
INTERNET DRAFT 10 March 2000
Expires: 10 September 2000

Sean Sheedy
nCUBE Corporation

 RTSP Extensions:
 Additional Transports and Performance Enhancements

draft-sheedy-mmusic-rtsp-ext-00.txt

 Status of this memo

 This document is an Internet-Draft and is in full
 conformance with all provisions of Section 10 of
 RFC2026.

 Internet-Drafts are working documents of the
 Internet Engineering Task Force (IETF), its areas,
 and its working groups. Note that other groups may
 also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a
 maximum of six months and may be updated, replaced,
 or obsoleted by other documents at any time. It is
 inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in
 progress."

 The list of current Internet-Drafts can be accessed
 at http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can
 be accessed at http://www.ietf.org/shadow.html.

 Abstract

 This document proposes enhancements to the RTSP
 protocol for broadcast quality non-IP based video-
 on-demand applications. Additional transports for
 non-IP delivery of media streams are proposed,
 along with control extensions to reduce latency.
 These proposals are based on nCUBE Corporation's
 and Oracle Corporation's experience with their

https://datatracker.ietf.org/doc/html/draft-sheedy-mmusic-rtsp-ext-00.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

 existing media servers.

Sheedy [Page 1]

INTERNET DRAFT 10 March 2000

1 Introduction

 nCUBE Corporation has developed a media server using the RTSP
 standard [1] for its video-on-demand (VOD) platform, the MediaCUBE
 4. The platform is designed for large-scale deployments of
 broadcast quality interactive video. It is being used currently in
 several commercial deployments worldwide, with many more deployments
 scheduled in the near future.

 nCUBE's experience to date with the RTSP protocol has been positive.
 The basic protocol is flexible enough to work in a large-scale,
 high-bandwidth environment. The HTTP-like syntax has proven easy
 for client developers to implement. The flexibility provided by the
 syntax and the facilities for extensions have proven invaluable in
 deploying RTSP in an environment somewhat different from that for
 which it was originally designed.

 A typical broadcast quality environment differs from the Internet
 environment in several ways:

 - Transports and lower transports

 Although IP protocols are often used for control connections,
 broadcast quality video-on-demand installations often do not
 use IP protocols (such as UDP and RTP) for the actual delivery
 of a presentation (which is usually an aggregation of media
 streams). Typically, MPEG-2 transport streams are carried on a
 lower transport which natively supports MPEG-2, such as AAL5
 (over ATM) or QAM.

 - Multiplexing RTSP clients

 Supporting non-RTSP clients (e.g., many currently-available set
 top boxes) requires a bridging server that speaks the client's
 native protocol and, in turn, acts as an RTSP client of the
 media server. Such bridging servers typically make transport
 address and bandwidth assignments for the clients, and often
 need to coordinate these decisions with external hardware
 devices such as QAM modulators and up converters.

 - Limited capability clients

 Video-on-demand clients in the home (such as specialized set
 top boxes) are under tremendous price pressures. Consequently,
 their capabilities are often much more limited than even low-
 end general-purpose computers. Memory is typically very
 limited (on the order of 8 megabytes), and the media streams
 are discarded immediately once they have been decoded. Many

 hardware decoders are sensitive to timing jitter and
 discontinuities in video or audio elementary streams.

Sheedy [Page 2]

INTERNET DRAFT 10 March 2000

 - Latency

 Low latency, particularly for stream control requests such as
 pause or fast forward, is critical to the satisfaction of many
 home users of video-on-demand services. End users of a home
 VOD service are a cross section of cable television customers,
 and are often not computer savvy. Their standard of comparison
 for the responsiveness of a media server is their VCR or DVD
 player, not a computer web browser accessing the Internet.

 nCUBE Corporation has added some extensions to the RTSP standard,
 which address the requirements of this different environment [3].
 These enhancements were developed in collaboration with Oracle
 Corporation, who has also incorporated similar features in their
 RTSP server [4]. The remainder of this document proposes a set of
 enhancements to the RTSP standard based on both of these
 implementations.

2 Transports, Profiles, and Lower Transports

 Other media delivery mechanisms besides RTP are used in many
 commercial video-on-demand deployments. To support this, new
 transports, profiles, and lower transports in addition to the
 current standard RTP/AVP/UDP are needed.

