LEDBAT WG S. Shalunov TOoC

Internet-Draft BitTorrent Inc
Intended status: Experimental March 04, 2009
Expires: September 5, 2009

Low Extra Delay Background Transport (LEDBAT)
draft-shalunov-ledbat-congestion-00.txt

Status of this Memo

This Internet-Draft is submitted to IETF in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task
Force (IETF), its areas, and its working groups. Note that other groups
may also distribute working documents as Internet-Drafts.
Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference material
or to cite them other than as “work in progress.”

The 1list of current Internet-Drafts can be accessed at http://
www.ietf.org/ietf/1id-abstracts. txt.

The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

This Internet-Draft will expire on September 5, 2009.

Copyright Notice

Copyright (c) 2009 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents in effect on the date of
publication of this document (http://trustee.ietf.org/license-info).
Please review these documents carefully, as they describe your rights
and restrictions with respect to this document.

Abstract

LEDBAT is an alternative experimental congestion control algorithm.
LEDBAT enables an advanced networking application to minimize the extra
delay it induces in the bottleneck while saturating the bottleneck. It
thus implements an end-to-end version of scavenger service. LEDBAT has
been been implemented in BitTorrent DNA, as the exclusive congestion
control mechanism, and in uTorrent, as an experimental mechanism, and
deployed in the wild with favorable results.

http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Table of Contents

1. Requirements notation

2. Introduction

3. LEDBAT design goals

4. LEDBAT motivation
4.1. Simplest network topology
4.2. Extra delay
4.3. Queuing delay target
4.4. Need to measure delay
4.5. Queing delay estimate
4.6. Controller
4.7. Max rampup rate same as TCP
4.8. Halve on loss
4.9. Yield to TCP
4.10. Need for one-way delay
4.11. Measuring one-way delay
4.12. Route changes
4.13. Timestamp errors

4.13.1. Clock offset
4.13.2. Clock skew

4.14. Noise filtering
4.15. Safety of LEDBAT

5. LEDBAT congestion control

6. Security Considerations

7. Normative References

8 Author's Address

1. Requirements notation TOC

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [RFC2119] (Bradner, S.,
“Key words for use in RFCs to Indicate Requirement Levels,”

March 1997.).

2. Introduction TOC

The standard congestion control in TCP is based on loss and has not
been designed to drive delay to any given value. Because TCP needs
losses to back off, when a FIFO bottleneck lacks AQM, TCP fills the
buffer, effectively maximizing possible delay. Large number of the
thinnest links in the Internet, particularly most uplinks of home

connections, lack AQM. They also frequently contain enough buffer space
to get delays into hundreds of milliseconds and even seconds. There is
no benefit to having delays this large, but there are very substantial
drawbacks for interactive applications: games and VoOIP become
impossible and even web browsing becomes very slow.

While a number of delay-based congestion control mechanisms have been
proposed, they were generally not designed to minimize the delay
induced in the network.

LEDBAT is designed to allow to keep the latency across the congested
bottleneck low even as it is saturated. This allows applications that
send large amounts of data, particularly upstream on home connections,
such as peer-to-peer application, to operate without destroying the
user experience in interactive applications. LEDBAT takes advantage of
delay measurements and backs off before loss occurs. It has been
deployed by BitTorrent in the wild with the BitTorrent DNA client and
now, experimentally, with the uTorrent client. This mechanism not only
allows to keep delay across a bottleneck low, but also yields quickly
in the presence of competing traffic with loss-based congestion
control.

Beyond its utility for P2P, LEDBAT enables other advanced networking
applications to better get out of the way of interactive apps.

In addition to direct and immediate benefits for P2P and other
application that can benefit from scavenger service, LEDBAT could point
the way for a possible future evolution of the Internet where loss is
not part of the designed behavior and delay is minimized.

3. LEDBAT design goals _TOC _
LEDBAT design goals are:

1. saturate the bottleneck

2. keep delay low when no other traffic is present

3. quickly yield to traffic sharing the same bottleneck queue that
uses standard TCP congestion control

4. add little to the queuing delays induced by TCP traffic

5. operate well in networks with FIFO queuing with drop-tail
discipline

6. be deployable for popular applications that currently comprise
noticeable fractions of Internet traffic

7. where available, use explicit congestion notification (ECN),
active queue management (AQM), and/or end-to-end differentiated
services (DiffServ).

