
Workgroup: RATS

Internet-Draft: draft-shaw-rats-rear-00

Published: 12 June 2020

Intended Status: Informational

Expires: 14 December 2020

Authors: A. Shaw

arm

H. Tschofenig

arm

S. Trofimov

arm

S. Frost

arm

T. Fossati

arm

Restful Attested Resources

Abstract

This memo describes a REST interface based on the RATS architecture

that can be used to retrieve attested system state, for example the

reading of a security critical sensor. The objective is to present a

common vocabulary of data formats and basic protocol transactions

that can be pieced together into a cohesive interface that is

capable of serving different attestation workflows.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 14 December 2020.

Copyright Notice

Copyright (c) 2020 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

1.1. Use Cases

1.2. Document Organisation

1.3. Conventions used in this document

2. Abstract Mechanism

2.1. Attester Interface

2.1.1. Resource Validation

2.2. Verifier Interface

2.2.1. Attestation Result Validation

2.3. Example Compositions

2.3.1. Background Check with Nonce-based Freshness

2.3.2. Background Check with Timestamp-based Freshness

2.3.3. Passport with Timestamp-based Freshness

2.3.4. Timestamp-based Uni-directional

3. REST Instantiation

3.1. Basic Data Formats

3.1.1. Resource

3.1.2. Nonce

3.1.3. Timestamp

3.1.4. Evidence

3.1.5. Attestation Result

3.2. Request and Response Payloads

3.2.1. Requesting an Attested Resource

3.2.2. Attested Resource

3.2.3. Request for Attestation Result

3.2.4. Verifier Response

3.3. Interaction Model

3.3.1. Channel Security Considerations

3.3.2. URLs

3.3.3. Methods

3.3.4. Multicast Support

3.3.5. Examples

4. Discovery

4.1. Resource Directory

4.1.1. Attested Resource Registration

4.1.2. Verifier Resource Registration

5. IANA Considerations

6. Privacy Considerations

7. Security Considerations

7.1. Model Architecture for the Origin

Acknowledgments

References

Normative References

Informative References

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Authors' Addresses

1. Introduction

This memo describes a REST [Fielding] interface based on the RATS

architecture [I-D.ietf-rats-architecture] that can be used to

retrieve attested system state, for example the reading of a

security critical sensor.

We present a simple vocabulary of data formats and basic protocol

transactions that can be pieced together into a cohesive interface

capable of serving different attestation workflows. At a minimum, we

want to cater for the "background check" and "passport" topological

models, and for freshness of attestation based on nonces as well as

timestamps.

The obvious advantage of sharing a uniform interface across

different actors is it creates an ecosystem in which variability is

minimised and so is the need to add complex and often fragile logics

into the deployed components, e.g., data format and protocol

translation. Besides, using the familiar REST toolbox provides

additional benefits in terms of developer friendliness as well as

code base and infrastructure reuse (e.g., web caching).

1.1. Use Cases

The primary use case is that of a device that needs to provide

application state to third parties with strong authenticity.

This is a common situation in critical infrastructure systems where

an actuator device needs some assurance that the sensing equipment

is in pristine state before acting on its signals. Here, the sensor

would expose its safety critical samples via an attested resource

whose authenticity can be verified by the actuator.

Another potential application is a fleet controller that needs to

know the current state of its dependent devices to inform its next

actions (e.g., scheduling a firmware update campaign). Here, the

dependent devices uniformly expose the same resource (e.g., the list

of currently installed software components) to the controller, which

can decide, based on the information provided, which devices need a

certain security patch.

Many more use cases exist.

¶

¶

¶

¶

¶

¶

¶

¶

1.2. Document Organisation

The remainder of this document describes:

An abstract protocol that allows a device to expose arbitrary

attested system state, which can be consumed by third parties

(Section 2);

An instantiation of said abstract protocol as a set of uniform

data formats and interaction primitives based on the REST

paradigm for both HTTP [RFC7230] and CoAP [RFC7252] (Section 3);

A way to advertise and discover said capability (Section 4).

