
Network Working Group Y. Sheffer
Internet-Draft Intuit
Intended status: Experimental D. Migault
Expires: December 28, 2019 Ericsson
 June 26, 2019

TLS Server Identity Pinning with Tickets
draft-sheffer-tls-pinning-ticket-12

Abstract

 Misissued public-key certificates can prevent TLS clients from
 appropriately authenticating the TLS server. Several alternatives
 have been proposed to detect this situation and prevent a client from
 establishing a TLS session with a TLS end point authenticated with an
 illegitimate public-key certificate. These mechanisms are either not
 widely deployed or limited to public web browsing.

 This document proposes experimental extensions to TLS with opaque
 pinning tickets as a way to pin the server's identity. During an
 initial TLS session, the server provides an original encrypted
 pinning ticket. In subsequent TLS session establishment, upon
 receipt of the pinning ticket, the server proves its ability to
 decrypt the pinning ticket and thus the ownership of the pinning
 protection key. The client can now safely conclude that the TLS
 session is established with the same TLS server as the original TLS
 session. One of the important properties of this proposal is that no
 manual management actions are required.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on December 28, 2019.

Sheffer & Migault Expires December 28, 2019 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft Pinning Tickets June 2019

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
1.1. Conventions used in this document 5
1.2. Scope of Experimentation 6

2. Protocol Overview . 6
2.1. Initial Connection 7
2.2. Subsequent Connections 9
2.3. Indexing the Pins . 10

3. Message Definitions . 10
4. Cryptographic Operations 11
4.1. Pinning Secret . 11
4.2. Pinning Ticket . 11
4.3. Pinning Protection Key 12
4.4. Pinning Proof . 12

5. Operational Considerations 13
5.1. Protection Key Synchronization 13
5.2. Ticket Lifetime . 14
5.3. Certificate Renewal 14
5.4. Certificate Revocation 14
5.5. Disabling Pinning . 15
5.6. Server Compromise . 15
5.7. Disaster Recovery . 15

6. Implementation Status . 16
6.1. Mint Fork . 16
6.1.1. Overview . 16
6.1.2. Description . 16
6.1.3. Level of Maturity 17
6.1.4. Coverage . 17
6.1.5. Version Compatibility 17
6.1.6. Licensing . 17
6.1.7. Contact Information 17

7. Security Considerations 17

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Sheffer & Migault Expires December 28, 2019 [Page 2]

Internet-Draft Pinning Tickets June 2019

7.1. Trust on First Use (TOFU) and MITM Attacks 17
7.2. Pervasive Monitoring 18
7.3. Server-Side Error Detection 18
7.4. Client Policy and SSL Proxies 18
7.5. Client-Side Error Behavior 18
7.6. Stolen and Forged Tickets 18
7.7. Client Privacy . 19
7.8. Ticket Protection Key Management 19

8. IANA Considerations . 20
9. Acknowledgements . 20
10. References . 21
10.1. Normative References 21
10.2. Informative References 21

Appendix A. Previous Work 23
A.1. Comparison: HPKP . 24
A.2. Comparison: TACK . 26

Appendix B. Document History 27
B.1. draft-sheffer-tls-pinning-ticket-12 27
B.2. draft-sheffer-tls-pinning-ticket-11 27
B.3. draft-sheffer-tls-pinning-ticket-10 27
B.4. draft-sheffer-tls-pinning-ticket-09 27
B.5. draft-sheffer-tls-pinning-ticket-08 27
B.6. draft-sheffer-tls-pinning-ticket-07 28
B.7. draft-sheffer-tls-pinning-ticket-06 28
B.8. draft-sheffer-tls-pinning-ticket-05 28
B.9. draft-sheffer-tls-pinning-ticket-04 28
B.10. draft-sheffer-tls-pinning-ticket-03 28
B.11. draft-sheffer-tls-pinning-ticket-02 28
B.12. draft-sheffer-tls-pinning-ticket-01 28
B.13. draft-sheffer-tls-pinning-ticket-00 29

 Authors' Addresses . 29

1. Introduction

 Misissued public-key certificates can prevent TLS [RFC8446] clients
 from appropriately authenticating the TLS server. This is a
 significant risk in the context of the global public key
 infrastructure (PKI), and similarly for large scale deployments of
 certificates within enterprises.

 This document proposes experimental extensions to TLS with opaque
 pinning tickets as a way to pin the server's identity. The approach
 is intended to be easy to implement and deploy, and reuses some of
 the ideas behind TLS session resumption [RFC5077].

 Ticket pinning is a second factor server authentication method and is
 not proposed as a substitute for the authentication method provided
 in the TLS key exchange. More specifically, the client only uses the

https://datatracker.ietf.org/doc/html/draft-sheffer-tls-pinning-ticket-12
https://datatracker.ietf.org/doc/html/draft-sheffer-tls-pinning-ticket-11
https://datatracker.ietf.org/doc/html/draft-sheffer-tls-pinning-ticket-10
https://datatracker.ietf.org/doc/html/draft-sheffer-tls-pinning-ticket-09
https://datatracker.ietf.org/doc/html/draft-sheffer-tls-pinning-ticket-08
https://datatracker.ietf.org/doc/html/draft-sheffer-tls-pinning-ticket-07
https://datatracker.ietf.org/doc/html/draft-sheffer-tls-pinning-ticket-06
https://datatracker.ietf.org/doc/html/draft-sheffer-tls-pinning-ticket-05
https://datatracker.ietf.org/doc/html/draft-sheffer-tls-pinning-ticket-04
https://datatracker.ietf.org/doc/html/draft-sheffer-tls-pinning-ticket-03
https://datatracker.ietf.org/doc/html/draft-sheffer-tls-pinning-ticket-02
https://datatracker.ietf.org/doc/html/draft-sheffer-tls-pinning-ticket-01
https://datatracker.ietf.org/doc/html/draft-sheffer-tls-pinning-ticket-00
https://datatracker.ietf.org/doc/html/rfc8446
https://datatracker.ietf.org/doc/html/rfc5077

Sheffer & Migault Expires December 28, 2019 [Page 3]

Internet-Draft Pinning Tickets June 2019

 pinning identity method after the TLS key exchange is successfully
 completed. In other words, the pinning identity method is only
 performed over an authenticated TLS session. Note that Ticket
 Pinning does not pin certificate information and therefore is truly
 an independent second factor authentication.

 Ticket pinning is a Trust On First Use (TOFU) mechanism, in that the
 first server authentication is only based on PKI certificate
 validation, but for any follow-on sessions, the client is further
 ensuring the server's identity based on the server's ability to
 decrypt the ticket, in addition to normal PKI certificate
 authentication.

 During initial TLS session establishment, the client requests a
 pinning ticket from the server. Upon receiving the request the
 server generates a pinning secret which is expected to be
 unpredictable for peers other than the client or the server. In our
 case, the pinning secret is generated from parameters exchanged
 during the TLS key exchange, so client and server can generate it
 locally and independently. The server constructs the pinning ticket
 with the necessary information to retrieve the pinning secret. The
 server then encrypts the ticket and returns the pinning ticket to the
 client with an associated pinning lifetime.

