6lowapp Z. Shelby _T0C
Internet-Draft Sensinode

Intended status: .
M. Garrison Stuber

Informational

Expires: June 26, 2010 Itron
D. Sturek
Pacific Gas &
Electric
B. Frank

Tridium, Inc

R. Kelsey

Ember

December 23, 2009

CoAP Feature Analysis
draft-shelby-6lowapp-coap-00

Abstract

This document considers the requirements and resulting features needed
for the design of the Constrained Application Protocol (CoAP). Starting
from requirements for energy and building automation applications, the
basic features are identified along with an analysis of possible
realizations. The goal of the document is to provide a basis for
protocol design and related discussion.

Status of this Memo

This Internet-Draft is submitted to IETF in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task
Force (IETF), its areas, and its working groups. Note that other groups
may also distribute working documents as Internet-Drafts.
Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference material
or to cite them other than as “work in progress.”

The list of current Internet-Drafts can be accessed at http://
www.ietf.org/ietf/1id-abstracts. txt.

The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

This Internet-Draft will expire on June 26, 2010.



http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Copyright Notice

Copyright (c) 2009 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents (http://trustee.ietf.org/license-
info) in effect on the date of publication of this document. Please
review these documents carefully, as they describe your rights and
restrictions with respect to this document. Code Components extracted
from this document must include Simplified BSD License text as
described in Section 4.e of the Trust Legal Provisions and are provided
without warranty as described in the BSD License.

This document may contain material from IETF Documents or IETF
Contributions published or made publicly available before November 10,
2008. The person(s) controlling the copyright in some of this material
may not have granted the IETF Trust the right to allow modifications of
such material outside the IETF Standards Process. Without obtaining an
adequate license from the person(s) controlling the copyright in such
materials, this document may not be modified outside the IETF Standards
Process, and derivative works of it may not be created outside the IETF
Standards Process, except to format it for publication as an RFC or to
translate it into languages other than English.

Table of Contents

1. Introduction
1.1. COAP Requirements
2. COAP Feature Analysis
2.1. Compact Header
2.2. Basic Messages
2.3. REST Methods
2.4. Content-type encoding
2.5. URLs
2.6. Caching
2.7. Subscribe/Notify
2.8. Transport Binding
2.8.1. UDP
2.8.2. TCP
2.9. Resource Discovery
2.10. HTTP Mapping
3. Applicability

3.1. Energy Applications
3.2. Building Automation
3.3. General M2M Applications
Conclusions

Security Considerations

IANA Considerations

[



7. Acknowledgments
8. References
8.1. Normative References
8.2. Informative References
8 Authors' Addresses

1. Introduction TOC

The use of web services on the Internet has become ubiquitous in most
applications, and depends on the basic REST architecture of the web.
The proposed Constrained RESTful Environments (CoRE) working group aims
at extending the REST architecture to a suitable form for the most
constrained nodes (e.g. 8-bit microcontrollers with limited RAM and
ROM) and networks (e.g. 6LOWPAN). One of the main goals of CORE is to
design a generic RESTful protocol for the special requirements of this
constrained environment, especially considering energy and building
automation applications. The result of this work should be a
Constrained Application Protocol (CoAP) which easily traslates to HTTP
for integration with the web while meeting specialized requirements
such as multicast support, very low overhead and simplicity.

This document first analyzes the requirements for CoAP from the
proposed charter and related application requirement drafts in

Section 1.1 (CoAP Requirements). The key features needed for the CoAP
protocol are then identified in Section 2 (CoAP Feature Analysis).
Possible ways of realizing each feature are considered and
recommendations made where possible. Finally, the applicability of
these features to energy, building automation and general M2M
applications is considered in Section 3 (Applicability).

1.1. CoAP Requirements TOC

Paragraph 1. The following requirements for CoAP have been identified
in the proposed charter of the working group, in the 6lowapp problem
statement [I-D.bormann-6lowpan-6lowapp-problem] (Bormann, C., Sturek,
D., and Z. Shelby, “6LowApp: Problem Statement for 6LOWPAN and LLN
Application Protocols,” July 2009.), or in the application specific
requirement documents. The requirements relevant to COAP are summarizes
as follows:

REQ1: Nodes have limited code size and limited RAM (typically on
the order of 128K flash and 4K of RAM). [charter],
[I-D.sturek-6lowapp-smartenergy] (Sturek, D., Shelby, Z., Lohman,




D., Stuber, M., and S. Ashton, “Smart Energy Requiements for
6LowApp,” October 2009.)

