INTERNET DRAFT 10 March 2000
Expires: 10 September 2000

Sean Sheedy
nCUBE Corporation

RTSP Extensions:
Additional Transports and Performance Enhancements

draft-sheedy-mmusic-rtsp-ext-00.txt

Status of this memo

This document is an Internet-Draft and is in full
conformance with all provisions of Section 10 of
RFC2026.

Internet-Drafts are working documents of the
Internet Engineering Task Force (IETF), its areas,
and its working groups. Note that other groups may
also distribute working documents as Internet-
Drafts.

Internet-Drafts are draft documents valid for a
maximum of six months and may be updated, replaced,
or obsoleted by other documents at any time. It is
inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in
progress."

The list of current Internet-Drafts can be accessed
at http://www.ietf.org/ietf/lid-abstracts.txt

The list of Internet-Draft Shadow Directories can
be accessed at http://www.ietf.org/shadow.html.

Abstract

This document proposes enhancements to the RTSP
protocol for broadcast quality non-IP based video-
on-demand applications. Additional transports for
non-IP delivery of media streams are proposed,
along with control extensions to reduce latency.
These proposals are based on nCUBE Corporation's
and Oracle Corporation's experience with their

https://datatracker.ietf.org/doc/html/draft-sheedy-mmusic-rtsp-ext-00.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

existing media servers.

Sheedy [Page 1]

INTERNET DRAFT 10 March 2000

1 Introduction

NnCUBE Corporation has developed a media server using the RTSP
standard [1] for its video-on-demand (VOD) platform, the MediaCUBE
4. The platform is designed for large-scale deployments of
broadcast quality interactive video. It is being used currently in
several commercial deployments worldwide, with many more deployments
scheduled in the near future.

NCUBE's experience to date with the RTSP protocol has been positive.
The basic protocol is flexible enough to work in a large-scale,
high-bandwidth environment. The HTTP-like syntax has proven easy
for client developers to implement. The flexibility provided by the
syntax and the facilities for extensions have proven invaluable in
deploying RTSP in an environment somewhat different from that for
which it was originally designed.

A typical broadcast quality environment differs from the Internet
environment in several ways:

- Transports and lower transports

Although IP protocols are often used for control connections,
broadcast quality video-on-demand installations often do not
use IP protocols (such as UDP and RTP) for the actual delivery
of a presentation (which is usually an aggregation of media
streams). Typically, MPEG-2 transport streams are carried on a
lower transport which natively supports MPEG-2, such as AALS5
(over ATM) or QAM.

- Multiplexing RTSP clients

Supporting non-RTSP clients (e.g., many currently-available set
top boxes) requires a bridging server that speaks the client's
native protocol and, in turn, acts as an RTSP client of the
media server. Such bridging servers typically make transport
address and bandwidth assignments for the clients, and often
need to coordinate these decisions with external hardware
devices such as QAM modulators and up converters.

- Limited capability clients

Video-on-demand clients in the home (such as specialized set
top boxes) are under tremendous price pressures. Consequently,
their capabilities are often much more limited than even low-
end general-purpose computers. Memory is typically very
limited (on the order of 8 megabytes), and the media streams
are discarded immediately once they have been decoded. Many

hardware decoders are sensitive to timing jitter and
discontinuities in video or audio elementary streams.

Sheedy [Page 2]

INTERNET DRAFT 10 March 2000

N

- Latency

Low latency, particularly for stream control requests such as
pause or fast forward, is critical to the satisfaction of many
home users of video-on-demand services. End users of a home
VOD service are a cross section of cable television customers,
and are often not computer savvy. Their standard of comparison
for the responsiveness of a media server is their VCR or DVD
player, not a computer web browser accessing the Internet.

NCUBE Corporation has added some extensions to the RTSP standard,
which address the requirements of this different environment [3].
These enhancements were developed in collaboration with Oracle
Corporation, who has also incorporated similar features in their
RTSP server [4]. The remainder of this document proposes a set of
enhancements to the RTSP standard based on both of these
implementations.

Transports, Profiles, and Lower Transports

Other media delivery mechanisms besides RTP are used in many
commercial video-on-demand deployments. To support this, new
transports, profiles, and lower transports in addition to the
current standard RTP/AVP/UDP are needed.

