message (Content) has
 payload, the Object-Security option is empty, and the COSE object is
 carried as the payload.

 The COSE header of the request contains a Context Identifier
 (cid:ca), indicating which security context was used to protect the
 message and a Sequence Number (seq:15b7).

 The options Observe, Content-Format and the payload are formatted as
 indicated in Section 5, and encrypted in the COSE ciphertext
 (indicated with { ... }).

 The server verifies that the Sequence Number has not been received
 before (see Section 6.1). The client verifies that the Sequence
 Number has not been received before and that the response message is
 generated as a response to the subscribe request.

Appendix C. Object Security of Content (OSCON)

 OSCOAP protects message exchanges end-to-end between a certain client
 and a certain server, targeting the security requirements in

Section 3.1 and 3.2 of [I-D.hartke-core-e2e-security-reqs]. In
 contrast, many use cases require one and the same message to be

Selander, et al. Expires September 22, 2016 [Page 28]

Internet-Draft Object Security of CoAP (OSCOAP) March 2016

 protected for, and verified by, multiple endpoints, see Sections 3.3
 - 3.5 of [I-D.hartke-core-e2e-security-reqs]. Those security
 requirements can be addressed by protecting essentially the payload/
 content of individual messages using the COSE format
 ([I-D.ietf-cose-msg]), rather than the entire request/response
 message exchange. This is referred to as Object Security of Content
 (OSCON).

 OSCON transforms an unprotected CoAP message into a protected CoAP
 message in the following way: the payload of the unprotected CoAP
 message is wrapped by a COSE object, which replaces the payload of
 the unprotected CoAP message. We call the result the "protected"
 CoAP message.

 The unprotected payload SHALL be the plaintext/payload of the COSE
 object. The 'protected' field of the COSE object 'Headers' SHALL
 include the context identifier, both for requests and responses. If
 the unprotected CoAP message includes a Content-Format option, then
 the COSE object SHALL include a protected 'content type' field, whose
 value is set to the unprotected message Content-Format value. The
 Content-Format option of the protected CoAP message SHALL be replaced
 with "application/oscon" (Section 9)

 The COSE object SHALL be protected (encrypted) and verified
 (decrypted) as described in ([I-D.ietf-cose-msg]).

 In the case of symmetric encryption, the same key and nonce SHALL NOT
 be used twice. The use of sequence numbers for partial IV as
 specified for OSCOAP MAY be used. of sequence numbers for replay
 protection as described in Section 6.1 MAY be used. The use of time
 stamps in the COSE header parameter 'operation time'
 [I-D.ietf-cose-msg] for freshness MAY be used.

 OSCON SHALL NOT be used in cases where CoAP header fields (such as
 Code or Version) or CoAP options need to be integrity protected or
 encrypted. OSCON SHALL NOT be used in cases which require a secure
 binding between request and response.

 The scenarios in Sections 3.3 - 3.5 of
 [I-D.hartke-core-e2e-security-reqs] assume multiple receivers for a
 particular content. In this case the use of symmetric keys does not
 provide data origin authentication. Therefore the COSE object SHOULD
 in general be protected with a digital signature.

Selander, et al. Expires September 22, 2016 [Page 29]

Internet-Draft Object Security of CoAP (OSCOAP) March 2016

C.1. Overhead OSCON

 In general there are four different kinds of ciphersuites that need
 to be supported: message authentication code, digital signature,
 authenticated encryption, and symmetric encryption + digital
 signature. The use of digital signature is necessary for
 applications with many legitimate recipients of a given message, and
 where data origin authentication is required.

 To distinguish between these different cases, the tagged structures
 of COSE are used (see Section 2 of [I-D.ietf-cose-msg]).

 The size of the COSE message for selected algorithms are detailed in
 this section.

 The size of the header is shown separately from the size of the MAC/
 signature. A 4-byte Context Identifier and a 1-byte Sequence Number
 are used throughout all examples, with these values:

 o Cid: 0xa1534e3c

 o Seq: 0xa3

 For each scheme, we indicate the fixed length of these two parameters
 ("Cid+Seq" column) and of the Tag ("MAC"/"SIG"/"TAG"). The "Message
 OH" column shows the total expansions of the CoAP message size, while
 the "COSE OH" column is calculated from the previous columns
 following the formula in Figure 7.

 Overhead incurring from CBOR encoding is also included in the COSE
 overhead count.

 To make it easier to read, COSE objects are represented using CBOR's
 diagnostic notation rather than a binary dump.

C.2. MAC Only

 This example is based on HMAC-SHA256, with truncation to 8 bytes
 (HMAC 256/64).

 Since the key is implicitly known by the recipient, the
 COSE_Mac0_Tagged structure is used (Section 6.2 of
 [I-D.ietf-cose-msg]).

 The object in COSE encoding gives:

Selander, et al. Expires September 22, 2016 [Page 30]

Internet-Draft Object Security of CoAP (OSCOAP) March 2016

 996(# COSE_Mac0_Tagged
 [
 h'a20444a1534e3c0641a3', # protected:
 {04:h'a1534e3c',
 06:h'a3'}
 {}, # unprotected
 h'', # payload
 MAC # truncated 8-byte MAC
]
)

 This COSE object encodes to a total size of 26 bytes.