2.1 Transports

 MPEG-2 is used extensively for high bandwidth video [5]. An
 enhancement to the "transport-protocol" field in the "Transport"
 header to support this is:

 MP2T MPEG-2 Transport

 The new syntax of "transport-protocol" would then be:

 transport-protocol = "RTP" | "MP2T"

2.2 Lower Transports

 Similarly, TCP or UDP are not always used as lower transports.
 Enhancements to the "lower-transport" field are:

 AAL5-PVC ATM permanent virtual circuit

 AAL5-SVC ATM switched virtual circuit

 ASI DVB Asynchronous Serial Interface (ASI)

 QAM Quadrature Amplitude Modulation(QAM)

 The new syntax of "lower-transport" would then be:

 lower-transport = "TCP" | "UDP" | "AAL5-PVC" | "AAL5-SVC" |
 "ASI" | "QAM"

Sheedy [Page 3]

INTERNET DRAFT 10 March 2000

 (Note that end user RTSP clients typically don't request a DVB-ASI
 lower transport. This is primarily used by bridging servers that
 are also controlling external hardware such as QAM modulators.)

 This proposal makes no distinction between QAM64 and QAM256. Making
 such a distinction may be desirable.

2.3 Profiles

 Since AVP is intertwined with RTP, additional profiles are needed.
 Enhancements to the "profile" file are:

 H2221 The ITU H.222.1 standard for MPEG delivery over
 ATM [6]. The default lower transport is AAL5-SVC.

 DVBC The Digital Video Broadcasting - Cable standard
 [7]. The default lower transport is QAM.

 The new syntax of "profile" would then be:

 profile = "AVP" | "H2221" | "DVBC"

2.4 Transport/Profile/Lower-Transport Combinations

 Only the following combinations of protocols, profiles, and lower
 transports are meaningful:

 MP2T/H2221/AAL5-PVC
 MP2T/H2221/AAL5-SVC
 MP2T/DVBC/QAM
 MP2T/DVBC/ASI

2.5 Destinations

 To handle the additional lower transport types, the syntax of the
 "destination" transport parameter needs to be enhanced. In
 particular, most lower transports in section 2.2 use addresses that
 are not globally unique, but are unique only within a particular
 physical channel. The destination "address" field should contain an
 optional identifier string at the beginning to allow sufficiently
 intelligent clients (such as bridging servers) to disambiguate
 between physical channels.

 The formal syntax for the expanded "destination" addresses is:

 address = [id-string ":"] type-address

 type-address = host
 | atm-pvc-address
 | atm-svc-address

 | qam-address

 id-string = 1*(ALPHA | DIGIT | "_")

Sheedy [Page 4]

INTERNET DRAFT 10 March 2000

 (Note that QAM and DVB-ASI addressing are identical, and both are
 covered by the "qam-address" rule.)

2.5.1 ATM PVC Address

 The destination address for an ATM permanent virtual circuit is the
 VPI and VCI of the client, specified in decimal:

 atm-pvc-address = vpi "." vci

 vpi = 1*5(DIGIT)
 vci = 1*5(DIGIT)

 For example, to use ATM permanent virtual circuits a client may
 specify a Transport header like the following:

 Transport: MP2T/H2221/AAL5-PVC;unicast;destination=atm00:0.40

2.5.2 ATM SVC Address

 The destination address for an ATM switched virtual circuit is the
 20-byte service access point address, specified in hexadecimal:

 atm-svc-address = 20*20(HEX)

 For example, to use ATM switched virtual circuits a client may
 specify a Transport header like the following:

 Transport: MP2T/H2221/AAL5-SVC;unicast;
 destination=47000580ffe1000000f21a360b00204821490f01

 Many vendors include dots (.) in service access point addresses. It
 may be desirable to allow this.