1.3. Conventions used in this document

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

2. Abstract Mechanism

The protocol principals are the three RATS actors: the attester (A),

the relying party (RP) and the verifier (V).

It is assumed that A either directly owns a resource, r, or has a

direct trust relationship with the resource owner.

In the following, n and t are freshness indicators: n is an

initiator provided nonce, t is a timestamp sourced by the responder.

When using timestamp based freshness, producers' and consumers'

clocks MUST be synchronised.

2.1. Attester Interface

The interface to the Attester is illustrated in Figure 1.

X is any entity interacting with the Attester, typically a Relying

Party, which wants to retrieve an attested resource.

A function E(n_X, r, t_A) is used by A to compute an evidence report

binding the device status to the resource (r) together with the

freshness indicators n_X and t_A. Typically, only one of n_X or t_A

will be present.

E() outputs an EAT token [I-D.ietf-rats-eat], E, carrying a nonce

claim that is used as described in the following.

The binding between n_X, t_A and r is obtained by hashing their

concatenation, H(n_X || r || t_A), and storing the result in the

¶

*

¶

*

¶

* ¶

¶

¶

¶

¶

¶

¶

¶

¶

nonce claim which is then cryptographically signed by the Attester

as part of the produced evidence, E. The presence of any freshness

indicator (i.e., n_X or t_A) is optional. For the purpose of

computing E, a nil freshness indicator is replaced by the zero-

length string, "". If t_A != nil, then its value needs to be sent

back to the requester as an additional explicit protocol entity.

Optionally, an attestation result R computed on evidence E MAY be

returned by an Attester that acts as a forwarder for a Verifier.

n l

X
X

rn , n =

ni

r (, , (, A l=)

A
_ l

)_X i_A Et_ E , t R

n =

i

Figure 1: Attester Interface

2.1.1. Resource Validation

Given an Appraisal Policy for Evidence APE and an Appraisal Policy

for Attestation Result APR, X accepts r if and only if:

E | APE => true

E.nonce == H(n_X || r || t_A)

If R(E)!=nil, two further conditions MUST hold:

R(E) | APR => true

R.nonce == H("" || E || "")

Note that not all the appraisal operations are computed directly by

X. For example, E | APE is typically delegated to a trusted

Verifier.

2.2. Verifier Interface

The interface to the Verifier is illustrated in Figure 2.

Y is any entity interacting with the Verifier, e.g., a Relying Party

or an Attester, which supplies an evidence and receives an

attestation result.

The function R(n_Y, E, t_V) is used by V to compute the attestation

result over E using an implicit Appraisal Policy for Evidence APE.

The result is cryptographically signed by V and bound to any

available freshness indicator.

¶

¶

¶

¶

* ¶

* ¶

¶

* ¶

* ¶

¶

¶

¶

¶

R() outputs an EAT token [I-D.ietf-rats-eat], R, carrying at a

minimum:

a result claim carrying a boolean value that reflects the

validity of the submitted evidence given the Appraisal Policy for

Evidence used by the Verifier;

a nonce claim that is used as described in the following.

The token MAY contain further information associated with the

evidence validation process.

The binding between n_Y, t_V and E is obtained by hashing their

concatenation, H(n_Y || E || t_V), and storing the result in the

nonce claim which is then cryptographically signed by the Verifier

as part of the produced attestation result, R. The presence of any

freshness indicator (i.e., n_Y or t_V) is optional. For the purpose

of computing R, a nil freshness indicator is replaced by the zero-

length string, "".

