
Network Working Group P. Shafer
Internet-Draft Juniper Networks
Intended status: Informational September 4, 2008
Expires: March 8, 2009

An Architecture for Network Management
draft-shafer-netmod-arch-00

Status of this Memo

 By submitting this Internet-Draft, each author represents that any
 applicable patent or other IPR claims of which he or she is aware
 have been or will be disclosed, and any of which he or she becomes
 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on March 8, 2009.

Copyright Notice

 Copyright (C) The IETF Trust (2008).

Shafer Expires March 8, 2009 [Page 1]

https://datatracker.ietf.org/doc/html/bcp79#section-6
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet-Draft NETMODARCH September 2008

Abstract

 NETCONF and YANG are pieces of an ambitious plan to improve network
 management. NETCONF gives access to native capabilities of the
 devices within a network, defining methods for manipulating
 configuration databases, retrieving operational data, and invoking
 specific operations. YANG provides the means to define the content
 trafficked via NETCONF, both data and operations. Using both
 technologies, the standards modules can be defined to give
 interoperability and commonality to devices, while still allowing
 devices to express their unique capabilities.

 This document describes how NETCONF and YANG help build network
 management applications that meet the needs of network services
 providers. An architecture is described which is friendly to both
 devices and applications, to vendors and standards bodies, to young
 and to old, to red states and to blue states. It's a startling
 vision, coming to networks near you starting August, 2009.

Shafer Expires March 8, 2009 [Page 2]

Internet-Draft NETMODARCH September 2008

Table of Contents

1. Key Words . 4
2. Introduction . 5
2.1. NETCONF . 5
2.2. YANG . 6
2.2.1. XML Namespaces . 7

3. An Architecture for NETMOD 9
4. YANG and Friends . 13
4.1. Applicability . 14
4.1.1. Device Developer 14
4.1.2. Generic Content Support 14
4.1.3. XML "over the wire" Definitions 14
4.1.4. Application Developer 14
4.1.5. Bottom Up . 15

5. Modeling Considerations 17
6. Conclusion . 19
7. Security Considerations 20
8. Normative References . 21

 Author's Address . 22
 Intellectual Property and Copyright Statements 23

Shafer Expires March 8, 2009 [Page 3]

Internet-Draft NETMODARCH September 2008

1. Key Words

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP

14, [RFC2119].

Shafer Expires March 8, 2009 [Page 4]

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119

Internet-Draft NETMODARCH September 2008

2. Introduction

 Networks are increasing in complexity and capacity, as well as the
 density of the services deployed upon them. The drive for uptime,
 reliability, and predictable latency drives the need for automation.

 The problems with network management are not simple. They are
 complex and intricate. But these problems must be solved for
 networks to meet the stability needs of existing services while
 incorporating new services in a world where the growth of the
 networks is exhausting the supply of qualified networking engineers.
 We need to move from a CLI world into a world of automation, but that
 automation must be robust and trustworthy.

 This document presents an architecture based on NETCONF ([RFC4741])
 and [YANG]. NETCONF and YANG address the problems of network
 management with flexibility and expressiveness. NETCONF allows any
 manner of configuration and operational data to be carried with few
 rules governing the data. YANG allows data models to be defined that
 are flexible and extensible in ways that allow the data to be
 cohesive and structured, but not rigid.

 This approach allows the device to express its native capabilities in
 a way that is flexible and extensible. Evolution of devices and data
 models are permitted and managed.

2.1. NETCONF

 NETCONF allows applications to use an XML-based RPC mechanism that
 leverages the simplicity and availability of high-quality XML
 parsers. XML gives a rich, flexible, hierarchical, standard
 representation of data that matches nearly perfectly the data needs
 of networking devices.