REQ2: A header size on the order of 10 bytes, and assumes an
underlying network bandwidth of several dozen kbit/s. [charter]

REQ3: Ability to deal with sleeping nodes. Devices may be powered
off at any point in time but periodically "wake up" for brief
periods of time. [charter], [I-D.sturek-6lowapp-smartenerqgy]
(Sturek, D., Shelby, Z., Lohman, D., Stuber, M., and S. Ashton,
“Smart Energy Requiements for 6LowApp,” October 2009.),
[I-D.gold-6lowapp-sensei] (Gold, R., Krco, S., Gluhak, A., and Z.

Shelby, “SENSEI 6lowapp Requirements,” October 2009.)

REQ4: Protocol must support the caching of recent resource
requests, along with caching subscriptions to sleeping nodes.
[charter]

REQ5: Must support the manipulation of simple resources on
constrained nodes and networks. The architecture requires push,
pull and a notify approach to manipulating resources. CoAP will
be able to set and query a resource on a Device. It will allow a
Device to publish a value or event to another Device. [charter],
[I-D.sturek-6lowapp-smartenergy] (Sturek, D., Shelby, Z., Lohman,

D., Stuber, M., and S. Ashton, “Smart Enerqgy Requiements for
6LowApp,” October 2009.),
[I-D.martocci-6lowapp-building-applications] (Martocci, J. and A.

Schoofs, “Commercial Building Applications Requirements,”
October 2009.), [I-D.gold-6lowapp-sensei] (Gold, R., Krco, S.,
Gluhak, A., and Z. Shelby, “SENSEI 6lowapp Reguirements,”
October 2009.)

REQ6: Must define a mapping from CoAP to a HTTP REST API; this
mapping will not depend on a specific application and must be as
transparent as possible using standard protocol response and
error codes where possible. [charter],
[I-D.sturek-6lowapp-smartenergy] (Sturek, D., Shelby, Z., Lohman,

D., Stuber, M., and S. Ashton, “Smart Energy Requiements for
6LowApp,” October 2009.), [I-D.gold-6lowapp-sensei] (Gold, R.,
Krco, S., Gluhak, A., and Z. Shelby, “SENSEI 6lowapp
Reguirements,” October 2009.)

REQ7: Each interface profile will define the Resources on the
Device that applications can manipulate and what manipulations
are possible. CoOAP must be able to discover Devices on the CNN



and to interrogate them to find out which interface profiles they
support. [charter]

REQ8: COAP will support a non-reliable multicast message to be sent
to a group of Devices to manipulate a resource on all the Devices
simultaneously (roughly within 50 ms of each other) [charter].
The use of multicast for discovery and advertisement must be
supported, along with the support of unicast responses
[I-D.sturek-6lowapp-smartenergy] (Sturek, D., Shelby, Z., Lohman,
D., Stuber, M., and S. Ashton, “Smart Energy Requiements for
6LowApp,” October 2009.).

REQ9: The protocol will operate by default over UDP, it may
optionally be bound to TCP or other reliable transports.
[charter], [I-D.sturek-6lowapp-smartenergy] (Sturek, D., Shelby,
Z., Lohman, D., Stuber, M., and S. Ashton, “Smart Energy
Requiements for 6LowApp,” October 2009.),
[I-D.martocci-6lowapp-building-applications] (Martocci, J. and A.
Schoofs, “Commercial Building Applications Requirements,”
October 2009.)

REQ10: Reliability must be provided for application layer messages
[I-D.sturek-6lowapp-smartenergy] (Sturek, D., Shelby, Z., Lohman,
D., Stuber, M., and S. Ashton, “Smart Energy Requiements for
6LowApp,” October 2009.). Must achieve < 0.01% Application layer
errors on all messages assuming a .1% Network layer error rate.