,

, ,

=

i , _

_ l

_V E

Y
n

_

E

l V(n

V
Y n

t =n)R

i

Y t

Figure 2: Verifier Interface

2.2.1. Attestation Result Validation

Given an Appraisal Policy for Attestation Result APR, Y accepts R if

and only if:

R(E) | APR => true

R.nonce == H(n_Y || E || t_V)

2.3. Example Compositions

2.3.1. Background Check with Nonce-based Freshness

¶

*

¶

* ¶

¶

¶

¶

¶

* ¶

* ¶

P
_

E

,

n)il

r n ,

R

E X

,

l)

ni

X

, (n

(l

V

_ r i

,

A R
n

E

Figure 3: Background Check with Nonce-based Freshness

RP accepts r if and only if:

E | APE => true

E.nonce == H(n_X || r || "")

R | APR => true, or equivalently R.result == true

R.nonce == H("" || E || "")

2.3.2. Background Check with Timestamp-based Freshness

,

R
i

(

l

,

n l

_ E

(

i

E

i , il

n

n ,

n)

, A)A t

R E

A P

, l r _

V

r t

Figure 4: Background Check with Timestamp-based Freshness

RP accepts r if and only if:

R | APR => true, or equivalently R.result == true

R.nonce == H("" || E || "")

E | APE => true

E.nonce == H("" || r || t_A)

2.3.3. Passport with Timestamp-based Freshness

The idea is that whenever the state of r changes, the Attester will

"self-issue" an evidence for the changed resource using a locally

sourced timestamp (t_A) as the freshness indicator.

¶

¶

* ¶

* ¶

* ¶

* ¶

¶

¶

* ¶

* ¶

* ¶

* ¶

¶

, r(

l)

i

_

,

E

t
R

_ t

E

,
n

_A

A
i

r

r n

,

P
l

A ,
,

A i ,

R(n

n

E

i

t
E

A

V

l

)

i

R

(i _
(l

,

,

n

E l,
ni)

t

r

,

l

l

n

,)
,

Figure 5: Passport with Timestamp-based Freshness

RP accepts r if and only if:

R | APR => true

R.nonce == H("" || E || "")

E.nonce == H("" || r || t_A)

2.3.4. Timestamp-based Uni-directional

If the transport allows it, timestamp-based uni-directional

attestation protocols, e.g., TUDA [I-D.birkholz-rats-tuda], can also

be constructed from the presented primitives. For example, using

CoAP Observe [RFC7641] the interaction pattern in Figure 6, with an

initial trigger and subsequent automatic updates on resource status

change, can be naturally implemented.

¶

¶

* ¶

* ¶

* ¶

¶

A (n

[

A

i

1

(

n A)

l

A

.

,

n

,

]

n

l

r t _

.

E_

A

A E A

[

_

, t

r

R

r

i

(_

, E i

]

_

, t

,

, ni r

P

r

_)

, _ t

t _)

.

.

i

_ 1

.

t

n

l, i,

.

,

_ _

, _

r l

Figure 6: Timestamp-based Uni-directional

3. REST Instantiation

Four new MIME types are defined for the requests and responses among

the three actors that have been identified in the abstract

mechanism. The MIME types are composed of the basic data types

defined in Section 3.1.

3.1. Basic Data Formats

The resource to be attested;

A caller provided nonce;

A locally sourced timestamp;

The evidence produced by the Attester, and

The attestation result produced by the Verifier.

These basic types are described by the following CDDL rules, which

reuse the eat-token definition from [I-D.ietf-rats-eat].

3.1.1. Resource

An "ANY DEFINED BY"-like payload with type set to the original MIME

type, either Content-Type (HTTP) or Content-Format (CoAP), of the

resource representation.

3.1.2. Nonce

¶

¶

* ¶

* ¶

* ¶

* ¶

* ¶

¶

¶

resource-type = (

 typ tstr / uint,

 val any,

)

¶

nonce-type = bstr¶

3.1.3. Timestamp

3.1.4. Evidence

An EAT token signed by the attester bound to the relying party

request and the attested resource state.

3.1.5. Attestation Result

An EAT token signed by the verifier and bound to an evidence.

3.2. Request and Response Payloads

3.2.1. Requesting an Attested Resource

MIME type application/rats-attested-resource-request

CoAP Content-Format: TBD-rats-attested-resource-request-CT

This type is used in a POST request to an attested resource.