4. LEDBAT motivation TOC

This section describes LEDBAT informally and provides some motivation.
It is expected to be helpful for general understanding and useful in
discussion of the properties of LEDBAT.

Without a loss of generality, we can consider only one direction of the
data transfer. The opposite direction can be treated identically.

4.1. Simplest network topology TOC

Consider first the desired behavior when there's only a single
bottleneck and no competing traffic whatsoever, not even other LEDBAT
connections. The design goals obviously need to be robustly met for
this trivial case.

4.2. Extra delay TOC

Consider the queuing delay on the bottleneck. This delay is the extra
delay induced by congestion control. One of our design goals is to keep
this delay low. However, when this delay is zero, the queue is empty
and so no data is being transmitted and the link is thus not saturated.
Hence, our design goal is to keep the queuing delay low, but non-zero.

4.3. Queuing delay target TOC

How low do we want the queuing delay to be? Because another design goal
is to be deployable on networks with only simple FIFO queuing and drop-
tail discipline, we can't rely on explicit signaling for the queuing
delay. So we're going to estimate it using external measurements. The
external measurements will have an error at least on the order of best-
case scheduling delays in the 0Ses. There's thus a good reason to try
to make the queuing delay larger than this error. There's no reason
that would want us to push the delay much further up. Thus, we will
have a delay target that we would want to maintain.

4.4. Need to measure delay TOC

To maintain delay near the target, we have to use delay measurements.
Lacking delay measurements, we'd have to go only by loss (when ECN is
lacking). For loss to occur (on a FIFO link with drop-tail discipline),
the buffer must first be filled. This would drive the delay to the
largest possible value for this link, thus violating our design goal of
keeping delay low.

4.5. Queing delay estimate TOC

Since our goal is to control the queuing delay, it is natural to
maintain an estimate of it. Let's call delay components propagation,
serialization, processing, and queuing. All components but queuing are
nearly constant and queuing is variable. Because queuing delay is
always positive, the constant propagation+serialization+processing
delay is no less than the minimum delay observed. Assuming that the
queuing delay distribution density has non-zero integral from zero to
any sufficiently small upper limit, minimum is also an asymptotically
consistent estimate of the constant fraction of the delay. We can thus
estimate the queuing delay as the difference between current and base
delay as usual.

4.6. Controller TOC

When our estimate of the queuing delay is lower than the target, it's
natural to send faster. When our estimate is higher, it's natural to
send slower. To avoid trivial oscillations on round-trip-time (RTT)
scale, the response of the controller needs to be near zero when the
estimate is near the target. To converge faster, the response needs to
increase as the difference increases. The simplest controller with this
property is the linear controller, where the response is proportional
to the difference between the estimate and the target. This controller
happens to work well in practice obviating the need for more complex
ones.

TOC

4.7. Max rampup rate same as TCP

The maximum speed with which we can increase our congestion window is
then when queuing delay estimate is zero. To be on the safe side, we'll
make this speed equal to how fast TCP increases its sending speed.
Since queuing delay estimate is always non-negative, this will ensure
never ramping up faster than TCP would.

4.8. Halve on loss TOC

Further, to deal with severe congestion when most packets are lost and
to provide a safety net against incorrect queuing delay estimates,
we'll halve the window when a loss event is detected. We'll do so at
most once per RTT.

4.9. Yield to TCP T0C

Consider competition between a LEDBAT connection and a connection
governed by loss-based congestion control (on a FIFO bottleneck with
drop-tail discipline). Loss-based connection will need to experience
loss to back off. Loss will only occur after the connection experiences
maximum possible delays. LEDBAT will thus receive congestion indication
sooner than the loss-based connection. If LEDBAT can ramp down faster
than the loss-based connection ramps up, LEDBAT will yield. LEDBAT
ramps down when queuing delay estimate exceeds the target: the more the
excess, the faster the ramp-down. When the loss-based connection is
standard TCP, LEDBAT will yield at precisely the same rate as TCP is
ramping up when the queuing delay is double the target.

4.10. Need for one-way delay TOC

Now consider a case when one link direction is saturated with unrelated
TCP traffic while another direction is near-empty. Consider LEDBAT
sending in the near-empty direction. Our design goal is to saturate it.
However, if we pay attention to round-trip delays, we'll sense the
delays on the reverse path and respond to them as described in the
previous paragraph. We must, thus, measure one-way delay and use that
for our queuing delay estimate.