 Figure 12 summarizes these results.

 +------------------+-----+-----+---------+------------+
 | Structure | Tid | MAC | COSE OH | Message OH |
 +------------------+-----+-----+---------+------------+
 | COSE_Mac0_Tagged | 5 B | 8 B | 13 B | 26 B |
 +------------------+-----+-----+---------+------------+

 Figure 12: Message overhead for a 5-byte Tid using HMAC 256/64

C.3. Signature Only

 This example is based on ECDSA, with a signature of 64 bytes.

 Since only one signature is used, the COSE_Sign1_Tagged structure is
 used (Section 4.2 of [I-D.ietf-cose-msg]).

 The object in COSE encoding gives:

 997(# COSE_Sign1_Tagged
 [
 h'a20444a1534e3c0641a3', # protected:
 {04:h'a1534e3c',
 06:h'a3'}
 {}, # unprotected
 h'', # payload
 SIG # 64-byte signature
]
)

 This COSE object encodes to a total size of 83 bytes.

 Figure 13 summarizes these results.

Selander, et al. Expires September 22, 2016 [Page 31]

Internet-Draft Object Security of CoAP (OSCOAP) March 2016

 +-------------------+-----+------+---------+------------+
 | Structure | Tid | SIG | COSE OH | Message OH |
 +-------------------+-----+------+---------+------------+
 | COSE_Sign1_Tagged | 5 B | 64 B | 14 B | 83 bytes |
 +-------------------+-----+------+---------+------------+

 Figure 13: Message overhead for a 5-byte Tid using 64 byte ECDSA
 signature.

C.4. Authenticated Encryption with Additional Data (AEAD)

 This example is based on AES-CCM with the MAC truncated to 8 bytes.

 It is assumed that the nonce is generated from the Sequence Number
 and some previously agreed upon static IV. This means it is not
 required to explicitly send the whole nonce in the message.

 Since the key is implicitly known by the recipient, the
 COSE_Encrypted_Tagged structure is used (Section 5.2 of
 [I-D.ietf-cose-msg]).

 The object in COSE encoding gives:

 993(# COSE_Encrypted_Tagged
 [
 h'a20444a1534e3c0641a3', # protected:
 {04:h'a1534e3c',
 06:h'a3'}
 {}, # unprotected
 TAG # ciphertext + truncated 8-byte TAG
]
)

 This COSE object encodes to a total size of 25 bytes.

 Figure 14 summarizes these results.

 +-----------------------+-----+-----+---------+------------+
 | Structure | Tid | TAG | COSE OH | Message OH |
 +-----------------------+-----+-----+---------+------------+
 | COSE_Encrypted_Tagged | 5 B | 8 B | 12 B | 25 bytes |
 +-----------------------+-----+-----+---------+------------+

 Figure 14: Message overhead for a 5-byte Tid using AES_128_CCM_8.

Selander, et al. Expires September 22, 2016 [Page 32]

Internet-Draft Object Security of CoAP (OSCOAP) March 2016

C.5. Symmetric Encryption with Asymmetric Signature (SEAS)

 This example is based on AES-CCM and ECDSA with 64 bytes signature.
 The same assumption on the security context as in Appendix C.4. COSE
 defines the field 'counter signature' that is used here to sign a
 COSE_Encrypted_Tagged message (see Section 3 of [I-D.ietf-cose-msg]).

 The object in COSE encoding gives:

 993(# COSE_Encrypted_Tagged
 [
 h'a20444a1534e3c0641a3', # protected:
 {04:h'a1534e3c',
 06:h'a3'}
 {7:SIG}, # unprotected:
 07: 64 bytes signature
 TAG # ciphertext + truncated 8-byte TAG
]
)

 This COSE object encodes to a total size of 92 bytes.

 Figure 15 summarizes these results.

 +-----------------------+-----+-----+------+---------+------------+
 | Structure | Tid | TAG | SIG | COSE OH | Message OH |
 +-----------------------+-----+-----+------+---------+------------+
 | COSE_Encrypted_Tagged | 5 B | 8 B | 64 B | 15 B | 92 B |
 +-----------------------+-----+-----+------+---------+------------+

 Figure 15: Message overhead for a 5-byte Tid using AES-CCM
 countersigned with ECDSA.

Authors' Addresses

 Goeran Selander
 Ericsson AB
 Farogatan 6
 Kista SE-16480 Stockholm
 Sweden

 Email: goran.selander@ericsson.com

Selander, et al. Expires September 22, 2016 [Page 33]

Internet-Draft Object Security of CoAP (OSCOAP) March 2016

 John Mattsson
 Ericsson AB
 Farogatan 6
 Kista SE-16480 Stockholm
 Sweden

 Email: john.mattsson@ericsson.com

 Francesca Palombini
 Ericsson AB
 Farogatan 6
 Kista SE-16480 Stockholm
 Sweden

 Email: francesca.palombini@ericsson.com

 Ludwig Seitz
 SICS Swedish ICT
 Scheelevagen 17
 Lund 22370
 Sweden

 Email: ludwig@sics.se

Selander, et al. Expires September 22, 2016 [Page 34]