REQ11: Latency times should be mimimized of the Home Area Network
(HAN), and ideally a typical exchange should consist of just a
single request and a single response message.
[I-D.sturek-6lowapp-smartenergy] (Sturek, D., Shelby, Z., Lohman,
D., Stuber, M., and S. Ashton, “Smart Energy Requiements for
6LowApp,” October 2009.)

REQ12: Internet media type and transfer encoding type support.
[I-D.sturek-6lowapp-smartenergy] (Sturek, D., Shelby, Z., Lohman,
D., Stuber, M., and S. Ashton, “Smart Energy Requiements for
6LowApp,” October 2009.), [I-D.gold-6lowapp-sensei] (Gold, R.,
Krco, S., Gluhak, A., and Z. Shelby, “SENSEI 6lowapp
Requirements,” October 2009.)

2. COAP Feature Analysis TOC

This section introduces the minimum set of features needed to realize
CoAP, and looks at the possible options for realizing them. These
features are considered in light on the requirements listed in



Section 1.1 (CoAP Requirements). The goal is to consider the cross-
dependencies, benefits and drawbacks of alternatives for realizing CoOAP
and to narrow down the options where obvious.

2.1. Compact Header TOC

There is a requirement for a header overhead on the order of 10 bytes
with limited complexity due to node limitations. It should be noted
that in wireless networks bits transmitted are much more expensive than
processing cycles. The following header design options are considered:

Fixed approach: The simplest approach is to assume as fixed set of
byte-aligned fields. The use of variable length fields should be
avoided if possible, one obvious exception being a string URL
(see Section 2.5 (URLs)). This results in a simple header that
can be represented as a struct and easily parsed/created. The
disadvantages are difficult evolvability and the tendency to
design missing tranport features on-top of COAP.

Extensible approach: The approach of [I-D.frank-6lowapp-chopan]
(Frank, B., “Chopan - Compressed HTTP Over PANs,”
September 2009.) is to encode HTTP headers as binary tuples,
assuming that a large number of optional headers will be needed.
A similar approach could be takenin CoAP, giving total header
flexibility. The disadvantage is header parsing complexity.

Hybrid approach: It is unclear how much extensibility is really
required from the headers of CoAP. Some of the fields in the
protocol will obviously require a sufficient value space for
future extensions, such as for indicating content type. Other
headers are clearly optional, such as those related to cache
control (see Section 2.6 (Caching)) or even the URL (see
Section 2.5 (URLs)). A hybrid approach would be to design a small
fixed header, with the ability to include extension headers, such
as in ICMP [RFC0792] (Postel, J., “Internet Control Message
Protocol,” September 1981.).

Considering the features foreseen by this document, some kind of
extensible hybrid approach is recommended. Most features are fixed for
messages, whereas only a some are expected to be optional.

T0C



2.2. Basic Messages

It is assumed that basic Request and Response messages will be required
by the CoAP protocol. This also provides a natural mapping to HTTP (See
Section 2.10 (HTTP Mapping)) and the response may be useful as an
acknowledgement in UDP reliability (See Section 2.8.1 (UDP)). It can be
considered that CoAP methods are different kinds of Request messages.

2.3. REST Methods TOC

The core methods of REST must be supported within CoAP. To minimize
confusion with HTTP methods, having their own protocol semantics, in
CoAP we call the basic REST methods READ, WRITE, CREATE, DESTROY.
Additionally, COAP must support a light-weight Subscribe/Notify
mechanism (see Section 2.7 (Subscribe/Notify)). This may require a new
NOTIFY method. The discovery mechanism of COAP may also require a new
method called DISCOVER which has different semantics than a READ (see
Section 2.9 (Resource Discovery)). In order to maintain compatibility
with HTTP, these new messages must be mapped to a standard HTTP method.
See Section 2.10 (HTTP Mapping) for more about HTTP mapping.

2.4. Content-type encoding TOC

In order to support hetergenous uses, it is important that CoAP is
transparent to the use of different application payloads. In order for
the application process receiving a packet to properly parse a payload,
its content-type and encoding should be explicitly known from the
header (as e.g. with HTTP). The use of typical binary encodings for XML
is discussed in [I-D.shelby-6lowapp-encoding] (Shelby, Z., Luimula, M.,

and D. Peintner, “Efficient XML Encoding and 6LowApp,” October 2009.),
which includes recommendations for header indication. The draft
recommends the indication of at least 10 Internet media types (MIME)
[REC2046] (Freed, N. and N. Borenstein, “Multipurpose Internet Mail
Extensions (MIME) Part Two: Media Types,” November 1996.) and 2 content
transfer encodings.