TOC

4.11. Measuring one-way delay

A special IETF protocol, One-Way Active Measurement Protocol (OWAMP),
exists for measuring one-way delay. However, since LEDBAT will already
be sending data, it is more efficient to add a timestamp to the packets
on the data direction and a measurement result field on the
acknowledgement direction. This also prevents the danger of measurement
packets being treated differently from the data packets. The failure
case would be better treatment of measurement packets, where the data
connection would be driven to losses.

4.12. Route changes TOC

Routes can change. To deal, base delay needs to be computed over a
period of last few minutes instead of since the start of connection.
The tradeoff is: for longer intervals, base is more accurate; for
shorter intervals, reaction to route changes is faster.

A convenient way to implement an approximate minimum over last N
minutes is to keep separate minima for last N+1 minutes (last one for
the partial current minute).

4.13. Timestamp errors TOC

One-way delay measurement needs to deal with timestamp errors. We'll
use the same locally linear clock model as Network Time Protocol (NTP).
This model is valid for any differentiable clocks. The clock will thus
have a fixed offset from the true time and a skew. We'll consider what
we need to do about the offset and the skew separately.

4.13.1. Clock offset TOC

First, consider the case of zero skew. The offset of each of the two
clocks shows up as a fixed error in one-way delay measurement. The
difference of the offsets is the absolute error of the one-way delay
estimate. We won't use this estimate directly, however. We'll use the
difference between that and a base delay. Because the error (difference
of clock offsets) is the same for the current and base delay, it
cancels from the queuing delay estimate, which is what we'll use. Clock
offset is thus irrelevant to the design.

4.13.2. Clock skew TOC

Now consider the skew. For a given clock, skew manifests in a linearly
changing error in the time estimate. For a given pair of clocks, the
difference in skews is the skew of the one-way delay estimate. Unlike
the offset, this no longer cancels in the computation of the queuing
delay estimate. On the other hand, while the offset could be huge, with
some clocks off by minutes or even hours or more, the skew is typically
not too bad. For example, NTP is designed to work with most clocks, yet
it gives up when the skew is more than 500 parts per million (PPM).
Typical skews of clocks that have never been trained seem to often be
around 100-200 PPM. Previously trained clocks could have 10-20 PPM skew
due to temperature changes. A 100-PPM skew means accumulating 6
milliseconds of error per minute. The expiration of base delay related
to route changes mostly takes care of clock skew. A technique to
specifically compute and cancel it is trivially possible and involves
tracking base delay skew over a number of minutes and then correcting
for it, but usually isn't necessary, unless the target is unusually
low, the skew is unusually high, or the base interval is unusually
long. It is not further described in this document.

4.14. Noise filtering TOC

In addition to timestamp errors, one-way delay estimate includes an
error of measurement when part of the time measured was spent inside
the sending or the receiving machines. Different views are possible on
the nature of this delay: one view holds that, to the extent this delay
internal to a machine is not constant, it is a variety of queuing delay
and nothing needs to be done to detect or eliminate it; another view
holds that, since this delay does not have the same characteristics as
queuing delay induced by a fixed-capacity bottleneck, it is more
correctly classified as non-constant processing delay and should be
filtered out. In practice, this doesn't seem to matter very much one
way or the other. The way to filter the noise out is to observe, again,
that the noise is always nonnegative and so a good filter is the
minimum of several recent delay measurements.

4.15. Safety of LEDBAT T0C

LEDBAT is most aggressive when its queuing delay estimate is most wrong
and is as low as it can be. Queuing delay estimate is nonnegative,
therefore the worst possible case is when somehow the estimate is
always returned as zero. In this case, LEDBAT will ramp up as fast as

TCP and halve the rate on loss. Thus, in case of worst possible failure
of estimates, LEDBAT will behave identically to TCP. This provides an
extra safety net.

5. LEDBAT congestion control TOC

Consider two parties, a sender and a receiver, with the sender having
an unlimited source of data to send to the receiver and the receiver
merely acknowledging the data. (In an actual protocol, it's more
convenient to have bidirectional connections, but unidirectional
abstraction suffices to describe the congestion control mechanism.)
Consider a protocol that uses packets of equal size and acknowledges
each of them separately. (Variable-sized packets and delayed
acknowledgements are possible and are being implemented, but complicate
the exposition.)

Assume that each data packet contains a header field timestamp. The
sender puts a timestamp from its clock into this field. Further assume
that each acknowledgement packet contains a field delay. It is shown
below how it is populated.