2.1 Transports

MPEG-2 is used extensively for high bandwidth video [5]. An
enhancement to the "transport-protocol" field in the "Transport"
header to support this is:

MP2T MPEG-2 Transport
The new syntax of "transport-protocol" would then be:

transport-protocol = "RTP" | "MP2T"

2.2 Lower Transports

Similarly, TCP or UDP are not always used as lower transports.
Enhancements to the "lower-transport" field are:

AAL5-PVC ATM permanent virtual circuit
AAL5-SVC ATM switched virtual circuit
ASI DVB Asynchronous Serial Interface (ASI)

QAM Quadrature Amplitude Modulation(QAM)

The new syntax of "lower-transport" would then be:

lower-transport = "TCP" | "UDP" | "AAL5-PVC" | "AAL5-SVC" |
"ASI" | IIQAMII

Sheedy [Page 3]

INTERNET DRAFT 10 March 2000

(Note that end user RTSP clients typically don't request a DVB-ASI
lower transport. This is primarily used by bridging servers that
are also controlling external hardware such as QAM modulators.)

This proposal makes no distinction between QAM64 and QAM256. Making
such a distinction may be desirable.

2.3 Profiles

Since AVP is intertwined with RTP, additional profiles are needed.
Enhancements to the "profile" file are:

H2221 The ITU H.222.1 standard for MPEG delivery over
ATM [6]. The default lower transport is AAL5-SVC.

DVBC The Digital Vvideo Broadcasting - Cable standard
[7]. The default lower transport is QAM.

The new syntax of "profile" would then be:
profile = "AVP" | "H2221" | "DVBC"
2.4 Transport/Profile/Lower-Transport Combinations

Only the following combinations of protocols, profiles, and lower
transports are meaningful:

MP2T/H2221/AAL5-PVC
MP2T/H2221/AAL5-SVC
MP2T/DVBC/QAM
MP2T/DVBC/ASI

2.5 Destinations

To handle the additional lower transport types, the syntax of the
"destination" transport parameter needs to be enhanced. 1In
particular, most lower transports in section 2.2 use addresses that
are not globally unique, but are unique only within a particular
physical channel. The destination "address" field should contain an
optional identifier string at the beginning to allow sufficiently
intelligent clients (such as bridging servers) to disambiguate
between physical channels.

The formal syntax for the expanded "destination" addresses is:

address [id-string ":"] type-address
= host

| atm-pvc-address

| atm-svc-address

type-address

| gam-address

id-string = 1*(ALPHA | DIGIT | "_")

Sheedy [Page 4]

INTERNET DRAFT 10 March 2000

(Note that QAM and DVB-ASI addressing are identical, and both are
covered by the "gam-address" rule.)

2.5.1 ATM PVC Address

The destination address for an ATM permanent virtual circuit is the
VPI and VCI of the client, specified in decimal:

atm-pvc-address = vpi "." vci
vpi = 1*5(DIGIT)
vci = 1*5(DIGIT)

For example, to use ATM permanent virtual circuits a client may
specify a Transport header like the following:

Transport: MP2T/H2221/AAL5-PVC;unicast;destination=atm00:0.40
2.5.2 ATM SVC Address

The destination address for an ATM switched virtual circuit is the
20-byte service access point address, specified in hexadecimal:

atm-svc-address = 20*20(HEX)

For example, to use ATM switched virtual circuits a client may
specify a Transport header like the following:

Transport: MP2T/H2221/AAL5-SVC;unicast;
destination=47000580ffel10000007T21a360b00204821490f01

Many vendors include dots (.) in service access point addresses. It
may be desirable to allow this.