3.2.2. Attested Resource

MIME type application/rats-attested-resource

CoAP Content-Format: TBD-rats-attested-resource-CT

timestamp-type = tdate / time¶

¶

evidence-type = eat-token¶

¶

attestation-result-type = eat-token¶

¶

¶

nonce-key = 0 / "n_X"

attested-resource-request = {

 ? nonce-key => nonce-type,

}

¶

¶

¶

¶

resource-key = 1 / "r"

t-A-key = 2 / "t_A"

evidence-key = 3 / "E"

attestation-result-key = 4 / "R"

attested-resource = {

 resource-key => resource-type,

 ? t-A-key => timestamp-type,

 evidence-key => evidence-type,

 ? attestation-result-key => attestation-result-type,

}

¶

This type is used in a successful response to a request to an

attested resource endpoint.

Note that an attestation result is only present when the Passport

model is used.

Note also that the fact that the inner resource representation is

embedded within the application/rats-attested-resource envelope

suppresses the ability to do content negotiation on it, i.e., the

inner representation format is unilaterally chosen by the origin.

3.2.3. Request for Attestation Result

MIME type application/rats-attestation-result-request

CoAP Content-Format: TBD-rats-attestation-result-request-CT

This type is used in a POST request to a verifier endpoint.

3.2.4. Verifier Response

MIME type application/rats-attestation-result-response

CoAP Content-Format: TBD-rats-attestation-result-response-CT

This type is used in a successful response to a POST request to a

verifier endpoint.

3.3. Interaction Model

(For now) we only describe a synchronous, RPC-like transaction

model, including the slight variant with a one-off trigger presented

in Section 2.3.4.

This might be not suited for devices that sit behind a NAT/firewall

box, or those that have to go through extended sleep cycles in order

¶

¶

¶

¶

¶

n-Y-key = 5 / "n_Y"

attestation-result-request = {

 ? n-Y-key => nonce-type,

 evidence-key => evidence-type,

}

¶

¶

¶

¶

t-V-key = 6 / "n_Y"

attestation-result-response = {

 ? t-V-key => timestamp-type,

 attestation-result-key => attestation-result-type,

}

¶

¶

¶

to save energy. For this kind of devices, we assume in-network

support in the form of store-and-forward nodes (e.g., LwM2M queue

mode, specialised border routers, etc.).

3.3.1. Channel Security Considerations

Unless the channel can be considered free from passive and active

attackers at all times, all transactions are to be carried over a

secure transport (i.e., HTTPS or COAPS).

3.3.2. URLs

In the spirit of [RFC7320], no specific URL format is mandated. An

application is free to specify the URL scheme of its liking for the

exposed attested resources.

When an origin exposes the same underlying state both as nonce- and

timestamp-based resources, these are identified by two separate

URIs.

The verifier function is exposed via an URI that accepts evidence in

form of application/rats-attestation-result-request typed requests

and returns attestation results in form of application/rats-

attestation-result-response typed responses.

3.3.3. Methods

As per usual REST conventions, the guiding principles are:

POST is used for all requests involving a payload;

GET is used for requests without a payload.

The only example of the latter is when retrieving an "Attested

Resource" using the timestamp-based freshness model. Any other

request uses POST.

3.3.3.1. Response Codes and Caching

The possible status codes are:

HTTP

200 (OK) for successful GET. This response is cacheable;

origins can use Cache-Control (max-age) and ETag headers in

order to instruct on-path caches.

201 (Created) for a successful POST. This response is not

cacheable.

¶

¶

¶

¶

¶

¶

* ¶

* ¶

¶

¶

* ¶

-

¶

-

¶

CoAP

2.05 (Content) for successful GET. This response is cacheable;

origins can use Max-Age and ETag Options to instruct on-path

caches;

2.01 (Created) for successful POST. This response is not

cacheable.

Otherwise, a suitable error response (i.e., HTTP 4xx/5xx, CoAP 4.nn/

5.nn) is returned.

3.3.4. Multicast Support

TODO (This is a CoAP only feature.)

3.3.5. Examples

A few examples are given to illustrate the different interaction

models using both CoAP and HTTP transports.