Slow start behavior is unchanged in LEDBAT. Note that rampup is faster
in slow start than during congestion avoidance and so very conservative
implementations MAY skip slow start altogether.

As far as congestion control is concerned, the receiver 1is then very
simple and operates as follows, using a pseudocode:

on data_packet:
remote_timestamp = data_packet.timestamp
acknowledgement.delay = local_timestamp() - remote_timestamp
fill in other fields of acknowledgement
acknowlegement.send()

The sender actually operates the congestion control algorithm and acts,
in first approximation, as follows:

on acknowledgement:
current_delay = acknowledgement.delay
base_delay = min(base_delay, current_delay)
gqueuing_delay = current_delay - base_delay
off_target = TARGET - queuing_delay
cwnd += GAIN * off_target / cwnd

The pseudocode above is a simplification and ignores noise filtering
and base expiration. The more precise pseudocode that takes these
factors into account is as follows and MUST be followed:

on acknowledgement:
delay = acknowledgement.delay
update_base_delay(delay)
update_current_delay(delay)
queuing_delay = current_delay() - base_delay()
off_target = TARGET - queuing_delay
cwnd += GAIN * off_target / cwnd

update_current_delay(delay)
Maintain a list of NOISE_FILTER last delays observed.
forget the earliest of NOISE_FILTER current_delays
add delay to the end of current_delays

current_delay()
min(the NOISE_FILTER delays stored by update_current_delay)

update_base_delay(delay)
Maintain BASE_HISTORY min delays. Each represents a minute.
if round_to_minute(now) != round_to_minute(last_rollover)
last_rollover = now
forget the earliest of base delays
add delay to the end of base_delays
else
last of base_delays = min(last of base_delays, delay)

base_delay()
min(the BASE_HISTORY min delays stored by update_base_delay)

TARGET parameter MUST be set to 25 milliseconds and GAIN MUST be set so
that max rampup rate is the same as for TCP. BASE_HISTORY MUST be no
less than 2 and SHOULD NOT be more than 10. NOISE_FILTER SHOULD be
tuned so that it is at least 1 and no more than cwnd/2.

6. Security Considerations TOC

An network on the path might choose to cause higher delay measurements
than the real queuing delay so that LEDBAT backs off even when there's
no congestion present. Shaping of traffic into an artificially narrow
bottleneck can't be counteracted, but faking timestamp field can and
SHOULD. A protocol using the LEDBAT congestion control SHOULD
authenticate the timestamp and delay fields, preferably as part of
authenticating most of the rest of the packet, with the exception of
volatile header fields. The choice of the authentication mechanism that
resists man-in-the-middle attacks is outside of scope of this document.

7. Normative References

[RFC2119] Bradner,

S., “Key words for use in RFCs to Indicate

TOC

Requirement Levels,” BCP 14, RFC 2119, March 1997 (TXT,

HTML, XML).

Author's Address

Email:
URTI:

Stanislav Shalunov
BitTorrent Inc

612 Howard St, Suite 400
San Francisco, CA 94105
USA
shalunov@bittorrent.com

http://shlang.com

T0C

mailto:sob@harvard.edu
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc2119
http://www.rfc-editor.org/rfc/rfc2119.txt
http://xml.resource.org/public/rfc/html/rfc2119.html
http://xml.resource.org/public/rfc/xml/rfc2119.xml
mailto:shalunov@bittorrent.com
http://shlang.com

	Low Extra Delay Background Transport (LEDBAT)draft-shalunov-ledbat-congestion-00.txt
	Status of this Memo
	Copyright Notice
	Abstract
	Table of Contents
	1. Requirements notation
	2. Introduction
	3. LEDBAT design goals
	4. LEDBAT motivation
	4.1. Simplest network topology
	4.2. Extra delay
	4.3. Queuing delay target
	4.4. Need to measure delay
	4.5. Queing delay estimate
	4.6. Controller
	4.7. Max rampup rate same as TCP
	4.8. Halve on loss
	4.9. Yield to TCP
	4.10. Need for one-way delay
	4.11. Measuring one-way delay
	4.12. Route changes
	4.13. Timestamp errors
	4.13.1. Clock offset
	4.13.2. Clock skew
	4.14. Noise filtering
	4.15. Safety of LEDBAT
	5. LEDBAT congestion control
	6. Security Considerations
	7. Normative References
	Author's Address