2.5.3 QAM and DVB-ASI Addresses

 The destination address for QAM or DVB-ASI is a server-specific
 channel number (note that this is not the RF channel number) and
 MPEG-2 program number specified in decimal:

 qam-address = channel-number "." program-number

 channel-number = 1*3(DIGIT)
 program-number = 1*5(DIGIT)

 For example, to use QAM a client may specify a Transport header like
 the following:

 Transport: MP2T/DVBC/QAM;unicast;destination=cim00:0.75

 For example, to use DVB-ASI a client may specify a Transport header
 like the following:

 Transport: MP2T/DVBC/ASI;unicast;destination=dac00:0.75

Sheedy [Page 5]

INTERNET DRAFT 10 March 2000

2.6 Client Identification

 For most video-on-demand environments, clients cannot be allowed to
 specify a transport destination address. In non-IP delivery
 environments, they typically do not have sufficient knowledge of the
 network topology to properly specify an address. In all
 environments, allowing clients to choose an address presents
 security problems. Further, in many non-IP delivery environments
 (such as cable systems using QAM and DOCSIS), valid transport
 addresses cannot be derived from the IP address of the client.

 To resolve these problems, the client must be able to identify
 itself to the media server. This can be accomplished by adding a
 new Transport parameter, "client". The argument to "client" is a
 deployment-specific string that uniquely identifies a client.
 Identity information included in the string may be, for example, a
 smart card ID for a set top box and the optical node to which the
 set top box is connected.

 The formal syntax for the "client" parameter is:

 client = "client" "=" client-id
 client-id = token

3 Reuse of Transports

 Typically, the setup and teardown of a transport are the most
 expensive media server operations, both in terms of server loading
 and client perceived latency. The Web browsing model of creating a
 transport for each presentation works well in many Internet delivery
 environments. In a non-IP delivery environment with dedicated media
 delivery bandwidth, however, using a single transport for several
 sequential presentations provides a better end user experience.

 Allowing a single transport to handle multiple sequential
 presentations requires extensions in the following areas:

 - URI's

 - Transport parameters

3.1 URI Enhancements

 To allow a single transport to be used for different presentations,
 the client may specify a different URI on a PLAY method request than
 was used in the initial SETUP request. If a PLAY is requested with
 a different URI than that most recently used in the session, the
 presentation specified by the new URI will be played over the
 existing session's transport.

 For a PLAY request with a new URI to succeed, sufficient bandwidth
 must already be available in the existing transport. This can be
 reserved with an extension transport parameter on the initial SETUP
 of the session ("bandwidth", described in section 3.2), or can be
 allocated with a new SETUP request.

Sheedy [Page 6]

INTERNET DRAFT 10 March 2000

 If a client uses queued PLAY requests with different URI's, it may
 not be able to determine which presentation is active at any
 particular time. To handle this case, an asterisk (*) for the URI
 matches whatever presentation, if any, is currently active. Such a
 wild card asterisk is legal for the following methods:

 PLAY
 PAUSE
 TEARDOWN
 GET_PARAMETER
 SET_PARAMETER

3.2 bandwidth Transport Parameter

 A client may use the "bandwidth" Transport parameter to reserve
 bandwidth for a transport. Its argument is a decimal number
 specifying the bandwidth to reserve in bits per second. If no
 bandwidth parameter is given, it implies that the media server will
 use the bit rate of the presentation specified in the SETUP
 request's URI for the bandwidth of the transport.

 The formal syntax for the "bandwidth" parameter is:

 bandwidth = "bandwidth" "=" 1*DIGIT

4 PLAY Queue Enhancements

 Requiring all new PLAY requests to be queued when another PLAY
 request is active makes low-latency implementation of fast forward
 and rewind difficult; it requires multiple requests to the media
 server to stop the current PLAY and start the new one. Further, it
 makes seamless transitions between normal and scaled play
 impossible, since the current PLAY must be stopped, resulting in a
 gap in the media delivery, before the new PLAY can be started.

 Similarly, requiring all PAUSE requests to flush the queue of PLAY
 requests is awkward. This forces a client to remember and reissue
 all previously queued PLAY requests when it restarts a stream after
 a PAUSE.

 These problems can be resolved by allowing clients to specify the
 type of queuing behavior they desire on each request. The proposed
 mechanism uses two new headers:

 Play-Now
 No-Flush

4.1 Play-Now Header

 A client may use the Play-Now header with either a SETUP or PLAY

 method.

Sheedy [Page 7]

INTERNET DRAFT 10 March 2000

4.1.1 Play-Now with PLAY

 When used in a PLAY request, this header indicates that the PLAY
 operation should be performed immediately rather than queuing it.
 Using Play-Now in a PLAY request causes any queued PLAY requests to
 be discarded unless the No-Flush header is also included.