It is obvious that string names of Internet media types [RFC2046]
(Freed, N. and N. Borenstein, “Multipurpose Internet Mail Extensions
(MIME) Part Two: Media Types,” November 1996.) are not appropriate for
use in the CoOAP header. But then how to make this small yet extensible?
One possible solution is to simply assign codes to a small subset of
common MIME and content transfer encoding types and have IANA maintain
that. A field of 16-bits should be sufficient for encoding both media
and content transfer encoding types.




2.5. URLs TOC

The Universal Resource Locator (URL) [RFC3986] (Berners-Lee, T.,
Fielding, R., and L. Masinter, “Uniform Resource Identifier (URI):
Generic Syntax,” January 2005.) is an important feature of the REST
architecture, the relative part of the URL indicates which resource on
the server is being manipulated. It is surely useful for CoOAP to
support string URLs, which requires a variable length-value field.
Although URLs can be designed for compactness, this still often results
in 10s of bytes of overhead. The encoding of of a URL string needs to
be considered, as this is becoming increasingly complex. It is
recommended that only US-ASCII is supported in URL strings for COAP as
defined in [RFC3986] (Berners-lLee, T., Fielding, R., and L. Masinter,
“Uniform Resource Identifier (URI): Generic Syntax,” January 2005.), or
even a stricter subset as URL parsing is complex and may result in
security problems.

Constrained devices are not general purpose web servers, and thus often
won't host but a small set of resources with fixed URLs. Thus in
addition to string URLs a feature for compressing fixed URLs would be
useful.

One way of achieving this would be to assign an integer identifier (7-8
bits should be sufficient) to each fixed URL in an off-line interface
description (e.g. Web Application Description Langauge (WADL)) or in
its profile. This identifier could be encoded in the URL length field
instead of the string length.

2.6. Caching TOC

The cachability of CoOAP messages will be important, especially with the
sleeping node configurations and power limitations typically found in
constrained networks and nodes. What features of cachability are really
required and how much energy are we willing to spend on it? Roughly 50%
of the HTTP specifications are dedicated to sohpisticated caching. With
CoAP we should look at the bare minimum caching feature possible.
Before talking about caching solutiongs, we should consider in what
scenarios caching will actually be required. The following two
scenarios have been identified:

*An intermediate CoAP proxy may cache resources and answer READ
requests using a cached version. The resource may be cached from
previous responses or notifications. This requires at least Max-
Age cache control information about each resource.



*An intermediate CoOAP proxy may cache subscriptions to a sleeping
node. This requires at least Max-Age information about the
subscription.

Three possible approaches have been identified for caching support.

In-band approach: One approach is suggested in
[I-D.frank-6lowapp-chopan] (Frank, B., “Chopan - Compressed HTTP
Over PANs,” September 2009.), which analyses the subset of
features from HTTP that could be used for simple sensor data
purposes. The proposal is that simply using the using the HTTP
Age header (for resource age) and Cache-Control header (for max-
age). Max-age may also be applied in requests. Both headers make
use of a 2-byte value in seconds. The advantage of this approach
is that cache control information is easily available from the
header. The disadvantage is the header overhead.

Out-of-band approach: Here the CoAP protocol would be agnostic to
the cachability of the resources it is carrying, instead leaving
the definition of cache control parameters to the body of the
resources in an application specific way. The disadvantage is
that this makes proxies dependent on the application.

Discovery approach: 1In this approach the cache control information
for resources is defined off-line in the list of a server's
resources. This approach is used e.g. in the SENSEI system
[I-D.gold-6lowapp-sensei] (Gold, R., Krco, S., Gluhak, A., and Z.

Shelby, “SENSEI 6lowapp Requirements,” October 2009.). The
disadvantage id that the caching is dependent on the profile,
which may not be a problem if the cache information is in a
universal format (see Section 2.9 (Resource Discovery)).