3.3.5.1. Background Check with Nonce Based Freshness

RP - Attester (CoAP)

RP - Verifier (HTTP)

* ¶

-

¶

-

¶

¶

¶

¶

* ¶

 >> Request:

 POST coap://device.example/my-attested-resource

 Content-Format: TBD-application/rats-attested-resource-request-CT

 Accept: application/rats-attested-resource

 Payload:

 {

 "n_X": "bm9uY2Uh"

 }

 << Response:

 2.01 Created

 ETag: "xyzzy"

 Content-format: TBD-application/rats-attested-resource-CT

 Payload:

 {

 "r" : {

 "typ": "text/plain",

 "val": "foobar"

 },

 "E": "eyJhbGciO...RfrKmTWk"

 }

¶

* ¶

3.3.5.2. Background Check with Timestamp Based Freshness

RP - Attester (CoAP) with POST

RP - Attester (CoAP) with GET

 >> Request:

 POST /my-verify

 Host: verifier.example

 Content-Type: application/rats-attestation-result-request

 Accept: application/rats-attestation-result-response

 {

 "E": "eyJhbGciO...RfrKmTWk"

 }

 << Response:

 HTTP/1.1 201 Created

 ETag: "abccb"

 Content-format: application/rats-attestation-result-response

 Payload:

 {

 "R": "eyJhbGciO...8j5EDGYc"

 }

¶

* ¶

 >> Request:

 POST coap://device.example/my-attested-resource

 Content-Format: TBD-application/rats-attested-resource-request-CT

 Accept: TBD-application/rats-attested-resource-CT

 Payload:

 { }

 << Response:

 2.01 Created

 ETag: "xyzzy"

 Content-format: TBD-application/rats-attested-resource-CT

 Payload:

 {

 "r" : {

 "typ": "text/plain",

 "val": "foobar"

 },

 "t_A": "2020-04-01T21:02:31Z",

 "E": "eyJhbGciO...z0ikw9Aa"

 }

¶

* ¶

RP - Verifier (HTTP) is the same as Section 3.3.5.1.

3.3.5.3. Passport Model

Attester - Verifier (CoAP)

Relying Party - Attester (CoAP) with POST

 >> Request:

 GET coap://device.example/my-attested-resource

 Accept: TBD-application/rats-attested-resource-CT

 << Response:

 2.05 Content

 ETag: "xyzzy"

 Max-Age: 3600

 Content-format: TBD-application/rats-attested-resource-CT

 Payload:

 {

 "r" : {

 "typ": "text/plain",

 "val": "foobar"

 },

 "t_A": "2020-04-01T21:02:31Z",

 "E": "eyJhbGciO...z0ikw9Aa"

 }

¶

* ¶

* ¶

 >> Request:

 POST coap://verifier.example/my-verify

 Content-Format: application/rats-attestation-result-request

 Accept: application/rats-attestation-result-response

 Payload:

 {

 "E": "eyJhbGciO...RfrKmTWk"

 }

 << Response:

 2.01 Created

 ETag: "jkllk"

 Content-format: application/rats-attestation-result-response

 Payload:

 {

 "R": "eyJhbGciO...Z0IKW9aA"

 }

¶

* ¶

Relying Party - Attester (CoAP) with GET

 >> Request:

 POST coap://device.example/my-attested-resource

 Content-Format: TBD-application/rats-attested-resource-request-CT

 Accept: TBD-application/rats-attested-resource-CT

 Payload:

 { }

 << Response:

 2.01 Created

 ETag: "qwerty"

 Content-format: TBD-application/rats-attested-resource-CT

 Payload:

 {

 "r": {

 "type": "text/plain",

 "val": "foobar"

 },

 "t_A": "2020-04-01T21:02:31Z",

 "E": "eyJhbGciO...RfrKmTWk",

 "R": "eyJhbGciO...Z0IKW9aA"

 }

¶

* ¶

 >> Request:

 GET coap://device.example/my-attested-resource

 Accept: TBD-application/rats-attested-resource-CT

 << Response:

 2.05 Content

 ETag: "qwerty"

 Max-Age: 3600

 Content-format: TBD-application/rats-attested-resource-CT

 Payload:

 {

 "r": {

 "type": "text/plain",

 "val": "foobar"

 },

 "t_A": "2020-04-01T21:02:31Z",

 "E": "eyJhbGciO...RfrKmTWk",

 "R": "eyJhbGciO...Z0IKW9aA"

 }

¶

4. Discovery

4.1. Resource Directory

The following describes the new link format attribute values needed

for registering attested resources as well as verification endpoints

to a Resource Directory [I-D.ietf-core-resource-directory].