 XML's hierarchical data representation allows complex networking data
 to be rendered in a natural way. For example, the following
 configuration places interfaces in OSPF areas. The <ospf> element
 contains a list of <area> elements, each of which contain a list of
 <interface> elements. The <name> element identifies the specific
 area or interface. Additional configuration for each area or
 interface appears directly inside the appropriate element.

https://datatracker.ietf.org/doc/html/rfc4741

Shafer Expires March 8, 2009 [Page 5]

Internet-Draft NETMODARCH September 2008

 <ospf xmlns="http://ns.ietf.org/netconf/ospf">

 <area>
 <name>0.0.0.0</name>

 <interface>
 <name>ge-0/0/0.0</name>
 <!-- The priority for this interface -->
 <priority>30</priority>
 </interface>

 <interface>
 <name>ge-0/0/1.0</name>
 </interface>
 </area>

 <area>
 <name>10.1.2.0</name>

 <interface>
 <name>ge-0/0/2.0</name>
 </interface>

 <interface>
 <name>ge-0/0/3.0</name>
 </interface>
 </area>
 </ospf>

2.2. YANG

 YANG is a data model language for NETCONF that allows the description
 of hierarchies of nodes and the constraints that exist amongst them.
 These data models are extensible in a manner that allows tight
 integration of standard data models and proprietary data models.

 +--+
 | Open Question |
 +--+
 | More words? |
 +--+

Shafer Expires March 8, 2009 [Page 6]

Internet-Draft NETMODARCH September 2008

 module ietf-ospf {
 namespace http://ns.ietf.org/netconf/ospf;
 prefix ospf;

 import network-types {
 prefix nett;
 }

 container ospf { // declare the top-level tag
 list area {
 key name;
 leaf name {
 type nett:area-id;
 }
 list interface {
 key name;
 leaf name {
 type nett:interface-name;
 }
 leaf priority {
 type uint {
 range 1..255;
 }
 }
 }
 }
 }
 }

 Open source tools for YANG are available on
http://www.yang-central.org.

2.2.1. XML Namespaces

 XML includes the concept of namespaces, allowing XML elements from
 different sources to be combined in the same hierarchy without
 risking collision. YANG modules define content for specific
 namespaces, but one module may augment the definition of another
 module, introducing elements from that module's namespace into the
 first module's hierarchy.

 For example, if the above OSPF configuration were the standard, a
 vendor module may augment this with vendor-specific extensions.

http://ns.ietf
http://www.yang-central.org

Shafer Expires March 8, 2009 [Page 7]

Internet-Draft NETMODARCH September 2008

 module vendorx-ospf {
 namespace http://vendorx.example.com/ospf;
 prefix vendorx;

 import ietf-ospf {
 prefix ospf;
 }

 augment ospf:ospf/ospf:area/ospf:interfaces {
 leaf no-neighbor-down-notification {
 type empty;
 description "Don't inform other protocols about"
 + " neighbor down events";
 }
 }
 }

 The <no-neighbor-down-notification> element is then placed in the
 vendorx namespace:

 <protocols xmlns="http://ietf.org/netconf/protocols"
 xmlns:vendorx="http://vendorx.example.com/ospf">
 <ospf xmlns="http://ietf.org/netconf/ospf">

 <area>
 <name>0.0.0.0</name>

 <interface>
 <name>ge-0/0/0.0</name>
 <priority>30</priority>
 <vendorx:no-neighbor-down-notification/>
 </interface>

 </area>
 </ospf>
 </protocols>

 Extensions are seamlessly integrated with base modules, allowing them
 to be fetched, archived, loaded, and deleted within their natural
 hierarchy.

Shafer Expires March 8, 2009 [Page 8]

Internet-Draft NETMODARCH September 2008

3. An Architecture for NETMOD

 In the NETMOD architecture, each device vendor implements a set of
 data models in their devices. These models are either standard data
 models, defined in YANG modules published by a standards body, or
 proprietary data models, defined in YANG modules published by vendor.

 Proprietary data models allow the vendor to accurately describe the
 content and behavior of their devices in explicit detail.
 Applications may take advantage of these specifics to give their
 users complete control over the device.