Based on the current analysis either the In-band or Profile approach
would be reasonable for CoAP considering the requirements.

2.7. Subscribe/Notify TOC

CoAP 1is required to integrate a push model for interaction in addition
to traditional request/response. Meaning that interested clients could
subscribe to a resource (a URL), and receive notifications to a call-
back URL of their choice. In its most basic form a notification would
be sent each time the resource changes. There are many issues to
consider including managing subscription leasing and timeouts, how to
batch multiple changes and how to tune notify times. Before considering
the details, there are a few general general models possible for
realizing the Subscribe/Notify mechanism:



Resource:
Subscribe is realized using CREATE on a well known

resource (e.g. /subsribe) with the URL of the resource of
interest and a URL call-back in the body). Notifications would be
made using a NOTIFY message to the call-back URL. Likewise, de-
subscribe is realized using DESTROY on the same well known
resource with the URL in the body. Notifications would cease
after the DESTROY.

Watch: This method would require a CREATE to a new URI to '"create"
a new watch resource. WRITE is then used to add/remove a set of
URIs being "watched" along with call-backs.

2.8. Transport Binding TOC

The CoAP protocol will operate by default over UDP and it may
optionally be bound to TCP or other reliable transports. In this
section we look at the issues regarding these bindings.

2.8.1. UDP T0C

The goal of binding CoAP to UDP is to provide the bare minimum features
for the protocol to operate over UDP, going nowhere near trying to re-

create the full feature set of TCP. The bare minimum features required

would be:

*Stop-and-wait would be sufficient for reliability. A simple
response message itself would suffice as an acknowledgement with
retransmission support. Not all requests require reliability,
thus this should be optional. Performance is not the key here and
for more sophisticated reliability and flow control TCP can be
used.

*A sequence number (transaction ID) is needed to match responses
to open requests and would be generated by the client. A 12-16
bit unsigned interger would be sufficient.
[I-D.frank-6lowapp-chopan] (Frank, B., “Chopan - Compressed HTTP
Over PANs,” September 2009.) also considered this solution.

*Multicast support. Providing reliability with a multicast
destination address would be very complex. Therefore the goal is
to provide non-reliable multicast service. In many cases there
may not be a response to a multi-cast message. A multicast



command might result in an action being taken at a device, but no
response being sent. Therefore a multicast request may be
answered with a unicast response, however without reliability
(retransmission e.g.).

2.8.2. TCP T0C

The CoAP protocol also has the goal of defining a TCP binding. As TCP
provides a reliable stream this binding does not require anything
special from the CoAP protcol design. The same basic messages could be
applied over TCP without stop-and-wait. A transaction ID should still
be used over TCP.

2.9. Resource Discovery TOC

COAP is required to support the discovery of resources offered by CoAP
servers. In order to achieve this, the protocol would need to suport
multicast with optional responses for discovery (over UDP), along with
unicast requests and posting of profiles (over UDP or TCP). A well-
known resource (/profile) could be used to enable profile discovery
through a new DISCOVER method along with profile sending on an optional
broker with a CREATE or modification with a WRITE to /profile. The
response to a DISCOVER message would include a list of resource URLs
available, or those matched if the DISCOVER has a body with one or more
URLs. Such a resource list could include optional information such as
the URL to a description of the interface.

Section 2.6 (Caching) discusses different caching models. If caching
would be realized using the Profile model, then the resource list would
need to indicate at least the Max-Age of each resource.

2.10. HTTP Mapping TOC

It shall be possible to map from CoAP directly to HTTP, COAP however
only offers a subset of the HTTP protocol features. As a result,
programs implementing translation between HTTP and COAP must either
implement other HTTP 1.1 commands on behalf of the CoAP nodes (e.g.
LINK, TRACE, OPTIONS), or must reject such request. The primary
responsibility of a program translating between HTTP and COAP is to
rewrite the headers, translating between the highly optimized CoAP
headers and plain text HTTP headers. It must also manage/maintain TCP



sessions necessary for HTTP. Depending on how some of the features of
CoAP are realized, the mapping may also need to make further
translations for subscription or caching.

3. Applicability TOC

This sections looks at the applicability of the CoAP features for
energy, building automation and other macine-to-machine (M2M)
applications.