The same attribute values can be used by RD clients to discover

attestation related resources.

4.1.1. Attested Resource Registration

An attested resource is registered with:

an interface description (if=) with value rats.if.timestamp or

rats.if.nonce depending on the supported freshness model, which

determines the access method (i.e., POST+nonce vs GET);

a content format (ct=) with value "TBD-application/rats-attested-

resource-CT";

an inner content format (ict=) that reflects the type field of

the returned resource;

a resource type (rt=) that reflects the nature of the inner

resource.

If a resource has both a "plain" and an "attested" variant, then the

link value corresponding to the "attested" resource can be

associated to its "plain" twin by means of the link relationship

attested-variant.

TBD: Should we have rats.if.timestamp variants for GET and POST?

Alternative includes: 1) let the client probe and server return

405/4.05 if the requested variant is not supported; 2) add another

attribute that explicitly states which request methods are

supported.

4.1.1.1. Examples

The following example shows a registrant endpoint with the name

"node1" registering an attested heart rate sensor resource to an RD.

The location /rd is an example RD location discovered in a previous

.well-known/core query.

¶

¶

¶

*

¶

*

¶

*

¶

*

¶

¶

¶

¶

¶

The following example shows a registrant endpoint with the name

"node1" registering a temperature sensor resource along with its

attested twin to an RD.

The attested-variant link relation establishes the semantics of the

link between /sensors/temp and /sensors/attested-temp: the latter

being an attested version of the former. Note, in particular, that

the resource type (rt=) of the linked resource is inherited by the

attested twin. Missing an explicit inner content format (ict=) the

content type of the inner resource representation can be assumed to

be that of the linked resource. The interface description (if=)

rats.if.nonce says that the access to the attested resource happens

by supplying a nonce through a POST.

 >> Request:

 POST /rd?ep=node1 HTTP/1.1

 Host: rd.example

 Content-Type: application/link-format

 </sensors/attested-heartrate>;

 if="rats.if.timestamp";

 rt="heart-rate-zoladz";

 ct=TBD-application/rats-attested-resource-CT;

 ict=0

 << Response:

 HTTP/1.1 201 Created

 Location: /rd/4520

¶

¶

¶

 >> Request:

 POST /rd?ep=node1 HTTP/1.1

 Host: rd.example

 Content-Type: application/link-format

 </sensors/temp>;

 ct=41;

 rt="temperature-c";

 if="sensor",

 </sensors/attested-temp>;

 anchor="/sensors/temp";

 rel="attested-variant";

 if="rats.if.nonce";

 ct=TBD-application/rats-attested-resource-CT;

 ict=41

 << Response:

 HTTP/1.1 201 Created

 Location: /rd/4521

¶

4.1.2. Verifier Resource Registration

A Verifier resource is registered with:

An rt with value rats.verifier;

A ct with value TBD-application/rats-attestation-result-response-

CT

4.1.2.1. Examples

5. IANA Considerations

TODO

6. Privacy Considerations

TODO

7. Security Considerations

7.1. Model Architecture for the Origin

The model architecture for the origin of the attested resource is

illustrated in Figure 7. The REST client (an user agent of a relying

party or verifier) interfaces directly with a REST front-end (a CoAP

or HTTP server stack) running in the Rich Execution Environment

(REE), for example a Linux operating system. The REST front-end is

paired with a back-end Trusted Application (TA) running in the

Trusted Execution Environment (TEE). The TA has exclusive control

over some "resource" (e.g., a sensor that feeds back into some kind

of critical infrastructure control system) and can talk to the

attestation service hosted inside the TEE to request EAT tokens.