 Standard data models define content that is independent of the
 vendor, allowing client applications to request specific behavior
 without concern for the vendor, product line, or installed software
 revision. The translation between the standard model and the device
 specific behavior is performed by the device, freeing the application
 from such concerns.

 When a NETCONF session begins, the namespaces for all supported
 modules are announced as capabilities via the device's <hello>
 message. The device should also support the schema discovery
 mechanism [ref], enabling applications to discover the location from
 which the modules may be downloaded.

 The schema discovery for standard YANG modules should list a common,
 standard location for these modules, assumably one set by the
 organization that defined the standard.

 When an application connects with a device, it receives the list of
 capabilities supported by that device. The application may compare
 the set of capabilities announced by the device with the set of
 modules the application is aware of. Any new modules or new
 revisions of known modules may be downloaded as needed from the
 locations given via the schema discovery mechanism.

 Once the application has access to the YANG modules, it may
 manipulate the device as a "YANG module browser", capable of parsing
 the elements sent from the device with an understanding of the
 organization of the data. The module describes the syntax of the
 data and constraints on that data, allowing the application to create
 data that abides by those constraints.

 To have a real understanding of a module's content, the application
 may need to incorporate logic specific to that module. Semantic
 information contained in description statements is not machine
 readable, but module-specific custom work can be done to tailor the
 user interface to the particular semantic needs of the module.

Shafer Expires March 8, 2009 [Page 9]

Internet-Draft NETMODARCH September 2008

 For example, a module could define the "location" of a device using
 longitude and latitude, and the application can use the "browser"
 style to display this data using input fields in a web form. Custom
 logic would be needed to take the value of these fields and place the
 device on a map of the world, and more logic would be needed to
 update the data values when the user drags the device from Dallas to
 Dulles.

 If an application is meant to manage a specific problem, it may model
 the data internally in whatever form is most convenient to its
 organizational needs. When the application interacts with a device,
 it may choose one of two paths. If the device implements a standard
 module, the application may generate content for that standard by
 translating its internal form into the standard one.

 If the device doesn't implement such a standard or no such standard
 exists, the application may use a transformation that is particular
 to that device's vendor, product model, hardware, or software.
 Depending on the application, this transformation may be provided by
 the application vendor, the device vendor, a third-party, or the
 provider.

 For a popular application, the vendor may wish to provide this
 transformation to increase the uptake of their devices. For popular
 devices, the application may provide this transformation as a means
 of making the application useful in the maximum number of provider
 networks. For problem domains where the mapping from the application
 to the device is not straight-forward or requires tailoring to the
 specific provider or environment, the provider may wish to control
 this transformation. Additionally, other parties may make such
 transformations available via open source.

 This gives two similar views of the world, as only ASCII Art can
 explain:

Shafer Expires March 8, 2009 [Page 10]

Internet-Draft NETMODARCH September 2008

 Case A: Case B:
 Application does Device does
 the transformation the transformation
 between standard between standard
 and device views and device views
 +---Application---+ +---Application---+
 | | | |
 Internal | +-------------+ | | +-------------+ |
 View | | IV | | | | IV | |
 (IV) | +-------------+ | | +-------------+ |
 | | | | | |
 | | (transform) | | | (transform) |
 | v | | v |
 Standard | +-------------+ | | +-------------+ |
 View | | SV | | | | SV | |
 (SV) | +-------------+ | | +-------------+ |
 +-----------------+ | | |
 | (transmit) | | (transform) |
 v | | |
 +-----Device------+ | v |
 | +-------------+ | | +-------------+ | | | | |
 | | SV | | | | DV | |
 | +-------------+ | | +-------------+ |
 | | | +-----------------+
 | | (transform) | | (transmit)
 | v | v
 + +-------------+ | +-----Device------+
 Device | | DV | | | |
 Config | +-------------+ | | |
 (DV) +-----------------+ +-----------------+

 +--+
 | Open Question |
 +--+
 | Do we need this picture? Does it add anything worth adding? |
 +--+

 Note that both cases may appear within a single application on an "as
 needed" basis. If the device announces the capability for the
 standard YANG module, the application may transmit to the device via
 NETCONF the content in the standard modules format. If the device
 does not announce the appropriate capability, the application may
 find a transformation that matches the device, perform the
 transformation on the standard data to produce device native
 configuration, and transmit via NETCONF that device configuration to
 the device.