4.1.2 Play-Now with SETUP

 When added to a SETUP request, this header indicates that the client
 wants streaming to begin immediately (i.e., possibly even before the
 SETUP response is sent to the client). This allows the client to
 avoid waiting for the response from SETUP and then issuing a PLAY
 command, but has some practical limitations.

 Play-Now with SETUP is not useful in those environments where the
 client requires information contained in the SETUP response before
 it can start decoding the media stream. For example, if a set top
 box needs the SETUP response to know which channel to tune to, it
 will typically need to issue a separate PLAY command after it has
 tuned to the proper channel.

 If the Play-Now header is included in a SETUP request, Range and
 Scale headers may also be included.

4.2 No-Flush Header

 A client may use the No-Flush header with either a PAUSE or PLAY
 method. When added to either request, it prevents queued PLAY
 requests from being discarded.

4.3 Alternate Approach

 An alternate approach to providing the same functionality would be
 to define a single header with directives along the lines of the
 Cache-Control header. An example of the syntax is:

 Queue-Control = "Queue-Control" ":" queue-directive
 *(";" queue-directive)
 queue-directive = "play-now"
 | "no-flush"

5 Server State Changes

 Most clients need to track the state of the media server while the
 server is streaming. The most critical state change to clients
 occurs when the media server encounters the end of a presentation
 (or the beginning when rewinding), and stops streaming. There are
 currently no standard mechanisms for detecting this in the RTSP
 specification. Problems clients encounter in the current

 architecture include:

 - Polling for the current media server state wastes network
 bandwidth, and introduces unacceptable latencies in detecting
 state transitions.

Sheedy [Page 8]

INTERNET DRAFT 10 March 2000

 - In non-IP delivery environments, the transport typically
 remains allocated even if no media is being delivered. This
 means that a client cannot watch for the server to close the
 transport to signal the end of media delivery.

 - Watching for the incoming media to stop is unreliable. Short
 timeouts can trigger a false end of media detection if the
 media flow is temporarily delayed. Long timeouts introduce
 unacceptable latencies. Clients are unable to distinguish
 between a normal end of media and an error condition that
 resulted in the media delivery stopping.

 These problems can be remedied by a client callback mechanism. The
 proposed mechanism uses the ANNOUNCE method sent from the server to
 the client, along with a new header which contains the details of
 media server state transitions.

5.1 ANNOUNCE Callbacks

 If desired by the client, an ANNOUNCE request can be sent
 asynchronously from the server to the client to notify it of any
 changes in a session state. ANNOUNCE requests are only sent to a
 client if the client used the May-Notify header in its SETUP request
 for the session (section 5.2). The nature and time of the event
 causing the stream state change are contained in the Notice header
 (section 5.3).

 An ANNOUNCE request will only be sent if the session is currently
 associated with an open persistent connection to the client. If the
 session is not associated with a connection to the client, the state
 change notification will be returned in the next GET_PARAMETER
 response for the session.

 Alternate approaches would be to use GET_PARAMETER or SET_PARAMETER
 for callbacks, or to define a new method.

5.2 May-Notify Header

 The May-Notify header may be included in a SETUP request.

 If a client includes the MayNotify header in a SETUP request, the
 server will notify the client asynchronously of any stream state
 changes by sending it an ANNOUNCE request (section 5.1). If this
 header is not included, state changes are returned to the client as
 part of a GET_PARAMETER response. In both cases, the state change
 is reported with a Notice header (section 5.3).

5.3 Notice Header

 The Notice header contains media server state change information for

 a session, such as errors encountered during play or reaching the
 end of the stream. It may only originate from a media server, and
 is not recognized in client requests. The Notice header is sent
 from the server to a client via either an ANNOUNCE request or a
 GET_PARAMETER response (section 5.1).