2.5.3 QAM and DVB-ASI Addresses

The destination address for QAM or DVB-ASI is a server-specific
channel number (note that this is not the RF channel number) and
MPEG-2 program number specified in decimal:

gam-address = channel-number "." program-number
channel-number = 1*3(DIGIT)
program-number = 1*5(DIGIT)

For example, to use QAM a client may specify a Transport header like
the following:

Transport: MP2T/DVBC/QAM;unicast;destination=cim00:0.75

For example, to use DVB-ASI a client may specify a Transport header
like the following:

Transport: MP2T/DVBC/ASI;unicast;destination=dac00:0.75

Sheedy [Page 5]

INTERNET DRAFT 10 March 2000

2.6 Client Identification

[*M]

For most video-on-demand environments, clients cannot be allowed to
specify a transport destination address. 1In non-IP delivery
environments, they typically do not have sufficient knowledge of the
network topology to properly specify an address. In all
environments, allowing clients to choose an address presents
security problems. Further, in many non-IP delivery environments
(such as cable systems using QAM and DOCSIS), valid transport
addresses cannot be derived from the IP address of the client.

To resolve these problems, the client must be able to identify
itself to the media server. This can be accomplished by adding a
new Transport parameter, '"client". The argument to "client" is a
deployment-specific string that uniquely identifies a client.
Identity information included in the string may be, for example, a
smart card ID for a set top box and the optical node to which the
set top box is connected.

The formal syntax for the '"client" parameter is:

client = "client" "=" client-id
client-id token

Reuse of Transports

Typically, the setup and teardown of a transport are the most
expensive media server operations, both in terms of server loading
and client perceived latency. The Web browsing model of creating a
transport for each presentation works well in many Internet delivery
environments. In a non-IP delivery environment with dedicated media
delivery bandwidth, however, using a single transport for several
sequential presentations provides a better end user experience.

Allowing a single transport to handle multiple sequential
presentations requires extensions in the following areas:

- URI's

- Transport parameters

3.1 URI Enhancements

To allow a single transport to be used for different presentations,
the client may specify a different URI on a PLAY method request than
was used in the initial SETUP request. If a PLAY is requested with
a different URI than that most recently used in the session, the
presentation specified by the new URI will be played over the
existing session's transport.

For a PLAY request with a new URI to succeed, sufficient bandwidth
must already be available in the existing transport. This can be
reserved with an extension transport parameter on the initial SETUP
of the session ("bandwidth", described in section 3.2), or can be
allocated with a new SETUP request.

Sheedy [Page 6]

INTERNET DRAFT 10 March 2000

If a client uses queued PLAY requests with different URI's, it may
not be able to determine which presentation is active at any
particular time. To handle this case, an asterisk (*) for the URI
matches whatever presentation, if any, is currently active. Such a
wild card asterisk is legal for the following methods:

PLAY

PAUSE
TEARDOWN
GET_PARAMETER
SET_PARAMETER

3.2 bandwidth Transport Parameter

[

A client may use the "bandwidth" Transport parameter to reserve
bandwidth for a transport. 1Its argument is a decimal number
specifying the bandwidth to reserve in bits per second. If no
bandwidth parameter is given, it implies that the media server will
use the bit rate of the presentation specified in the SETUP
request's URI for the bandwidth of the transport.

The formal syntax for the "bandwidth" parameter is:
bandwidth = "bandwidth" "=" 1*DIGIT
PLAY Queue Enhancements

Requiring all new PLAY requests to be queued when another PLAY
request is active makes low-latency implementation of fast forward
and rewind difficult; it requires multiple requests to the media
server to stop the current PLAY and start the new one. Further, it
makes seamless transitions between normal and scaled play
impossible, since the current PLAY must be stopped, resulting in a
gap in the media delivery, before the new PLAY can be started.

Similarly, requiring all PAUSE requests to flush the queue of PLAY
requests is awkward. This forces a client to remember and reissue
all previously queued PLAY requests when it restarts a stream after
a PAUSE.

These problems can be resolved by allowing clients to specify the
type of queuing behavior they desire on each request. The proposed
mechanism uses two new headers:

Play-Now
No-Flush

4.1 Play-Now Header

A client may use the Play-Now header with either a SETUP or PLAY

method.

Sheedy [Page 7]

INTERNET DRAFT 10 March 2000
4.1.1 Play-Now with PLAY

When used in a PLAY request, this header indicates that the PLAY
operation should be performed immediately rather than queuing it.
Using Play-Now in a PLAY request causes any queued PLAY requests to
be discarded unless the No-Flush header is also included.