 In both cases, the key is the ability to discover the capabilities of

Shafer Expires March 8, 2009 [Page 11]

Internet-Draft NETMODARCH September 2008

 the specific device, download the YANG modules that support those
 capabilities, gain an understanding of those data models and their
 constraints, generate appropriate content, and transmit that content
 to the device.

Shafer Expires March 8, 2009 [Page 12]

Internet-Draft NETMODARCH September 2008

4. YANG and Friends

 The YANG data modeling language is the central piece of a group of
 related technologies. The YANG language itself, described in [ref],
 defines the syntax of the language and its statements, the meaning of
 those statements, and how to combine them to build the hierarchy of
 nodes that describe a data model.

 That document also defines the "on the wire" XML content for NETCONF
 operations on data models defined in YANG modules. This includes the
 basic mapping between YANG data tree nodes and XML elements, as well
 as mechanisms used in <edit-config> content to manipulate that data,
 such as arranging the order of nodes within a list.

 YANG is a fairly simple language, using a syntax that is regular and
 easily described, designed for human readability. But in some
 environments, incorporating a YANG parser may not be an acceptable
 option. For those scenarios, a XML grammar for YANG is defined in
 YIN (YANG Independent Notation) [ref]. YIN allows the use of XML
 parsers which are readily available in both open source and
 commercial versions. Conversion between YANG and YIN is direct,
 loss-less and reversible. YANG statements are converted to XML
 elements, preserving the structure and content of YANG, but enabling
 the use of "off the shelf" XML parsers rather than requiring the
 integration of a YANG parser. YIN maintains complete semantic
 equivalence with YANG.

 +---+
 | Open Question |
 +---+
 | Should we note that YANG parsers are also available "off the |
 | shelf" also? |
 +---+

 Difficult as it is to believe, there will be environments where tools
 are not available which offer native support. To support developers
 marooned in such environments, YANG offers the ability to translate
 modules into DSDL schemas, including RelaxNG and Schematron. With
 these schemas, existing tools may test that NETCONF operations and
 content are valid and well-formed before processing them. The
 complete standard mapping of YANG to DSDL is detailed in [ref], and
 is implemented in "off the shelf" open source and commercial
 software. Where no equivalent functionality is availabe in DSDL,
 annotations will be used to ensure the preservation of high-level
 semantics. Many DSDL engines offer plug-able functionality to allow
 enforcement of such constraints.

 In addition, a standard type library for use by YANG is available in

Shafer Expires March 8, 2009 [Page 13]

Internet-Draft NETMODARCH September 2008

 [ref]. These types allow access to the vast wealth of the Sierra
 Madra, in true John-Wayne style.

4.1. Applicability

 The data model in the YANG module yields value in five specific
 areas.

4.1.1. Device Developer

 The YANG model tells the device developer what data is being modeled.
 The developer reads the YANG models, absorbs the zen of the model,
 and writes code that supports the model. The model describes the
 data hierarchy and associated constraints, and the description and
 reference material helps the developer understand how to transform
 the models view into the device native implementation.

4.1.2. Generic Content Support

 The YANG model can be compiled into a YANG-based engine for either
 the client or server side. Incoming data can be validated, as can
 outgoing data. The complete configuration database may be validated
 in accordance with the constraints described in the data model.

 Serializers and deserializers, for generating and receiving XML
 content, can be driven by the meta-data in the model. As data is
 received, the meta-data is consulted to ensure the incoming XML
 element is valid at the current spot in the hierarchy.