Sheedy [Page 9]

INTERNET DRAFT 10 March 2000

 The formal syntax for the Notice header is:

 Notice = "Notice" ":" notify *("," notify)

 notify = event-code SP """ event-phrase """ SP
 "event-date" "=" utc-time

 event-code = 4DIGIT

 event-phrase = *<TEXT, excluding CR, LF, ">

 Event codes and phrases which may be returned by the server are:

 Code Message

 1103 Stream Stalled

 1104 Stream Resumed

 2101 End-of-Stream Reached

 2103 Transition

 2104 Start-of-Stream Reached

 2306 Continuous Feed Terminated

 4401 Error Reading Media Data

 5201 Server Resources Unavailable

 5401 Stream Failure

 5402 Session Terminated by Server

 5403 Server Shutting Down

 5501 Internal Server Error

6 Miscellaneous

6.1 Reason Header

 A client may wish to inform the server why it has chosen to tear
 down a session. This is often useful in diagnosing server or
 network problems. This is accomplished with the Reason header. The
 Reason header is only valid in TEARDOWN requests.

 How much of the Reason header message is saved by the media server,

 or whether the message is saved at all, is up to the discretion of
 the media server. Implementers of media servers should place limits
 on the message length and message frequency to prevent the Reason
 header from being used in denial-of-service attacks.

Sheedy [Page 10]

INTERNET DRAFT 10 March 2000

 The formal syntax of the Reason header is:

 Reason = "Reason" ":" reason-phrase
 reason-phrase = *<TEXT, excluding CR, LF, ">

6.2 Looping Ranges

 Continuous looping play of a presentation is a frequent requirement
 in commercial environments. This is typically used for movie
 trailers, etc.

 To support this, the Range header can be enhanced to allow clients
 to ask the media server to continuously loop a presentation. The
 formal syntax of the extended Range header is:

 Range = "Range" ":" 1\#ranges-specifier *(range-option)
 range-option = ";" "time" "=" utc-time
 | ";" "loop" ["=" loop-count]
 loop-count = 1*DIGIT

 Adding the "loop" option to a Range header causes the specified
 range within the media to loop for "loop-count" iterations, or
 forever if no "loop-count" is specified.

 A PAUSE request or another PLAY request for the session will stop
 the looping. A PAUSE request will terminate the loop immediately.
 A queued PLAY request (without the Play-Now header, section 4.1)
 will terminate the loop at the end of the current iteration. A PLAY
 request with the Play-Now header will terminate the loop
 immediately.

6.3 Additional Status Codes

 The following two standard status codes should be added:

 Code Message

 463 Destination Required

 464 Unable to Visual Scan

 Code 463 indicates that the media server was unable to select an
 appropriate transport destination address for the client, and that
 the client must supply one explicitly. It may only be returned in
 SETUP responses.

 Code 464 may only be returned in response to a PLAY request, which
 includes a scale other than 1. It indicates that the server is
 unable to stream the media at a rate other than normal speed
 forward. This may be a temporary condition caused, for example, by

 unusually heavy loading on the media server. It may also be a
 permanent condition due, for example, to media encoding limitations
 or media server policy.

Sheedy [Page 11]

INTERNET DRAFT 10 March 2000

6.4 Stream Parameters

 Standard parameters need to be defined for the GET_PARAMETER method
 to be generally useful. Proposed standard parameters are:

 stream_state The current stream state. Possible
 returned values are:

 playing
 ready

 position The current stream position. The position
 is the number of seconds from the
 beginning of the media in npt format.

Appendix A: Author's Address

 Sean Sheedy
 nCUBE Corporation
 1825 NW 167th Place
 Beaverton, OR 97006
 USA

 E-mail: seans@ncube.com

References

1. Schulzrinne, H., Rao, A. and R. Lanphier, "Real Time Streaming
 Protocol (RTSP)", RFC 2326, April 1998.

2. Handley, M., and V. Jacobson, "SDP: Session Description Protocol",
RFC 2327, April 1998.

3. nCUBE Corporation, "nCUBE RTSP Implementation and Extensions",
 January 2000.

4. Oracle Corporation, "Custom Video Client Developer's Guide, Release
 3.2", September 1999.

5. International Telecommunication Union, "Generic Coding of Moving
 Pictures and Associated Audio Information: Systems", H.222.0, July
 1995.

6. International Telecommunication Union, "Multimedia Multiplex and
 Synchronization for Audiovisual Communication in ATM Environments",
 H.222.1, March 1996.

7. European Telecommunications Standards Institute, "Digital Video
 Broadcasting: Framing Structure, Channel Coding and Modulation For
 Cable Systems", EN 300 429, October 1997.

https://datatracker.ietf.org/doc/html/rfc2326
https://datatracker.ietf.org/doc/html/rfc2327

Sheedy [Page 12]