4.1.2 Play-Now with SETUP

When added to a SETUP request, this header indicates that the client
wants streaming to begin immediately (i.e., possibly even before the
SETUP response is sent to the client). This allows the client to
avoid waiting for the response from SETUP and then issuing a PLAY
command, but has some practical limitations.

Play-Now with SETUP is not useful in those environments where the

client requires information contained in the SETUP response before
it can start decoding the media stream. For example, if a set top
box needs the SETUP response to know which channel to tune to, it

will typically need to issue a separate PLAY command after it has

tuned to the proper channel.

If the Play-Now header is included in a SETUP request, Range and
Scale headers may also be included.

4.2 No-Flush Header

A client may use the No-Flush header with either a PAUSE or PLAY
method. When added to either request, it prevents queued PLAY
requests from being discarded.

4.3 Alternate Approach
An alternate approach to providing the same functionality would be

to define a single header with directives along the lines of the
Cache-Control header. An example of the syntax is:

Queue-Control = "Queue-Control" ":" queue-directive
*(";" queue-directive)
queue-directive = "play-now"
| "no-flush"

o

Server State Changes

Most clients need to track the state of the media server while the
server is streaming. The most critical state change to clients
occurs when the media server encounters the end of a presentation
(or the beginning when rewinding), and stops streaming. There are
currently no standard mechanisms for detecting this in the RTSP
specification. Problems clients encounter in the current

architecture include:

- Polling for the current media server state wastes network
bandwidth, and introduces unacceptable latencies in detecting
state transitions.

Sheedy [Page 8]

INTERNET DRAFT 10 March 2000

- In non-IP delivery environments, the transport typically
remains allocated even if no media is being delivered. This
means that a client cannot watch for the server to close the
transport to signal the end of media delivery.

- Watching for the incoming media to stop is unreliable. Short
timeouts can trigger a false end of media detection if the
media flow is temporarily delayed. Long timeouts introduce
unacceptable latencies. Clients are unable to distinguish
between a normal end of media and an error condition that
resulted in the media delivery stopping.

These problems can be remedied by a client callback mechanism. The
proposed mechanism uses the ANNOUNCE method sent from the server to
the client, along with a new header which contains the details of
media server state transitions.

5.1 ANNOUNCE Callbacks

If desired by the client, an ANNOUNCE request can be sent
asynchronously from the server to the client to notify it of any
changes in a session state. ANNOUNCE requests are only sent to a
client if the client used the May-Notify header in its SETUP request
for the session (section 5.2). The nature and time of the event
causing the stream state change are contained in the Notice header
(section 5.3).

An ANNOUNCE request will only be sent if the session is currently
associated with an open persistent connection to the client. If the
session is not associated with a connection to the client, the state
change notification will be returned in the next GET_PARAMETER
response for the session.

Alternate approaches would be to use GET_PARAMETER or SET_PARAMETER
for callbacks, or to define a new method.

5.2 May-Notify Header
The May-Notify header may be included in a SETUP request.

If a client includes the MayNotify header in a SETUP request, the
server will notify the client asynchronously of any stream state
changes by sending it an ANNOUNCE request (section 5.1). If this
header is not included, state changes are returned to the client as
part of a GET_PARAMETER response. In both cases, the state change
is reported with a Notice header (section 5.3).

5.3 Notice Header

The Notice header contains media server state change information for

a session, such as errors encountered during play or reaching the
end of the stream. It may only originate from a media server, and
is not recognized in client requests. The Notice header is sent
from the server to a client via either an ANNOUNCE request or a
GET_PARAMETER response (section 5.1).