 The YANG-based toolset can also generate support material for
 development environment environments, including structure or object
 definitions, for inclusion at compile time. But care must be taken
 for the extensibility of YANG definitions. Nodes in the data model
 may be augmented by other YANG modules, both standard and
 proprietary.

4.1.3. XML "over the wire" Definitions

 The YANG module dictates the XML encoding sent "over the wire",
 though actual transmission should be encrypted so as not to appear as
 readable text on the physical media. The rules that define the
 encoding are fixed, so the YANG module can be used to ascertain
 whether a specific NETCONF payload is obeying the rules.

4.1.4. Application Developer

 The YANG module tells the application developer what data can be
 modeled. Developers can inspect the modules and take one of three

Shafer Expires March 8, 2009 [Page 14]

Internet-Draft NETMODARCH September 2008

 distinct views. In this section, we will consider them and the
 impact of YANG on their design. In the real world, most applications
 are a mixture of these approaches.

4.1.4.1. Hard Coded

 An application can be coded against the specific, well-known contents
 of YANG modules, implementing their organization, rules, and logic
 directly with explicit knowledge. For example, a script could be
 written to change the domain name of a set of devices using a
 standard YANG module that includes such a leaf node. This script
 takes the new domain name as an argument and insert it into a string
 containing the rest of the XML encoding as required by the YANG
 module. This content is then sent via NETCONF to the devices.

 This type of application is useful for small, fixed problems where
 the cost and complexity of flexibility is overwhelmed by the ease of
 hard coding direct knowledge into the application.

4.1.5. Bottom Up

 An application may take a generic, bottom up approach to
 configuration, concentrating on the device's data directly and
 treating that data in without specific understanding.

 YANG modules may be used to drive the operation of the YANG
 equivalent of a "MIB Browser". Such an application manipulates the
 device's configuration data based on the data organization contained
 in the YANG module. For example, a GUI may present a straight-
 forward visualization where elements of the YANG hierarchy are
 depicted in a hierarchy of folders or GUI panels. Clicking on a line
 expands to the contents of the matching content.

 This type of GUI can easily be built by generating XSLT stylesheets
 from the YANG data models. An XSLT engine can then be used to turn
 configuration data into a set of web pages.

 The YANG modules allows the application to enforce the set of
 constraints it defines without understanding any specifics of the
 YANG module. The application need only understand the YANG and its
 encoding rules. This sort of browser has been available for MIBs,
 but will have better information at its disposal with YANG.

4.1.5.1. Top Down

 In contrast to the generic approach, the top-down approach allows the
 application to take a view of the configuration data which is
 distinct from the standard and/or proprietary YANG modules. The

Shafer Expires March 8, 2009 [Page 15]

Internet-Draft NETMODARCH September 2008

 application is free to construct its own model for data organization
 and to present this model to the user. When the data needs to be
 transported to device, the application transforms the application
 data into device data. This transformation is under the control and
 maintenance of the application, allowing the transformation to be
 changed and updated without affecting the device.

Shafer Expires March 8, 2009 [Page 16]

Internet-Draft NETMODARCH September 2008

5. Modeling Considerations

 In developing good data models, there are many conflicting interests
 the data modeler must keep in mind. Modelers need to be aware of
 four types of behavior in modeled device:

 o [strict compliance] behavior that follow the model completely

 o [modeled deviations] behavior that follows within deviations
 allowed by the model

 o [allowable deviations] behavior that falls outside the model, but
 can still be handled

 o [unacceptable deviations] behavior that is not at all consistent
 with the model

 Consider a data model that contains the number of hotdogs that can be
 consumed before puking on a roller coaster. A simple model can
 simply list this element as a state node of the data model.
 Compliant models report the value, allowing clients to reconsider
 either another hotdog or another ride on the roller coaster.