 The pinning lifetime value indicates for how long the server promises
 to retain the server-side ticket-encryption key, which allows it to
 complete the protocol exchange correctly and prove its identity. The
 server commitment (and ticket lifetime) is typically on the order of
 weeks.

 Once the key exchange is completed and the server is deemed
 authenticated, the client generates locally the pinning secret and
 caches the server's identifiers to index the pinning secret as well
 as the pinning ticket and its associated lifetime.

 When the client re-establishes a new TLS session with the server, it
 sends the pinning ticket to the server. Upon receiving it, the
 server returns a proof of knowledge of the pinning secret. Once the
 key exchange is completed and the server has been authenticated, the
 client checks the pinning proof returned by the server using the
 client's stored pinning secret. If the proof matches, the client can
 conclude that the server it is currently connecting to is in fact the
 correct server.

 This document only applies to TLS 1.3. We believe that the idea can
 also be back-fitted into earlier versions of the protocol, but this
 would require significant changes. One example is that TLS 1.2
 [RFC5246] and earlier versions do not provide a generic facility of

https://datatracker.ietf.org/doc/html/rfc5246

Sheffer & Migault Expires December 28, 2019 [Page 4]

Internet-Draft Pinning Tickets June 2019

 encrypted handshake extensions, such as is used here to transport the
 ticket.

 The main advantages of this protocol over earlier pinning solutions
 are:

 - The protocol is at the TLS level, and as a result is not
 restricted to HTTP at the application level.

 - The protocol is robust to server IP, Certificate Authority (CA),
 and public key changes. The server is characterized by the
 ownership of the pinning protection key, which is never provided
 to the client. Server configuration parameters such as the CA and
 the public key may change without affecting the pinning ticket
 protocol.

 - Once a single parameter is configured (the ticket's lifetime),
 operation is fully automated. The server administrator need not
 bother with the management of backup certificates or explicit
 pins.

 - For server clusters, we reuse the existing [RFC5077]
 infrastructure where it exists.

 - Pinning errors, presumably resulting from man-in-the-middle (MITM)
 attacks, can be detected both by the client and the server. This
 allows for server-side detection of MITM attacks using large-scale
 analytics, and with no need to rely on clients to explicitly
 report the error.

 A note on terminology: unlike other solutions in this space, we do
 not do "certificate pinning" (or "public key pinning"), since the
 protocol is oblivious to the server's certificate. We prefer the
 term "server identity pinning" for this new solution. In our
 solution, the server proves its identity by generating a proof that
 it can read and decrypt an encrypted ticket. As a result, the
 identity proof relies on proof of ownership of the pinning protection
 key. However, this key is never exchanged with the client or known
 by it, and so cannot itself be pinned.

1.1. Conventions used in this document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

https://datatracker.ietf.org/doc/html/rfc5077
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174

Sheffer & Migault Expires December 28, 2019 [Page 5]

Internet-Draft Pinning Tickets June 2019

1.2. Scope of Experimentation

 This document describes an experimental extension to the TLS
 protocol. This section defines constraints on this experiment and
 how it can yield useful information, potentially resulting in a
 standard.

 The protocol is designed so that if the server does not support it,
 the client and server fall back to a normal TLS exchange, with the
 exception of a single PinningTicket extension being initially sent by
 the client. In addition, the protocol is designed to only strengthen
 the validation of the server's identity ("second factor"). As a
 result, implementation or even protocol errors should not result in
 weakened security compared to the normal TLS exchange. Given these
 two points, experimentation can be run on the open Internet between
 consenting client and server implementations.

 The goal of the experiment is to prove that:

 - Non-supporting clients and servers are unaffected.

 - Connectivity between supporting clients and servers is retained
 under normal circumstances, whether the client connects to the
 server frequently (relative to the ticket's lifetime) or very
 rarely.

 - Enterprise middleboxes do not interrupt such connectivity.

 - Misissued certificates and rogue TLS-aware middleboxes do result
 in broken connectivity, and these cases are detected on the client
 and/or server side. Clients and servers can be recovered even
 after such events and the normal connectivity restored.

 Following two years of successful deployment, the authors will
 publish a document that summarizes the experiment's findings and will
 resubmit the protocol for consideration as a Proposed Standard.

2. Protocol Overview

 The protocol consists of two phases: the first time a particular
 client connects to a server, and subsequent connections.

 This protocol supports full TLS handshakes, as well as 0-RTT
 handshakes. Below we present it in the context of a full handshake,
 but behavior in 0-RTT handshakes should be identical.

 The document presents some similarities with the ticket resumption
 mechanism described in [RFC5077]. However the scope of this document

https://datatracker.ietf.org/doc/html/rfc5077

Sheffer & Migault Expires December 28, 2019 [Page 6]

Internet-Draft Pinning Tickets June 2019

 differs from session resumption mechanisms implemented with [RFC5077]
 or with other mechanisms. Specifically, the pinning ticket does not
 carry any state associated with a TLS session and thus cannot be used
 for session resumption, or to authenticate the client. Instead, the
 pinning ticket only contains the encrypted pinning secret. The
 pinning ticket is used by the server to prove its ability to decrypt
 it, which implies ownership of the pinning protection key.

 [RFC5077] has been obsoleted by [RFC8446] and ticket resumption is
 now defined by Sec. 2.2 of [RFC8446]. This document references
 [RFC5077] as an informational document since it contains a more
 thorough discussion of stateless ticket resumption and because ticket
 resumption benefits from significant operational experience with TLS
 1.2 that is still widely deployed at the time of writing this
 document. This experience as well as deployment can easily be re-
 used for identity pinning.

 With TLS 1.3, session resumption is based on a preshared key (PSK).
 This is orthogonal to this protocol. With TLS 1.3, a TLS session can
 be established using PKI and a pinning ticket, and later resumed with
 PSK.

 However, the protocol described in this document addresses the
 problem of misissued certificates. Thus, it is not expected to be
 used outside a certificate-based TLS key exchange, such as in PSK.
 As a result, PSK handshakes MUST NOT include the extension defined
 here.

2.1. Initial Connection

 When a client first connects to a server, it requests a pinning
 ticket by sending an empty PinningTicket extension, and receives it
 as part of the server's first response, in the returned PinningTicket
 extension.

https://datatracker.ietf.org/doc/html/rfc5077
https://datatracker.ietf.org/doc/html/rfc8446
https://datatracker.ietf.org/doc/html/rfc8446
https://datatracker.ietf.org/doc/html/rfc5077

Sheffer & Migault Expires December 28, 2019 [Page 7]

Internet-Draft Pinning Tickets June 2019

 Client Server

 ClientHello
 + key_share
 + signature_algorithms
 + PinningTicket -------->
 ServerHello
 + key_share
 {EncryptedExtensions
 + PinningTicket}
 {CertificateRequest*}
 {Certificate*}
 {CertificateVerify*}
 <-------- {Finished}
 {Certificate*}
 {CertificateVerify*}
 {Finished} -------->
 [Application Data] <-------> [Application Data]

 * Indicates optional or situation-dependent
 messages that are not always sent.

 {} Indicates messages protected using keys
 derived from the ephemeral secret.

 [] Indicates messages protected using keys
 derived from the master secret.

 If a client supports the PinningTicket extension and does not have
 any pinning ticket associated with the server, the exchange is
 considered as an initial connection. Other reasons the client may
 not have a pinning ticket include the client having flushed its
 pinning ticket store, or the committed lifetime of the pinning ticket
 having expired.