3.1. Energy Applications TOC

Rising energy prices, concerns about global warming and energy resource
depletion, and societal interest in more ecologically friendly living
have resulted in government mandates for Smart Energy solutions. In a
Smart Energy environment consumers of energy have direct, immediate
access to information about their consumption, and are able to take
action based on that information. Smart Energy systems also allow
device to device communication to optimize the transport, reliability,
and safety of energy delivery systems. While often Smart Energy
solutions are electricity-centric, i.e. Smart Grid, gas and water are
also subject to the same pressures, and can benefit from the same
technology.

Smart Energy Transactions typically include the exchange of current
consumption information, text messages from providers to consumers, and
control signals requesting a reduction in consumption. Advanced
features such as billing information, energy prepayment transactions,
management of distributed energy resources (e.g. generators and photo-
voltaics), and management of electric vehicles are also being
developed.

Smart Energy benefits from Metcalfe's Law. The more devices that are
part of a smart energy network within the home or on the grid, the more
valuable it becomes. Showing a consumer how much energy they are using
is useful. Combining that with specific information about their major
appliances, and enabling them to adjust their consumption based on
current pricing and system demand is much much more powerful. To do
this however requires a system that is resillient, low cost, and easy
to install. In many areas this is being done with systems built around
IEEE 802.15.4 radios. In the United States, there are over 30 million
electric meters that will be deployed with these radios. These radios
will be combined to form a mesh network, enabling Smart Energy
communication within the home. The maximum packet size for IEEE
802.15.4 is only 127 bytes. Additionally, there is the well known issue
of how TCP manages congestion working sub-optimally over wireless



networks. IEEE 802.15.4 is ideal for these applications because of its
low cost and its support for battery powered devices; however, it is
not as well suited for heavier protocols like HTTP. These technical
issues with IEEE 802.15.4 networks combined with a desire to facilitate
broader compatibility, makes a protocol like CoOAP desireable. Its REST
architecture will allow seamless compatibility with the rest of the
Internet, allowing it to be easily integrated with web browsers and
web-based service providers, while at the same time being appropriately
sized for the low-cost networks necessary for its success.

3.2. Building Automation TOC

Building automation applications were analyzed in detail including use
cases in [I-D.martocci-6lowapp-building-applications] (Martocci, J. and
A. Schoofs, “Commercial Building Applications Requirements,”

October 2009.). Although many of the embedded control solutions for
building automation make use of industry-specific application protocols
like BACnet over IP, there is a growing use of web services in building
monitoring, remote control and IT integration. The OASIS oBIX standard
[ref] is one example of the use of web services for the monitoring and
interconnection of heterogeneous building systems. Several of the CoAP
requirements have been taken from
[I-D.martocci-6lowapp-building-applications] (Martocci, J. and A.
Schoofs, “Commercial Building Applications Requirements,”

October 2009.). The resulting features should allow for peer-to-peer
interactions as well as node-server request/response and push
interfactions for monitoring and some control purposes. For building
automation control with very strict timing requirements using e.g.
multicast, further features may be required on top of CoOAP.

3.3. General M2M Applications TOC

CoAP provides a natural extension of the REST architecture into the
domain of constrained nodes and networks, aiming at requirements from
automation applications in energy and building automation. A very wide
range of machine-to-machine (M2M) applications have similar
requirements to those considered in this document, and thus it is
foreseen that CoAP may be widely applied in the industry. One
standardization group considering a general M2M architecture and API is
the ETSI M2M TC [ref], which considers a wide range of applications
including energy. Another group developing solutions for general
embedded device control is the OASIS Device Proile Web Services (DPWS)
group. The consideration of DPWS over 6LOWPAN is available in



[I-D.moritz-6lowapp-dpws-enhancements] (Moritz, G., “DPWS for 6LOWPAN,"”
December 2009.).

4. Conclusions TOC

This document analyzed the requirements associated with the design of
the foreseen Constrained Application Protocol (CoAP). Based on these
requirements a list of minumum features was analyzed along with
different options for realizing them. If possible a recommendation was
also made where obvious. Finally, the identified features of COAP are
considered for energy, building automation and M2M applications. This
document is meant to serve as a basis for the design of the CoOAP
protocol and relevant discussion.