 The model may opt for a more complex model which limits this node to
 only apply to people that ride roller coasters. If an implementation
 does not support the ability to ride roller coasters, the value is
 uninteresting and such implementation are not required to conjure up
 a meaningless value.

 Once the model is published, an implementer may decide to make this
 node configurable, where the standard model describes it a state
 data. The implementation reports the value normally and may have an
 "out of band" mechanism for reporting that this node behaves in a
 different manner than the standard. Applications capable of
 discovering such behavior can make allowances, but applications that
 do not continue treating the implementation as if it were compliant.

 Rarely, implementations may make decisions that prevent compliance
 with the standard. Such occasions are horrible, regrettable, nasty,
 and a pox on the face of standardization. But they remain a part of
 reality, and modelers and application writers ignore them at their
 own risk. An implementation that reports the hotdog limit as "cow"
 would be difficult to manage, but one must expect to encounter such
 "cow reporters" in the field.

 Despite this, both client and server should view the YANG module as a
 contract, with both side agreeing to abide by the terms. The modeler
 should do their best to be explicit about the terms of such a

Shafer Expires March 8, 2009 [Page 17]

Internet-Draft NETMODARCH September 2008

 contract, lest some weasel successfully explains how "cow" is a valid
 value. But both client and server implementations should strive to
 faithfully and accurately implement the data model described in the
 YANG module.

Shafer Expires March 8, 2009 [Page 18]

Internet-Draft NETMODARCH September 2008

6. Conclusion

 [Wherein we tell you what an amazing job we've done]

 We have done an amazing job.

 Many standardization efforts result in a "design by committee"-style
 camel instead of a horse, but the YANG design committee and the
 NETMOD working group have used the implementation experience of their
 members to build a data modeling language for NETCONF that balances
 simplicity, flexibility, and extensibility in a harmony unequaled
 since the dawn of the claw hammer. The development of multiple YANG
 implementations has given us early feedback on technical issues and
 helped crisp the wording of many issues in the YANG specification.

 While we are aware of the difficulties that network management has
 traditionally faced and the number of bodies that lie at the base of
 the mountain we are scaling, we are certain that these tools are a
 vast improvement on the previous generation, and feel assured that
 this will help us evolve the network management world in a timely and
 stable way to allow the evolution of new and powerful applications
 that will deliver automation to fulfill the needs of providers and
 their networks.

Shafer Expires March 8, 2009 [Page 19]

Internet-Draft NETMODARCH September 2008

7. Security Considerations

 Security is an important task, and YANG should be an integral part of
 access mechanism defined for NETCONF. Access and Authorization (A&A)
 should also be integrated with traditional on-device mechanisms, such
 as RADIUS and local passwords. The SSH transport for NETCONF
 provides such facilities. In addition, these on-device A&A mechanism
 can provide additional constraints for the operations of a client
 targeting a NETCONF server. The definitions and limits of such
 constraints are not part of the current effort and will be addressed
 by future work.

Shafer Expires March 8, 2009 [Page 20]

Internet-Draft NETMODARCH September 2008

8. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC4741] Enns, R., "NETCONF Configuration Protocol", RFC 4741,
 December 2006.

 [YANG] Bjorklund, M., Ed., "YANG - A data modeling language for
 NETCONF", draft-ietf-netmod-yang-00 (work in progress).

Shafer Expires March 8, 2009 [Page 21]

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc4741
https://datatracker.ietf.org/doc/html/draft-ietf-netmod-yang-00

Internet-Draft NETMODARCH September 2008

Author's Address

 Phil Shafer
 Juniper Networks

 Email: phil@juniper.net

Shafer Expires March 8, 2009 [Page 22]

Internet-Draft NETMODARCH September 2008

Full Copyright Statement

 Copyright (C) The IETF Trust (2008).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
 THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
 OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
 THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at

http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Acknowledgment

 Funding for the RFC Editor function is provided by the IETF
 Administrative Support Activity (IASA).

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr

Shafer Expires March 8, 2009 [Page 23]