 Upon receipt of the PinningTicket extension, the server computes a
 pinning secret (Section 4.1), and sends the pinning ticket
 (Section 4.2) encrypted with the pinning protection key
 (Section 4.3). The pinning ticket is associated with a lifetime
 value by which the server assumes the responsibility of retaining the
 pinning protection key and being able to decrypt incoming pinning
 tickets during the period indicated by the committed lifetime.

 Once the pinning ticket has been generated, the server returns the
 pinning ticket and the committed lifetime in a PinningTicket
 extension embedded in the EncryptedExtensions message. We note that
 a PinningTicket extension MUST NOT be sent as part of a
 HelloRetryRequest.

Sheffer & Migault Expires December 28, 2019 [Page 8]

Internet-Draft Pinning Tickets June 2019

 Upon receiving the pinning ticket, the client MUST NOT accept it
 until the key exchange is completed and the server authenticated. If
 the key exchange is not completed successfully, the client MUST
 ignore the received pinning ticket. Otherwise, the client computes
 the pinning secret and SHOULD cache the pinning secret and the
 pinning ticket for the duration indicated by the pinning ticket
 lifetime. The client SHOULD clean up the cached values at the end of
 the indicated lifetime.

2.2. Subsequent Connections

 When the client initiates a connection to a server it has previously
 seen (see Section 2.3 on identifying servers), it SHOULD send the
 pinning ticket for that server. The pinning ticket, pinning secret
 and pinning ticket lifetime computed during the establishment of the
 previous TLS session are designated in this document as the
 "original" ones, to distinguish them from a new ticket that may be
 generated during the current session.

 The server MUST extract the original pinning_secret value from the
 ticket and MUST respond with a PinningTicket extension, which
 includes:

 - A proof that the server can understand the ticket that was sent by
 the client; this proof also binds the pinning ticket to the
 server's (current) public key, as well as the ongoing TLS session.
 The proof is mandatory and MUST be included if a pinning ticket
 was sent by the client.

 - A fresh pinning ticket. The main reason for refreshing the ticket
 on each connection is privacy: to avoid the ticket serving as a
 fixed client identifier. While a fresh pinning ticket might be of
 zero length, it is RECOMMENDED to include a fresh ticket with a
 non zero length with each response.

 If the server cannot validate the received ticket, that might
 indicate an earlier MITM attack on this client. The server MUST then
 abort the connection with a handshake_failure alert, and SHOULD log
 this failure.

 The client MUST verify the proof, and if it fails to do so, MUST
 issue a handshake_failure alert and abort the connection (see also

Section 7.5). It is important that the client does not attempt to
 "fall back" by omitting the PinningTicket extension.

 When the connection is successfully set up, i.e. after the Finished
 message is verified, the client SHOULD store the new ticket along
 with the corresponding pinning_secret, replacing the original ticket.

Sheffer & Migault Expires December 28, 2019 [Page 9]

Internet-Draft Pinning Tickets June 2019

 Although this is an extension, if the client already has a ticket for
 a server, the client MUST interpret a missing PinningTicket extension
 in the server's response as an attack, because of the server's prior
 commitment to respect the ticket. The client MUST abort the
 connection in this case. See also Section 5.5 on ramping down
 support for this extension.

2.3. Indexing the Pins

 Each pin is associated with a set of identifiers which include among
 others host name, protocol (TLS or DTLS) and port number. In other
 words, the pin for port TCP/443 may be different from that for DTLS
 or from the pin for port TCP/8443. These identifiers are expected to
 be relevant to characterize the identity of the server as well as the
 establishing TLS session. When a host name is used, it MUST be the
 value sent inside the Server Name Indication (SNI) extension. This
 definition is similar to a Web Origin [RFC6454], but does not assume
 the existence of a URL.

 The purpose of ticket pinning is to pin the server identity. As a
 result, any information orthogonal to the server's identity MUST NOT
 be considered in indexing. More particularly, IP addresses are
 ephemeral and forbidden in SNI and therefore pins MUST NOT be
 associated with IP addresses. Similarly, CA names or public keys
 associated with server MUST NOT be used for indexing as they may
 change over time.

3. Message Definitions

 This section defines the format of the PinningTicket extension. We
 follow the message notation of [RFC8446].

 opaque pinning_ticket<0..2^16-1>;

 opaque pinning_proof<0..2^8-1>;

 struct {
 select (Role) {
 case client:
 pinning_ticket ticket<0..2^16-1>; //omitted on 1st connection

 case server:
 pinning_proof proof<0..2^8-1>; //no proof on 1st connection
 pinning_ticket ticket<0..2^16-1>; //omitted on ramp down
 uint32 lifetime;
 }
 } PinningTicketExtension;

https://datatracker.ietf.org/doc/html/rfc6454
https://datatracker.ietf.org/doc/html/rfc8446

Sheffer & Migault Expires December 28, 2019 [Page 10]

Internet-Draft Pinning Tickets June 2019

 ticket a pinning ticket sent by the client or returned by the
 server. The ticket is opaque to the client. The extension MUST
 contain exactly 0 or 1 tickets.

 proof a demonstration by the server that it understands the received
 ticket and therefore that it is in possession of the secret that
 was used to generate it originally. The extension MUST contain
 exactly 0 or 1 proofs.

 lifetime the duration (in seconds) that the server commits to accept
 offered tickets in the future.

4. Cryptographic Operations

 This section provides details on the cryptographic operations
 performed by the protocol peers.

4.1. Pinning Secret

 The pinning secret is generated locally by the client and the server
 which means they must use the same inputs to generate it. This value
 must be generated before the ServerHello message is sent, as the
 server includes the corresponding pinning ticket in the same flight
 as the ServerHello message. In addition, the pinning secret must be
 unpredictable to any party other than the client and the server.

 The pinning secret is derived using the Derive-Secret function
 provided by TLS 1.3, described in Section "Key Schedule" of
 [RFC8446].

 pinning secret = Derive-Secret(Handshake Secret, "pinning secret",
 ClientHello...ServerHello)

4.2. Pinning Ticket

 The pinning ticket contains the pinning secret. The pinning ticket
 is provided by the client to the server which decrypts it in order to
 extract the pinning secret and responds with a pinning proof. As a
 result, the characteristics of the pinning ticket are:

 - Pinning tickets MUST be encrypted and integrity-protected using
 strong cryptographic algorithms.

 - Pinning tickets MUST be protected with a long-term pinning
 protection key.

 - Pinning tickets MUST include a pinning protection key ID or serial
 number as to enable the pinning protection key to be refreshed.

https://datatracker.ietf.org/doc/html/rfc8446

Sheffer & Migault Expires December 28, 2019 [Page 11]

Internet-Draft Pinning Tickets June 2019

 - The pinning ticket MAY include other information, in addition to
 the pinning secret. When additional information is included, a
 careful review needs to be performed to evaluate its impact on
 privacy.

 The pinning ticket's format is not specified by this document, but we
 RECOMMEND a format similar to the one proposed by [RFC5077].

4.3. Pinning Protection Key

 The pinning protection key is only used by the server and so remains
 server implementation specific. [RFC5077] recommends the use of two
 keys, but when using AEAD algorithms only a single key is required.