CoAP 1is proposed as a transport agnostic extension of REST for
deployment in confined computing environments. The intent is to align
CoAP with HTTP wherever possible to leverage the web services computing
environment already in place.

Whereas REST envisions just 4 primitives (READ, SET, CREATE and
DESTROY), COAP proposes to extend this paradigm with a NOTIFY primitive
to enable publish/subscribe along with a DISCOVER primitive to support
multicast discovery of services denoted by URL. The main architectural
difference between READ and the new discovery primitive is the
requirement to not respond if the URL is not present on a local device.
Finally, CoOAP seeks to preserve the caching facilities of HTTP and
extend that capability for power saving devices that are not always
active on the network.

5. Security Considerations TOC

Some of the features considered in this document will need further
security considerations during a protocol design. For example the use
of string URLs may have entail security risks due to complex processing
on limited microcontroller implementations.

The CoAP protocol will be designed for use with (D)TLS or object
security. A protocol design should consider how integration with these
security methods will be done, how to secure the CoAP header and other
implications.

6. IANA Considerations TOC

This draft requires no IANA consideration.



7. Acknowledgments TOC

Thanks to Cullen Jennings for helpful comments and discussions.

8. References TOC

8.1. Normative References

TOC
[I-D.frank-6lowapp- Frank, B., “Chopan - Compressed HTTP Over
chopan] PANs,” draft-frank-6lowapp-chopan-00 (work
in progress), September 2009 (TXT).
[I-D.gold-6lowapp- Gold, R., Krco, S., Gluhak, A., and Z.
sensei] Shelby, “SENSEI 6lowapp Requirements,”

draft-gold-6lowapp-sensei-00 (work in
progress), October 2009 (TXT).
[I-D.martocci-6lowapp- Martocci, J. and A. Schoofs, “Commercial
building-applications] Building Applications Requirements,” draft-
martocci-6lowapp-building-applications-00
(work in progress), October 2009 (TXT).
[I-D.shelby-6lowapp- Shelby, Z., Luimula, M., and D. Peintner,
encoding] “Efficient XML Encoding and 6LowApp,”
draft-shelby-6lowapp-encoding-00 (work in
progress), October 2009 (TXT).

[I-D.sturek-6lowapp- Sturek, D., Shelby, Z., Lohman, D., Stuber,
smartenergy] M., and S. Ashton, “Smart Energy

Requiements for 6LowApp,” draft-
sturek-6lowapp-smartenergy-00 (work in
progress), October 2009 (TXT).

[RFC2046] Freed, N. and N. Borenstein, “Multipurpose
Internet Mail Extensions (MIME) Part Two:
Media Types,” RFC 2046, November 1996
(TXT).

[RFC3986] Berners-Lee, T., Fielding, R., and L.
Masinter, “Uniform Resource Identifier
(URI): Generic Syntax,” STD 66, RFC 3986,
January 2005 (TXT, HTML, XML).



http://www.ietf.org/internet-drafts/draft-frank-6lowapp-chopan-00.txt
http://www.ietf.org/internet-drafts/draft-frank-6lowapp-chopan-00.txt
http://www.ietf.org/internet-drafts/draft-frank-6lowapp-chopan-00.txt
http://www.ietf.org/internet-drafts/draft-gold-6lowapp-sensei-00.txt
http://www.ietf.org/internet-drafts/draft-gold-6lowapp-sensei-00.txt
http://www.ietf.org/internet-drafts/draft-martocci-6lowapp-building-applications-00.txt
http://www.ietf.org/internet-drafts/draft-martocci-6lowapp-building-applications-00.txt
http://www.ietf.org/internet-drafts/draft-martocci-6lowapp-building-applications-00.txt
http://www.ietf.org/internet-drafts/draft-shelby-6lowapp-encoding-00.txt
http://www.ietf.org/internet-drafts/draft-shelby-6lowapp-encoding-00.txt
http://www.ietf.org/internet-drafts/draft-sturek-6lowapp-smartenergy-00.txt
http://www.ietf.org/internet-drafts/draft-sturek-6lowapp-smartenergy-00.txt
http://www.ietf.org/internet-drafts/draft-sturek-6lowapp-smartenergy-00.txt
mailto:ned@innosoft.com
mailto:nsb@nsb.fv.com
http://tools.ietf.org/html/rfc2046
http://tools.ietf.org/html/rfc2046
http://tools.ietf.org/html/rfc2046
http://www.rfc-editor.org/rfc/rfc2046.txt
mailto:timbl@w3.org
mailto:fielding@gbiv.com
mailto:LMM@acm.org
mailto:LMM@acm.org
http://tools.ietf.org/html/rfc3986
http://tools.ietf.org/html/rfc3986
http://www.rfc-editor.org/rfc/rfc3986.txt
http://xml.resource.org/public/rfc/html/rfc3986.html
http://xml.resource.org/public/rfc/xml/rfc3986.xml