In this model, it is critical that the attestation service can only

be used by the intended TA or, failing that, that the identity of

the calling TA can be securely proved to the relying party or

¶

* ¶

*

¶

 >> Request:

 POST /rd?ep=node1 HTTP/1.1

 Host: rd.example

 Content-Type: application/link-format

 </my-verifier>;

 ct=application/rats-attestation-result-response;

 rt="rats.verifier"

 << Response:

 HTTP/1.1 201 Created

 Location: /rd/4522

¶

¶

¶

¶

[I-D.ietf-core-resource-directory]

[I-D.ietf-rats-architecture]

[I-D.ietf-rats-eat]

[RFC2119]

verifier. An example of the latter is the Client ID claim used in

PSA attestation [I-D.tschofenig-rats-psa-token].

e i

r
- n

n

ET

r
c
E T
e

s c

o

RE

b n

E

v
o

a k e
l

e

E T c
f T

a

E

S
n o A

t s

S c
r d

-
t

a

R e
n

it

i t e

t

R d es

r

u

t
e

Figure 7: Model Security Architecture

Acknowledgments

TBD

References

Normative References

Shelby, Z., Koster, M., Bormann, C., Stok, P., and C.

Amsuess, "CoRE Resource Directory", Work in Progress,

Internet-Draft, draft-ietf-core-resource-directory-24, 9

March 2020, <http://www.ietf.org/internet-drafts/draft-

ietf-core-resource-directory-24.txt>.

Birkholz, H., Thaler, D., Richardson, M., Smith, N., and

W. Pan, "Remote Attestation Procedures Architecture",

Work in Progress, Internet-Draft, draft-ietf-rats-

architecture-04, 21 May 2020, <http://www.ietf.org/

internet-drafts/draft-ietf-rats-architecture-04.txt>.

Mandyam, G., Lundblade, L., Ballesteros, M., and

J. O'Donoghue, "The Entity Attestation Token (EAT)", Work

in Progress, Internet-Draft, draft-ietf-rats-eat-03, 20

February 2020, <http://www.ietf.org/internet-drafts/

draft-ietf-rats-eat-03.txt>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

¶

¶

¶

http://www.ietf.org/internet-drafts/draft-ietf-core-resource-directory-24.txt
http://www.ietf.org/internet-drafts/draft-ietf-core-resource-directory-24.txt
http://www.ietf.org/internet-drafts/draft-ietf-rats-architecture-04.txt
http://www.ietf.org/internet-drafts/draft-ietf-rats-architecture-04.txt
http://www.ietf.org/internet-drafts/draft-ietf-rats-eat-03.txt
http://www.ietf.org/internet-drafts/draft-ietf-rats-eat-03.txt

[RFC7230]

[RFC7252]

[RFC7320]

[RFC7641]

[RFC8174]

[Fielding]

[I-D.birkholz-rats-tuda]

[I-D.tschofenig-rats-psa-token]

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Fielding, R., Ed. and J. Reschke, Ed., "Hypertext

Transfer Protocol (HTTP/1.1): Message Syntax and

Routing", RFC 7230, DOI 10.17487/RFC7230, June 2014,

<https://www.rfc-editor.org/info/rfc7230>.

Shelby, Z., Hartke, K., and C. Bormann, "The Constrained

Application Protocol (CoAP)", RFC 7252, DOI 10.17487/

RFC7252, June 2014, <https://www.rfc-editor.org/info/

rfc7252>.

Nottingham, M., "URI Design and Ownership", BCP 190, RFC

7320, DOI 10.17487/RFC7320, July 2014, <https://www.rfc-

editor.org/info/rfc7320>.

Hartke, K., "Observing Resources in the Constrained

Application Protocol (CoAP)", RFC 7641, DOI 10.17487/

RFC7641, September 2015, <https://www.rfc-editor.org/

info/rfc7641>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Informative References

Fielding, R., "Architectural Styles and the Design of

Network-based Software Architectures", Ph.D.