 When a single server terminates TLS for multiple virtual servers
 using the Server Name Indication (SNI) mechanism, we strongly
 RECOMMEND to use a separate protection key for each one of them, in
 order to allow migrating virtual servers between different servers
 while keeping pinning active.

 As noted in Section 5.1, if the server is actually a cluster of
 machines, the protection key MUST be synchronized between all the
 nodes that accept TLS connections to the same server name. When
 [RFC5077] is deployed, an easy way to do it is to derive the
 protection key from the session-ticket protection key, which is
 already synchronized. For example:

 pinning_protection_key = HKDF-Expand(resumption_protection_key,
 "pinning protection", L)

 Where resumption_protection_key is the ticket protection key defined
 in [RFC5077]. Both resumption_protection_key and
 pinning_protection_key are only used by the server.

 The above solution attempts to minimize code changes related to
 management of the resumption_protection_key. The drawback is that
 this key would be used both to directly encrypt session tickets and
 to derive the pinning_protection_key, and such mixed usage of a
 single key is not in line with cryptographic best practices. Where
 possible, we RECOMMEND to have the resumption_protection_key and
 pinning_protection_key as two, unrelated keys that are separately
 shared among the relevant servers.

4.4. Pinning Proof

 The pinning proof is sent by the server to demonstrate that it has
 been able to decrypt the pinning ticket and retrieve the pinning
 secret. The proof must be unpredictable and must not be replayed.

https://datatracker.ietf.org/doc/html/rfc5077
https://datatracker.ietf.org/doc/html/rfc5077
https://datatracker.ietf.org/doc/html/rfc5077
https://datatracker.ietf.org/doc/html/rfc5077

Sheffer & Migault Expires December 28, 2019 [Page 12]

Internet-Draft Pinning Tickets June 2019

 Similarly to the pinning ticket, the pinning proof is sent by the
 server in the ServerHello message. In addition, it must not be
 possible for a MITM server with a fake certificate to obtain a
 pinning proof from the original server.

 In order to address these requirements, the pinning proof is bound to
 the TLS session as well as the public key of the server:

 pinning_proof_secret=Derive-Secret(Handshake Secret, "pinning proof 1",
 ClientHello...ServerHello)

 proof = HMAC(original_pinning_secret, "pinning proof 2" +
 pinning_proof_secret + Hash(server_public_key))

 where HMAC [RFC2104] uses the Hash algorithm that was negotiated in
 the handshake, and the same hash is also used over the server's
 public key. The original_pinning_secret value refers to the secret
 value extracted from the ticket sent by the client, to distinguish it
 from a new pinning secret value that is possibly computed in the
 current exchange. The server_public_key value is the DER
 representation of the public key, specifically the
 SubjectPublicKeyInfo structure as-is.

5. Operational Considerations

 The main motivation behind the current protocol is to enable identity
 pinning without the need for manual operations. Manual operations
 are susceptible to human error and in the case of public key pinning,
 can easily result in "server bricking": the server becoming
 inaccessible to some or all of its users. To achieve this goal
 operations described in identity pinning are only performed within
 the current TLS session, and there is no dependence on any TLS
 configuration parameters such as CA identity or public keys. As a
 result, configuration changes are unlikely to lead to desynchronized
 state between the client and the server.

5.1. Protection Key Synchronization

 The only operational requirement when deploying this protocol is that
 if the server is part of a cluster, protection keys (the keys used to
 encrypt tickets) MUST be synchronized between all cluster members.
 The protocol is designed so that if resumption ticket protection keys
 [RFC5077] are already synchronized between cluster members, nothing
 more needs to be done.

 Moreover, synchronization does not need to be instantaneous, e.g.
 protection keys can be distributed a few minutes or hours in advance
 of their rollover. In such scenarios, each cluster member MUST be

https://datatracker.ietf.org/doc/html/rfc2104
https://datatracker.ietf.org/doc/html/rfc5077

Sheffer & Migault Expires December 28, 2019 [Page 13]

Internet-Draft Pinning Tickets June 2019

 able to accept tickets protected with a new version of the protection
 key, even while it is still using an old version to generate keys.
 This ensures that a client that receives a "new" ticket does not next
 hit a cluster member that still rejects this ticket.

 Misconfiguration can lead to the server's clock being off by a large
 amount of time. Consider a case where a server's clock is
 misconfigured, for example, to be 1 year in the future, and the
 system is allowed to delete expired keys automatically. The server
 will then delete many outstanding keys because they are now long
 expired and will end up rejecting valid tickets that are stored by
 clients. Such a scenario could make the server inaccessible to a
 large number of clients.

 The decision to delete a key should at least consider the largest
 value of the ticket lifetime as well as the expected time
 desynchronisation between the servers of the cluster and the time
 difference for distributing the new key among the different servers
 in the cluster.

5.2. Ticket Lifetime

 The lifetime of the ticket is a commitment by the server to retain
 the ticket's corresponding protection key for this duration, so that
 the server can prove to the client that it knows the secret embedded
 in the ticket. For production systems, the lifetime SHOULD be
 between 7 and 31 days.

5.3. Certificate Renewal

 The protocol ensures that the client will continue speaking to the
 correct server even when the server's certificate is renewed. In
 this sense, pinning is not associated with certificates which is the
 reason we designate the protocol described in this document as
 "server identity pinning".

 Note that this property is not impacted by the use of the server's
 public key in the pinning proof, because the scope of the public key
 used is only the current TLS session.

5.4. Certificate Revocation

 The protocol is orthogonal to certificate validation in the sense
 that, if the server's certificate has been revoked or is invalid for
 some other reason, the client MUST refuse to connect to it regardless
 of any ticket-related behavior.

Sheffer & Migault Expires December 28, 2019 [Page 14]

Internet-Draft Pinning Tickets June 2019

5.5. Disabling Pinning

 A server implementing this protocol MUST have a "ramp down" mode of
 operation where:

 - The server continues to accept valid pinning tickets and responds
 correctly with a proof.

 - The server does not send back a new pinning ticket.

 After a while no clients will hold valid tickets any more and the
 feature may be disabled. Note that clients that do not receive a new
 pinning ticket do not necessarily need to remove the original ticket.
 Instead, the client may keep on using the ticket until its lifetime
 expires. However, as detailed in section Section 7.7, re-use of a
 ticket by the client may result in privacy concerns as the ticket
 value may be used to correlate TLS sessions.

 Issuing a new pinning ticket with a shorter lifetime would only delay
 the ramp down process, as the shorter lifetime can only affect
 clients that actually initiated a new connection. Other clients
 would still see the original lifetime for their pinning tickets.

5.6. Server Compromise

 If a server compromise is detected, the pinning protection key MUST
 be rotated immediately, but the server MUST still accept valid
 tickets that use the old, compromised key. Clients that still hold
 old pinning tickets will remain vulnerable to MITM attacks, but those
 that connect to the correct server will immediately receive new
 tickets protected with the newly generated pinning protection key.

 The same procedure applies if the pinning protection key is
 compromised directly, e.g. if a backup copy is inadvertently made
 public.