8.2. Informative References
[I-

D.bormann-6lowpan-6lowapp-
problem]

[I-D.moritz-6lowapp-dpws-
enhancements]

[RFCO792]

Authors' Addresses

Phone:
Email:

Phone:
Email:

Phone:
Email:

TOC

Bormann, C., Sturek, D., and Z. Shelby,
“6LowApp: Problem Statement for G6LoWPAN

and LLN Application Protocols,” draft-
bormann-6lowpan-6lowapp-problem-01
(work in progress), July 2009 (TXT).
Moritz, G., “DPWS for 6LOWPAN,” draft-
moritz-6lowapp-dpws-enhancements-00
(work in progress), December 2009
(IXT).

Postel, J., “Internet Control Message
Protocol,” STD 5, RFC 792,

September 1981 (TXT).

_T0C
Zach Shelby
Sensinode
Kidekuja 2
Vuokatti 88600
FINLAND
+358407796297
zach@sensinode.com

Michael Garrison Stuber
Itron

2111 N. Molter Road
Liberty Lake, WA 99025
U.S.A.

+1.509.891.3441
Michael.Stuber@itron.com

Don Sturek

Pacific Gas & Electric
77 Beale Street

San Francisco, CA

USA

+1-619-504-3615
d.sturek@att.net

Brian Frank
Tridium, Inc
Richmond, VA
USA


http://www.ietf.org/internet-drafts/draft-bormann-6lowpan-6lowapp-problem-01.txt
http://www.ietf.org/internet-drafts/draft-bormann-6lowpan-6lowapp-problem-01.txt
http://www.ietf.org/internet-drafts/draft-bormann-6lowpan-6lowapp-problem-01.txt
http://www.ietf.org/internet-drafts/draft-moritz-6lowapp-dpws-enhancements-00.txt
http://www.ietf.org/internet-drafts/draft-moritz-6lowapp-dpws-enhancements-00.txt
http://tools.ietf.org/html/rfc792
http://tools.ietf.org/html/rfc792
http://www.rfc-editor.org/rfc/rfc792.txt
mailto:zach@sensinode.com
mailto:Michael.Stuber@itron.com
mailto:d.sturek@att.net

Phone:
Email: brian.tridium@gmail.com

Richard Kelsey
Ember
47 Farnsworth Street
Boston, MA 02210
U.S.A.
Phone: +1.617.951.1201
Email: richard.kelsey@ember.com



mailto:brian.tridium@gmail.com
mailto:richard.kelsey@ember.com

	CoAP Feature Analysisdraft-shelby-6lowapp-coap-00
	Abstract
	Status of this Memo
	Copyright Notice
	Table of Contents
	1.  Introduction
	1.1.  CoAP Requirements
	2.  CoAP Feature Analysis
	2.1.  Compact Header
	2.2.  Basic Messages
	2.3.  REST Methods
	2.4.  Content-type encoding
	2.5.  URLs
	2.6.  Caching
	2.7.  Subscribe/Notify
	2.8.  Transport Binding
	2.8.1.  UDP
	2.8.2.  TCP
	2.9.  Resource Discovery
	2.10.  HTTP Mapping
	3.  Applicability
	3.1.  Energy Applications
	3.2.  Building Automation
	3.3.  General M2M Applications
	4.  Conclusions
	5.  Security Considerations
	6.  IANA Considerations
	7.  Acknowledgments
	8.  References
	8.1. Normative References
	8.2. Informative References
	Authors' Addresses