Dissertation, University of California, Irvine, 2000,

<http://www.ics.uci.edu/~fielding/pubs/dissertation/

fielding_dissertation.pdf>.

Fuchs, A., Birkholz, H., McDonald, I., and C. Bormann,

"Time-Based Uni-Directional Attestation", Work in

Progress, Internet-Draft, draft-birkholz-rats-tuda-02, 9

March 2020, <http://www.ietf.org/internet-drafts/draft-

birkholz-rats-tuda-02.txt>.

Tschofenig, H., Frost, S., Brossard, M., Shaw, A., and T.

Fossati, "Arm's Platform Security Architecture (PSA)

Attestation Token", Work in Progress, Internet-Draft,

draft-tschofenig-rats-psa-token-05, 6 March 2020,

<http://www.ietf.org/internet-drafts/draft-tschofenig-

rats-psa-token-05.txt>.

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc7230
https://www.rfc-editor.org/info/rfc7252
https://www.rfc-editor.org/info/rfc7252
https://www.rfc-editor.org/info/rfc7320
https://www.rfc-editor.org/info/rfc7320
https://www.rfc-editor.org/info/rfc7641
https://www.rfc-editor.org/info/rfc7641
https://www.rfc-editor.org/info/rfc8174
http://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf
http://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf
http://www.ietf.org/internet-drafts/draft-birkholz-rats-tuda-02.txt
http://www.ietf.org/internet-drafts/draft-birkholz-rats-tuda-02.txt
http://www.ietf.org/internet-drafts/draft-tschofenig-rats-psa-token-05.txt
http://www.ietf.org/internet-drafts/draft-tschofenig-rats-psa-token-05.txt

Authors' Addresses

Adrian Shaw

arm

Email: Adrian.Shaw@arm.com

Hannes Tschofenig

arm

Email: Hannes.Tschofenig@arm.com

Sergei Trofimov

arm

Email: Sergei.Trofimov@arm.com

Simon Frost

arm

Email: Simon.Frost@arm.com

Thomas Fossati

arm

Email: Thomas.Fossati@arm.com

mailto:Adrian.Shaw@arm.com
mailto:Hannes.Tschofenig@arm.com
mailto:Sergei.Trofimov@arm.com
mailto:Simon.Frost@arm.com
mailto:Thomas.Fossati@arm.com

	Restful Attested Resources
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Use Cases
	1.2. Document Organisation
	1.3. Conventions used in this document

	2. Abstract Mechanism
	2.1. Attester Interface
	2.1.1. Resource Validation

	2.2. Verifier Interface
	2.2.1. Attestation Result Validation

	2.3. Example Compositions
	2.3.1. Background Check with Nonce-based Freshness
	2.3.2. Background Check with Timestamp-based Freshness
	2.3.3. Passport with Timestamp-based Freshness
	2.3.4. Timestamp-based Uni-directional

	3. REST Instantiation
	3.1. Basic Data Formats
	3.1.1. Resource
	3.1.2. Nonce
	3.1.3. Timestamp
	3.1.4. Evidence
	3.1.5. Attestation Result

	3.2. Request and Response Payloads
	3.2.1. Requesting an Attested Resource
	3.2.2. Attested Resource
	3.2.3. Request for Attestation Result
	3.2.4. Verifier Response

	3.3. Interaction Model
	3.3.1. Channel Security Considerations
	3.3.2. URLs
	3.3.3. Methods
	3.3.3.1. Response Codes and Caching

	3.3.4. Multicast Support
	3.3.5. Examples
	3.3.5.1. Background Check with Nonce Based Freshness
	3.3.5.2. Background Check with Timestamp Based Freshness
	3.3.5.3. Passport Model

	4. Discovery
	4.1. Resource Directory
	4.1.1. Attested Resource Registration
	4.1.1.1. Examples

	4.1.2. Verifier Resource Registration
	4.1.2.1. Examples

	5. IANA Considerations
	6. Privacy Considerations
	7. Security Considerations
	7.1. Model Architecture for the Origin

	Acknowledgments
	References
	Normative References
	Informative References

	Authors' Addresses