5.7. Disaster Recovery

 All web servers in production need to be backed up, so that they can
 be recovered if a disaster (including a malicious activity) ever
 wipes them out. Backup often includes the certificate and its
 private key, which must be backed up securely. The pinning secret,
 including earlier versions that are still being accepted, must be
 backed up regularly. However since it is only used as an
 authentication second factor, it does not require the same level of
 confidentiality as the server's private key.

Sheffer & Migault Expires December 28, 2019 [Page 15]

Internet-Draft Pinning Tickets June 2019

 Readers should note that [RFC5077] session resumption keys are more
 security sensitive, and should normally not be backed up but rather
 treated as ephemeral keys. Even when servers derive pinning secrets
 from resumption keys (Section 4.1), they MUST NOT back up resumption
 keys.

6. Implementation Status

 Note to RFC Editor: please remove this section before publication,
 including the reference to [RFC7942].

 This section records the status of known implementations of the
 protocol defined by this specification at the time of posting of this
 Internet-Draft, and is based on a proposal described in [RFC7942].
 The description of implementations in this section is intended to
 assist the IETF in its decision processes in progressing drafts to
 RFCs. Please note that the listing of any individual implementation
 here does not imply endorsement by the IETF. Furthermore, no effort
 has been spent to verify the information presented here that was
 supplied by IETF contributors. This is not intended as, and must not
 be construed to be, a catalog of available implementations or their
 features. Readers are advised to note that other implementations may
 exist.

 According to RFC 7942, "this will allow reviewers and working groups
 to assign due consideration to documents that have the benefit of
 running code, which may serve as evidence of valuable experimentation
 and feedback that have made the implemented protocols more mature.
 It is up to the individual working groups to use this information as
 they see fit".

6.1. Mint Fork

6.1.1. Overview

 A fork of the Mint TLS 1.3 implementation, developed by Yaron Sheffer
 and available at https://github.com/yaronf/mint.

6.1.2. Description

 This is a fork of the TLS 1.3 implementation, and includes client and
 server code. In addition to the actual protocol, several utilities
 are provided allowing to manage pinning protection keys on the server
 side, and pinning tickets on the client side.

https://datatracker.ietf.org/doc/html/rfc5077
https://datatracker.ietf.org/doc/html/rfc7942
https://datatracker.ietf.org/doc/html/rfc7942
https://datatracker.ietf.org/doc/html/rfc7942
https://github.com/yaronf/mint

Sheffer & Migault Expires December 28, 2019 [Page 16]

Internet-Draft Pinning Tickets June 2019

6.1.3. Level of Maturity

 This is a prototype.

6.1.4. Coverage

 The entire protocol is implemented.

6.1.5. Version Compatibility

 The implementation is compatible with draft-sheffer-tls-pinning-
ticket-02.

6.1.6. Licensing

 Mint itself and this fork are available under an MIT license.

6.1.7. Contact Information

 See author details below.

7. Security Considerations

 This section reviews several security aspects related to the proposed
 extension.

7.1. Trust on First Use (TOFU) and MITM Attacks

 This protocol is a "trust on first use" protocol. If a client
 initially connects to the "right" server, it will be protected
 against MITM attackers for the lifetime of each received ticket. If
 it connects regularly (depending of course on the server-selected
 lifetime), it will stay constantly protected against fake
 certificates.

 However if it initially connects to an attacker, subsequent
 connections to the "right" server will fail. Server operators might
 want to advise clients on how to remove corrupted pins, once such
 large scale attacks are detected and remediated.

 The protocol is designed so that it is not vulnerable to an active
 MITM attacker who has real-time access to the original server. The
 pinning proof includes a hash of the server's public key, to ensure
 the client that the proof was in fact generated by the server with
 which it is initiating the connection.

https://datatracker.ietf.org/doc/html/draft-sheffer-tls-pinning-ticket-02
https://datatracker.ietf.org/doc/html/draft-sheffer-tls-pinning-ticket-02

Sheffer & Migault Expires December 28, 2019 [Page 17]

Internet-Draft Pinning Tickets June 2019

7.2. Pervasive Monitoring

 Some organizations, and even some countries perform pervasive
 monitoring on their constituents [RFC7258]. This often takes the
 form of always-active SSL proxies. Because of the TOFU property,
 this protocol does not provide any security in such cases.

 Pervasive monitoring may also result in privacy concerns detailed in
 section Section 7.7.

7.3. Server-Side Error Detection

 Uniquely, this protocol allows the server to detect clients that
 present incorrect tickets and therefore can be assumed to be victims
 of a MITM attack. Server operators can use such cases as indications
 of ongoing attacks, similarly to fake certificate attacks that took
 place in a few countries in the past.

7.4. Client Policy and SSL Proxies

 Like it or not, some clients are normally deployed behind an SSL
 proxy. Similarly to [RFC7469], it is acceptable to allow pinning to
 be disabled for some hosts according to local policy. For example, a
 User Agent (UA) MAY disable pinning for hosts whose validated
 certificate chain terminates at a user-defined trust anchor, rather
 than a trust anchor built-in to the UA (or underlying platform).
 Moreover, a client MAY accept an empty PinningTicket extension from
 such hosts as a valid response.

7.5. Client-Side Error Behavior

 When a client receives a malformed or empty PinningTicket extension
 from a pinned server, it MUST abort the handshake and MUST NOT retry
 with no PinningTicket in the request. Doing otherwise would expose
 the client to trivial fallback attacks, similar to those described in
 [RFC7507].

 This rule can however have negative affects on clients that move from
 behind SSL proxies into the open Internet and vice versa, if the
 advice in Section 7.4 is not followed. Therefore, we RECOMMEND that
 browser and library vendors provide a documented way to remove stored
 pins.

7.6. Stolen and Forged Tickets

 Stealing pinning tickets even in conjunction with other pinning
 parameters, such as the associated pinning secret, provides no
 benefit to the attacker since pinning tickets are used to secure the

https://datatracker.ietf.org/doc/html/rfc7258
https://datatracker.ietf.org/doc/html/rfc7469
https://datatracker.ietf.org/doc/html/rfc7507

Sheffer & Migault Expires December 28, 2019 [Page 18]

Internet-Draft Pinning Tickets June 2019

 client rather than the server. Similarly, it is useless to forge a
 ticket for a particular server.

7.7. Client Privacy

 This protocol is designed so that an external attacker cannot
 correlate between different requests of a single client, provided the
 client requests and receives a fresh ticket upon each connection.
 This may be of concern particularly during ramp-down, if the server
 does not provide any new ticket and the client re-uses the same
 ticket. To reduce or avoid such privacy concerns, it is RECOMMENDED
 for the server to issue a fresh ticket with a reduced life time.
 This would at least reduce the time period under which TLS session of
 the client are correlated. The server MAY also issue tickets with a
 zero second lifetime until it is confident all tickets are expired.

 On the other hand, the server to which the client is connecting can
 easily track the client. This may be an issue when the client
 expects to connect to the server (e.g., a mail server) with multiple
 identities. Implementations SHOULD allow the user to opt out of
 pinning, either in general or for particular servers.

 This document does not define the exact content of tickets.
 Including client-specific information in tickets would raise privacy
 concerns and is NOT RECOMMENDED.