Sheedy [Page 9]

INTERNET DRAFT
The formal syntax
Notice

notify

event-code

event-phrase

10 March 2000

for the Notice header is:

= "Notice" ":" notify *("," notify)

= event-code SP """ event-phrase """ SP
"event-date" "=" utc-time

= 4DIGIT

*<TEXT, excluding CR, LF, ">

Event codes and phrases which may be returned by the server are:

Code Message

1103 Stream Stalled

1104 Stream Resumed

2101 End-of-Stream Reached

2103 Transition

2104 Start-

of-Stream Reached

2306 Continuous Feed Terminated

4401 Error

Reading Media Data

5201 Server Resources Unavailable

5401 Stream Failure

5402 Session Terminated by Server

5403 Server Shutting Down

5501 Internal Server Error

6 Miscellaneous
6.1 Reason Header
A client may wish

down a session.
network problems.

to inform the server why it has chosen to tear

This is often useful in diagnosing server or

This is accomplished with the Reason header. The

Reason header is only valid in TEARDOWN requests.

How much of the Reason header message is saved by the media server,

or whether the message is saved at all, is up to the discretion of
the media server. Implementers of media servers should place limits
on the message length and message frequency to prevent the Reason
header from being used in denial-of-service attacks.

Sheedy [Page 10]

INTERNET DRAFT 10 March 2000

The formal syntax of the Reason header is:

Reason "Reason" ":" reason-phrase
reason-phrase = *<TEXT, excluding CR, LF, ">

6.2 Looping Ranges

Continuous looping play of a presentation is a frequent requirement
in commercial environments. This is typically used for movie
trailers, etc.

To support this, the Range header can be enhanced to allow clients
to ask the media server to continuously loop a presentation. The
formal syntax of the extended Range header is:

Range = "Range" ":" 1\#ranges-specifier *(range-option)
range-option = ";" "time" "=" utc-time

| ||,.|I llloopll [||:ll loop_count]
loop-count = 1*DIGIT

Adding the "loop" option to a Range header causes the specified
range within the media to loop for "loop-count" iterations, or
forever if no "loop-count" is specified.

A PAUSE request or another PLAY request for the session will stop
the looping. A PAUSE request will terminate the loop immediately.

A queued PLAY request (without the Play-Now header, section 4.1)
will terminate the loop at the end of the current iteration. A PLAY
request with the Play-Now header will terminate the loop
immediately.

6.3 Additional Status Codes
The following two standard status codes should be added:
Code Message
463 Destination Required
464 Unable to Visual Scan

Code 463 indicates that the media server was unable to select an
appropriate transport destination address for the client, and that
the client must supply one explicitly. It may only be returned in
SETUP responses.

Code 464 may only be returned in response to a PLAY request, which
includes a scale other than 1. It indicates that the server is
unable to stream the media at a rate other than normal speed
forward. This may be a temporary condition caused, for example, by

unusually heavy loading on the media server. It may also be a
permanent condition due, for example, to media encoding limitations
or media server policy.

Sheedy [Page 11]

INTERNET DRAFT 10 March 2000

6.4 Stream Parameters

Standard parameters need to be defined for the GET_PARAMETER method
to be generally useful. Proposed standard parameters are:

stream_state The current stream state. Possible
returned values are:

playing
ready

position The current stream position. The position
is the number of seconds from the
beginning of the media in npt format.

Appendix A: Author's Address

Sean Sheedy

NnCUBE Corporation
1825 NW 167th Place
Beaverton, OR 97006
USA

E-mail: seans@ncube.com

References

1.

N

[eM]

[

o

o

I~

Schulzrinne, H., Rao, A. and R. Lanphier, "Real Time Streaming
Protocol (RTSP)", RFC 2326, April 1998.

Handley, M., and V. Jacobson, "SDP: Session Description Protocol",
REC 2327, April 1998.

nCUBE Corporation, "nCUBE RTSP Implementation and Extensions",
January 2000.

Oracle Corporation, "Custom Video Client Developer's Guide, Release
3.2", September 1999.

International Telecommunication Union, "Generic Coding of Moving
Pictures and Associated Audio Information: Systems", H.222.0, July
1995.

International Telecommunication Union, "Multimedia Multiplex and
Synchronization for Audiovisual Communication in ATM Environments",
H.222.1, March 1996.

European Telecommunications Standards Institute, "Digital Video
Broadcasting: Framing Structure, Channel Coding and Modulation For
Cable Systems", EN 300 429, October 1997.

https://datatracker.ietf.org/doc/html/rfc2326
https://datatracker.ietf.org/doc/html/rfc2327

Sheedy [Page 12]