7.8. Ticket Protection Key Management

 While the ticket format is not mandated by this document, we
 RECOMMEND using authenticated encryption to protect it. Some of the
 algorithms commonly used for authenticated encryption, e.g. GCM, are
 highly vulnerable to nonce reuse, and this problem is magnified in a
 cluster setting. Therefore implementations that choose AES-GCM or
 any AEAD equivalent MUST adopt one of these three alternatives:

 - Partition the nonce namespace between cluster members and use
 monotonic counters on each member, e.g. by setting the nonce to
 the concatenation of the cluster member ID and an incremental
 counter.

 - Generate random nonces but avoid the so-called birthday bound,
 i.e. never generate more than the maximum allowed number of
 encrypted tickets (2**64 for AES-128-GCM) for the same ticket
 pinning protection Key.

 - An alternative design which has been attributed to Karthik
 Bhargavan is as follows. Start with a 128-bit master key
 "K_master" and then for each encryption, generate a 256-bit random

Sheffer & Migault Expires December 28, 2019 [Page 19]

Internet-Draft Pinning Tickets June 2019

 nonce and compute: K = HKDF(K_master, Nonce || "key"), then N =
 HKDF(K_master, Nonce || "nonce"). Use these values to encrypt the
 ticket, AES-GCM(K, N, data). This nonce should then be stored and
 transmitted with the ticket.

8. IANA Considerations

 IANA is requested to allocate a TicketPinning extension value in the
 TLS ExtensionType Registry.

 [RFC8447] defines the procedure and requirements and the necessary
 information for the IANA to update the "TLS ExtensionType Values"
 registry [TLS-EXT].

 According to [RFC8447] the update of the "TLS ExtensionType Values"
 registry is "Specification Required" [RFC8126] which is fulfilled by
 the current document, when it is published as an RFC.

 The TicketPinning Extension is not limited to Private use and as such
 the TicketPinning Extension Value is expected to have its first byte
 in the range 0-254.

 The TicketPinning Extension Name is expected to be ticket_pinning.

 The TicketPinning Extension Recommended value should be set to "No"
 with the publication of the current document as "Experimental".

 The TicketPinning Extension TLS.13 column should be set to CH, EE to
 indicate that the TicketPinning Extension is present in ClientHello
 and EncryptedExtensions messages.

9. Acknowledgements

 The original idea behind this proposal was published in [Oreo] by
 Moti Yung, Benny Pinkas and Omer Berkman. The current protocol is
 but a distant relative of the original Oreo protocol, and any errors
 are the responsibility of the authors of this document alone.

 We would like to thank Adrian Farrel, Dave Garrett, Daniel Kahn
 Gillmor, Alexey Melnikov, Yoav Nir, Eric Rescorla, Benjamin Kaduk and
 Rich Salz for their comments on this document. Special thanks to
 Craig Francis for contributing the HPKP deployment script, and to
 Ralph Holz for several fruitful discussions.

https://datatracker.ietf.org/doc/html/rfc8447
https://datatracker.ietf.org/doc/html/rfc8126

Sheffer & Migault Expires December 28, 2019 [Page 20]

Internet-Draft Pinning Tickets June 2019

10. References

10.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC8126] Cotton, M., Leiba, B., and T. Narten, "Guidelines for
 Writing an IANA Considerations Section in RFCs", BCP 26,

RFC 8126, DOI 10.17487/RFC8126, June 2017,
 <https://www.rfc-editor.org/info/rfc8126>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

 [RFC8447] Salowey, J. and S. Turner, "IANA Registry Updates for TLS
 and DTLS", RFC 8447, DOI 10.17487/RFC8447, August 2018,
 <https://www.rfc-editor.org/info/rfc8447>.

10.2. Informative References

 [I-D.perrin-tls-tack]
 Marlinspike, M., "Trust Assertions for Certificate Keys",

draft-perrin-tls-tack-02 (work in progress), January 2013.

 [Netcraft]
 Mutton, P., "HTTP Public Key Pinning: You're doing it
 wrong!", March 2016,
 <http://news.netcraft.com/archives/2016/03/30/

http-public-key-pinning-youre-doing-it-wrong.html>.

 [Oreo] Berkman, O., Pinkas, B., and M. Yung, "Firm Grip
 Handshakes: A Tool for Bidirectional Vouching", Cryptology
 and Network Security, pp. 142-157 , 2012.

 [RFC2104] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-
 Hashing for Message Authentication", RFC 2104,
 DOI 10.17487/RFC2104, February 1997,
 <https://www.rfc-editor.org/info/rfc2104>.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc8126
https://www.rfc-editor.org/info/rfc8126
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://datatracker.ietf.org/doc/html/rfc8446
https://www.rfc-editor.org/info/rfc8446
https://datatracker.ietf.org/doc/html/rfc8447
https://www.rfc-editor.org/info/rfc8447
https://datatracker.ietf.org/doc/html/draft-perrin-tls-tack-02
http://news.netcraft.com/archives/2016/03/30/http-public-key-pinning-youre-doing-it-wrong.html
http://news.netcraft.com/archives/2016/03/30/http-public-key-pinning-youre-doing-it-wrong.html
https://datatracker.ietf.org/doc/html/rfc2104
https://www.rfc-editor.org/info/rfc2104

Sheffer & Migault Expires December 28, 2019 [Page 21]

Internet-Draft Pinning Tickets June 2019

 [RFC5077] Salowey, J., Zhou, H., Eronen, P., and H. Tschofenig,
 "Transport Layer Security (TLS) Session Resumption without
 Server-Side State", RFC 5077, DOI 10.17487/RFC5077,
 January 2008, <https://www.rfc-editor.org/info/rfc5077>.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <https://www.rfc-editor.org/info/rfc5246>.

 [RFC6454] Barth, A., "The Web Origin Concept", RFC 6454,
 DOI 10.17487/RFC6454, December 2011,
 <https://www.rfc-editor.org/info/rfc6454>.

 [RFC6962] Laurie, B., Langley, A., and E. Kasper, "Certificate
 Transparency", RFC 6962, DOI 10.17487/RFC6962, June 2013,
 <https://www.rfc-editor.org/info/rfc6962>.

 [RFC7258] Farrell, S. and H. Tschofenig, "Pervasive Monitoring Is an
 Attack", BCP 188, RFC 7258, DOI 10.17487/RFC7258, May
 2014, <https://www.rfc-editor.org/info/rfc7258>.

 [RFC7469] Evans, C., Palmer, C., and R. Sleevi, "Public Key Pinning
 Extension for HTTP", RFC 7469, DOI 10.17487/RFC7469, April
 2015, <https://www.rfc-editor.org/info/rfc7469>.

 [RFC7507] Moeller, B. and A. Langley, "TLS Fallback Signaling Cipher
 Suite Value (SCSV) for Preventing Protocol Downgrade
 Attacks", RFC 7507, DOI 10.17487/RFC7507, April 2015,
 <https://www.rfc-editor.org/info/rfc7507>.

 [RFC7942] Sheffer, Y. and A. Farrel, "Improving Awareness of Running
 Code: The Implementation Status Section", BCP 205,

RFC 7942, DOI 10.17487/RFC7942, July 2016,
 <https://www.rfc-editor.org/info/rfc7942>.

 [TLS-EXT] IANA, ., "TLS Extension Type Value", 2018,
 <https://www.iana.org/assignments/tls-extensiontype-

values/tls-extensiontype-values.xhtml#tls-extensiontype-
values-1>.

https://datatracker.ietf.org/doc/html/rfc5077
https://www.rfc-editor.org/info/rfc5077
https://datatracker.ietf.org/doc/html/rfc5246
https://www.rfc-editor.org/info/rfc5246
https://datatracker.ietf.org/doc/html/rfc6454
https://www.rfc-editor.org/info/rfc6454
https://datatracker.ietf.org/doc/html/rfc6962
https://www.rfc-editor.org/info/rfc6962
https://datatracker.ietf.org/doc/html/bcp188
https://datatracker.ietf.org/doc/html/rfc7258
https://www.rfc-editor.org/info/rfc7258
https://datatracker.ietf.org/doc/html/rfc7469
https://www.rfc-editor.org/info/rfc7469
https://datatracker.ietf.org/doc/html/rfc7507
https://www.rfc-editor.org/info/rfc7507
https://datatracker.ietf.org/doc/html/bcp205
https://datatracker.ietf.org/doc/html/rfc7942
https://www.rfc-editor.org/info/rfc7942
https://www.iana.org/assignments/tls-extensiontype-values/tls-extensiontype-values.xhtml#tls-extensiontype-values-1
https://www.iana.org/assignments/tls-extensiontype-values/tls-extensiontype-values.xhtml#tls-extensiontype-values-1
https://www.iana.org/assignments/tls-extensiontype-values/tls-extensiontype-values.xhtml#tls-extensiontype-values-1

Sheffer & Migault Expires December 28, 2019 [Page 22]

Internet-Draft Pinning Tickets June 2019

Appendix A. Previous Work

 The global PKI system relies on the trust of a CA issuing
 certificates. As a result, a corrupted trusted CA may issue a
 certificate for any organization without the organization's approval
 (a misissued or "fake" certificate), and use the certificate to
 impersonate the organization. There are many attempts to resolve
 these weaknesses, including Certificate Transparency (CT) [RFC6962],
 HTTP Public Key Pinning (HPKP) [RFC7469], and TACK
 [I-D.perrin-tls-tack].

 CT requires cooperation of a large portion of the hundreds of extant
 certificate authorities (CAs) before it can be used "for real", in
 enforcing mode. It is noted that the relevant industry forum (CA/
 Browser Forum) is indeed pushing for such extensive adoption.
 However the public nature of CT often makes it inappropriate for
 enterprise use, because many organizations are not willing to expose
 their internal infrastructure publicly.

 TACK has some similarities to the current proposal, but work on it
 seems to have stalled. Appendix A.2 compares our proposal to TACK.

 HPKP is an IETF standard, but so far has proven hard to deploy. HPKP
 pins (fixes) a public key, one of the public keys listed in the
 certificate chain. As a result, HPKP needs to be coordinated with
 the certificate management process. Certificate management impacts
 HPKP and thus increases the probability of HPKP failures. This risk
 is made even higher given the fact that, even though work has been
 done at the ACME WG to automate certificate management, in many or
 even most cases, certificates are still managed manually. As a
 result, HPKP cannot be completely automated resulting in error-prone
 manual configuration. Such errors could prevent the web server from
 being accessed by some clients. In addition, HPKP uses a HTTP header
 which makes this solution HTTPS specific and not generic to TLS. On
 the other hand, the current document provides a solution that is
 independent of the server's certificate management and that can be
 entirely and easily automated. Appendix A.1 compares HPKP to the
 current document in more detail.

 The ticket pinning proposal augments these mechanisms with a much
 easier to implement and deploy solution for server identity pinning,
 by reusing some of the ideas behind TLS session resumption.

 This section compares ticket pinning to two earlier proposals, HPKP
 and TACK.

https://datatracker.ietf.org/doc/html/rfc6962
https://datatracker.ietf.org/doc/html/rfc7469

Sheffer & Migault Expires December 28, 2019 [Page 23]

Internet-Draft Pinning Tickets June 2019

A.1. Comparison: HPKP

 The current IETF standard for pinning the identity of web servers is
 the Public Key Pinning Extension for HTTP, or HPKP [RFC7469].

 The main differences between HPKP and the current document are the
 following:

 - HPKP limits its scope to HTTPS, while the current document
 considers all application above TLS.

 - HPKP pins the public key of the server (or another public key
 along the certificate chain) and as such is highly dependent on
 the management of certificates. Such dependency increases the
 potential error surface, especially as certificate management is
 not yet largely automated. The current proposal, on the other
 hand, is independent of certificate management.

 - HPKP pins public keys which are public and used for the standard
 TLS authentication. Identity pinning relies on the ownership of
 the pinning key which is not disclosed to the public and not
 involved in the standard TLS authentication. As a result,
 identity pinning is a completely independent second factor
 authentication mechanism.

 - HPKP relies on a backup key to recover the misissuance of a key.
 We believe such backup mechanisms add excessive complexity and
 cost. Reliability of the current mechanism is primarily based on
 its being highly automated.

 - HPKP relies on the client to report errors to the report-uri. The
 current document does not need any out-of band mechanism, and the
 server is informed automatically. This provides an easier and
 more reliable health monitoring.

 On the other hand, HPKP shares the following aspects with identity
 pinning:

 - Both mechanisms provide hard failure. With HPKP only the client
 is aware of the failure, while with the current proposal both
 client and server are informed of the failure. This provides room
 for further mechanisms to automatically recover such failures.

 - Both mechanisms are subject to a server compromise in which users
 are provided with an invalid ticket (e.g. a random one) or HTTP
 Header, with a very long lifetime. For identity pinning, this
 lifetime SHOULD NOT be longer than 31 days. In both cases,
 clients will not be able to reconnect the server during this

https://datatracker.ietf.org/doc/html/rfc7469

Sheffer & Migault Expires December 28, 2019 [Page 24]

Internet-Draft Pinning Tickets June 2019

 lifetime. With the current proposal, an attacker needs to
 compromise the TLS layer, while with HPKP, the attacker needs to
 compromise the HTTP server. Arguably, the TLS-level compromise is
 typically more difficult for the attacker.

 Unfortunately HPKP has not seen wide deployment yet. As of March
 2016, the number of servers using HPKP was less than 3000 [Netcraft].
 This may simply be due to inertia, but we believe the main reason is
 the interactions between HPKP and manual certificate management which
 is needed to implement HPKP for enterprise servers. The penalty for
 making mistakes (e.g. being too early or too late to deploy new pins)
 is having the server become unusable for some of the clients.

 To demonstrate this point, we present a list of the steps involved in
 deploying HPKP on a security-sensitive Web server.

 1. Generate two public/private key-pairs on a computer that is not
 the Live server. The second one is the "backup1" key-pair.

 "openssl genrsa -out "example.com.key" 2048;"

 "openssl genrsa -out "example.com.backup1.key" 2048;"

 2. Generate hashes for both of the public keys. These will be used
 in the HPKP header:

 "openssl rsa -in "example.com.key" -outform der -pubout |
 openssl dgst -sha256 -binary | openssl enc -base64"

 "openssl rsa -in "example.com.backup1.key" -outform der
 -pubout | openssl dgst -sha256 -binary | openssl enc -base64"

 3. Generate a single CSR (Certificate Signing Request) for the
 first key-pair, where you include the domain name in the CN
 (Common Name) field:

 "openssl req -new -subj "/C=GB/ST=Area/L=Town/O=Company/
 CN=example.com" -key "example.com.key" -out "example.com.csr";"

 4. Send this CSR to the CA (Certificate Authority), and go though
 the dance to prove you own the domain. The CA will give you
 back a single certificate that will typically expire within a
 year or two.

 5. On the Live server, upload and setup the first key-pair (and its
 certificate). At this point you can add the "Public-Key-Pins"
 header, using the two hashes you created in step 2.

Sheffer & Migault Expires December 28, 2019 [Page 25]

Internet-Draft Pinning Tickets June 2019

 Note that only the first key-pair has been uploaded to the
 server so far.

 6. Store the second (backup1) key-pair somewhere safe, probably
 somewhere encrypted like a password manager. It won't expire,
 as it's just a key-pair, it just needs to be ready for when you
 need to get your next certificate.

 7. Time passes... probably just under a year (if waiting for a
 certificate to expire), or maybe sooner if you find that your
 server has been compromised and you need to replace the key-pair
 and certificate.

 8. Create a new CSR (Certificate Signing Request) using the
 "backup1" key-pair, and get a new certificate from your CA.

 9. Generate a new backup key-pair (backup2), get its hash, and
 store it in a safe place (again, not on the Live server).

 10. Replace your old certificate and old key-pair, and update the
 "Public-Key-Pins" header to remove the old hash, and add the new
 "backup2" key-pair.

 Note that in the above steps, both the certificate issuance as well
 as the storage of the backup key pair involve manual steps. Even
 with an automated CA that runs the ACME protocol, key backup would be
 a challenge to automate.

A.2. Comparison: TACK

 Compared with HPKP, TACK [I-D.perrin-tls-tack] is a lot more similar
 to the current document. It can even be argued that this document is
 a symmetric-cryptography variant of TACK. That said, there are still
 a few significant differences:

 - Probably the most important difference is that with TACK,
 validation of the server certificate is no longer required, and in
 fact TACK specifies it as a "MAY" requirement (Sec. 5.3). With
 ticket pinning, certificate validation by the client remains a
 MUST requirement, and the ticket acts only as a second factor. If
 the pinning secret is compromised, the server's security is not
 immediately at risk.

 - Both TACK and the current document are mostly orthogonal to the
 server certificate as far as their life cycle, and so both can be
 deployed with no manual steps.

Sheffer & Migault Expires December 28, 2019 [Page 26]

Internet-Draft Pinning Tickets June 2019

 - TACK uses ECDSA to sign the server's public key. This allows
 cooperating clients to share server assertions between themselves.
 This is an optional TACK feature, and one that cannot be done with
 pinning tickets.

 - TACK allows multiple servers to share its public keys. Such
 sharing is disallowed by the current document.

 - TACK does not allow the server to track a particular client, and
 so has better privacy properties than the current document.

 - TACK has an interesting way to determine the pin's lifetime,
 setting it to the time period since the pin was first observed,
 with a hard upper bound of 30 days. The current document makes
 the lifetime explicit, which may be more flexible to deploy. For
 example, Web sites which are only visited rarely by users may opt
 for a longer period than other sites that expect users to visit on
 a daily basis.

Appendix B. Document History

B.1. draft-sheffer-tls-pinning-ticket-12

 - IETF-Conflict Review comments.

 - IANA: removed request for a specific extension value.

B.2. draft-sheffer-tls-pinning-ticket-11

 - Comments by Ben Kaduk. Specifically, changed the derivation of
 the pinning proof to make it more in line with the TLS 1.3 key
 schedule.

B.3. draft-sheffer-tls-pinning-ticket-10

 - ISE comments by Adrian Farrel, the ISE.

B.4. draft-sheffer-tls-pinning-ticket-09

 - ISE comments by Yoav Nir.

B.5. draft-sheffer-tls-pinning-ticket-08

 - ISE comments by Rich Salz.

https://datatracker.ietf.org/doc/html/draft-sheffer-tls-pinning-ticket-12
https://datatracker.ietf.org/doc/html/draft-sheffer-tls-pinning-ticket-11
https://datatracker.ietf.org/doc/html/draft-sheffer-tls-pinning-ticket-10
https://datatracker.ietf.org/doc/html/draft-sheffer-tls-pinning-ticket-09
https://datatracker.ietf.org/doc/html/draft-sheffer-tls-pinning-ticket-08

Sheffer & Migault Expires December 28, 2019 [Page 27]

Internet-Draft Pinning Tickets June 2019

B.6. draft-sheffer-tls-pinning-ticket-07

 - Refer to published RFCs.

B.7. draft-sheffer-tls-pinning-ticket-06

 - IANA Considerations in preparation for Experimental publication.

B.8. draft-sheffer-tls-pinning-ticket-05

 - Multiple comments from Eric Rescorla.

B.9. draft-sheffer-tls-pinning-ticket-04

 - Editorial changes.

 - Two-phase rotation of protection key.

B.10. draft-sheffer-tls-pinning-ticket-03

 - Deleted redundant length fields in the extension's formal
 definition.

 - Modified cryptographic operations to align with the current state
 of TLS 1.3.

 - Numerous textual improvements.

B.11. draft-sheffer-tls-pinning-ticket-02

 - Added an Implementation Status section.

 - Added lengths into the extension structure.

 - Changed the computation of the pinning proof to be more robust.

 - Clarified requirements on the length of the pinning_secret.

 - Revamped the HPKP section to be more in line with current
 practices, and added recent statistics on HPKP deployment.

B.12. draft-sheffer-tls-pinning-ticket-01

 - Corrected the notation for variable-sized vectors.

 - Added a section on disaster recovery and backup.

 - Added a section on privacy.

https://datatracker.ietf.org/doc/html/draft-sheffer-tls-pinning-ticket-07
https://datatracker.ietf.org/doc/html/draft-sheffer-tls-pinning-ticket-06
https://datatracker.ietf.org/doc/html/draft-sheffer-tls-pinning-ticket-05
https://datatracker.ietf.org/doc/html/draft-sheffer-tls-pinning-ticket-04
https://datatracker.ietf.org/doc/html/draft-sheffer-tls-pinning-ticket-03
https://datatracker.ietf.org/doc/html/draft-sheffer-tls-pinning-ticket-02
https://datatracker.ietf.org/doc/html/draft-sheffer-tls-pinning-ticket-01

Sheffer & Migault Expires December 28, 2019 [Page 28]

Internet-Draft Pinning Tickets June 2019

 - Clarified the assumptions behind the HPKP procedure in the
 comparison section.

 - Added a definition of pin indexing (origin).

 - Adjusted to the latest TLS 1.3 notation.

B.13. draft-sheffer-tls-pinning-ticket-00

 Initial version.

Authors' Addresses

 Yaron Sheffer
 Intuit

 EMail: yaronf.ietf@gmail.com

 Daniel Migault
 Ericsson

 EMail: daniel.migault@ericsson.com

https://datatracker.ietf.org/doc/html/draft-sheffer-tls-pinning-ticket-00

Sheffer & Migault Expires December 28, 2019 [Page 29]

