
IETF Next Steps in Signaling C. Shen
Internet-Draft H. Schulzrinne
Expires: September 7, 2006 Columbia U.
 S. Lee
 J. Bang
 Samsung AIT
 March 6, 2006

NSIS Operation Over IP Tunnels
draft-shen-nsis-tunnel-02.txt

Status of this Memo

 By submitting this Internet-Draft, each author represents that any
 applicable patent or other IPR claims of which he or she is aware
 have been or will be disclosed, and any of which he or she becomes
 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on September 7, 2006.

Copyright Notice

 Copyright (C) The Internet Society (2006).

Abstract

 This draft presents an NSIS operation over IP tunnels scheme using
 QoS NSLP as the NSIS signaling application. Both sender-initiated
 and receiver-initiated reservation modes are discussed. The scheme
 proposes the use of separate signaling sessions inside the tunnel for
 the end-to-end sessions. Packets belonging to qualified tunnel

Shen, et al. Expires September 7, 2006 [Page 1]

https://datatracker.ietf.org/doc/html/bcp79#section-6
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet-Draft NSIS Operation over IP Tunnels March 2006

 sessions are assigned special flow IDs to be distinguished from the
 rest of the tunnel traffic. The end-to-end session and its
 corresponding tunnel session are associated with each other when
 necessary; so that adjustment in one session may be reflected in the
 other.

Table of Contents

1. Requirements notation . 4
2. Introduction . 4
2.1. Background . 4
2.1.1. IP Tunneling Mechanisms 4
2.1.2. Different Signaling Capability of IP Tunnels 5

2.2. NSIS Tunnel Operation Overview 5
3. Protocol Design Decisions 7
3.1. Packet Classification over the Tunnel 7

 3.2. Tunnel Signaling and its Association with End-to-end
 Signaling . 8

3.3. Tunnel Signaling Capability Discovery 9
 4. Protocol Operation with Dynamically Created Tunnel Sessions . 9

4.1. Operation Scenarios 9
 4.1.1. Sender-initiated Reservation for both End-to-end
 and Tunnel Signaling 10
 4.1.2. Receiver-initiated Reservation for both End-to-end
 and Tunnel Signaling 11
 4.1.3. Sender-initiated Reservation for End-to-end and
 Receiver-initiated Reservation for Tunnel Signaling . 13
 4.1.4. Receiver-initiated Reservation for End-to-end and
 Sender-initiated Reservation for Tunnel Signaling . . 15

4.2. Implementation Considerations 16
4.2.1. End-to-end and Tunnel Signaling Interaction 16
4.2.2. Aggregate vs. Individual Tunnel Session Setup 18

5. Protocol Operation with Pre-configured Tunnel Sessions 19
 5.1. Tunnel with Exactly One Pre-configured Aggregate
 Session . 19

5.2. Tunnel with Multiple Pre-configured Aggregate Sessions . . 19
5.3. Adjustment of Pre-configured Tunnel Sessions 19

 5.4. Tunnels with both Dynamic and Pre-configured Signaling
 Sessions . 20

6. Processing Rules for Selected End-to-end QoS NSLP Messages . . 20
6.1. End-to-end QUERY Message at Tentry 20
6.2. End-to-end QUERY Message at Texit 21
6.3. End-to-end RESERVE Message at Tentry 21
6.4. End-to-end RESERVE Message at Texit 23

 6.5. Special Processing Rules for Tunnels with Aggregate
 Sessions . 24

7. Other Considerations . 25

Shen, et al. Expires September 7, 2006 [Page 2]

Internet-Draft NSIS Operation over IP Tunnels March 2006

7.1. Other Types of NSLP 25
7.2. IPSEC Flows . 25
7.3. NSIS-Tunnel and Mobility 25

8. Security Considerations 26
9. Appendix . 26
9.1. Summary of RSVP Operation Over IP Tunnels 26
9.2. Various Design Alternatives 27
9.2.1. End-to-end and Tunnel Signaling Interaction Model . . 27
9.2.2. Packet Classification over the Tunnel 27
9.2.3. Tunnel Binding Methods 28
9.2.4. Tunnel Binding Indication 28
9.2.5. Carrying the Tunnel Binding Object 29

9.3. Change History . 29
9.3.1. Changes in Version -02 29
9.3.2. Changes in Version -01 29

10. Acknowledgements . 30
11. References . 30
11.1. Normative References 30
11.2. Informative References 30

 Authors' Addresses . 32
 Intellectual Property and Copyright Statements 33

Shen, et al. Expires September 7, 2006 [Page 3]

Internet-Draft NSIS Operation over IP Tunnels March 2006

1. Requirements notation

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [1].

2. Introduction

 IP tunnel mechanisms are widely used in the Internet for various
 purposes. When a tunnel is used to transfer signaling messages, e.g.
 NSIS messages, the signaling messages themselves usually become
 invisible inside the tunnel. In other words, the tunnel behaves as a
 logical link that does not support signaling in the end-to-end path.
 If end-to-end NSIS signaling support is desired for a path containing
 tunnels, it is necessary to define a scheme that allows NSIS
 operation over IP tunnels. This draft describes such a scheme. We
 assume QoS NSLP as the NSIS signaling application.

2.1. Background

2.1.1. IP Tunneling Mechanisms

 There are a number of common tunneling mechanisms used in the
 Internet. A non-exhausted list of them is as follows,

 o Generic Routing Encapsulation (GRE) [4] is a mechanism for
 encapsulating arbitrary packets within an arbitrary transport
 protocol. Generic Routing Encapsulation over IPv4 Networks
 (GREIP4) [5] addresses the case of using IPv4 as the delivery
 protocol or the payload protocol and the special case of IPv4 as
 both the delivery and payload. Generic Routing Encapsulation
 (GREIP4A) [17] presented a modified version of [4], in particular,
 some flag bits in the original specification have been deprecated.
 o IP Encapsulation within IP (IP4INIP4) [7] is a method of tunneling
 IPv4 packets using an additional IPv4 header. Minimal
 Encapsulation within IP (MINENC) [8] describes a way to reduce the
 size of the "inner" IP header used in [7] when the original
 datagram is not fragmented.
 o Generic Packet Tunneling in IPv6 Specification (IP6GEN) [11]
 specifies a method by which a packet is carried as payload within
 an IPv6 packet by being encapsulated in an IPv6 header, and
 optionally, a set of IPv6 extension headers.
 o IPv6 over IPv4 tunneling (IP6INIP4) [6] encapsulates IPv6 packets
 within IPv4 headers to carry them over IPv4 routing
 infrastructures.
 o IPSEC [9] has a tunnel mode with the use of Encapsulating Security
 Payload (ESP) [10]. The tunneled IP packets are encrypted and the

Shen, et al. Expires September 7, 2006 [Page 4]

Internet-Draft NSIS Operation over IP Tunnels March 2006

 ESP is placed before the encapsulated IP header.

 The above tunneling mechanisms fall into two broad categories
 according to the encapsulating (delivery) header format:

 1. Normal IP in IP Encapsulation: the encapsulating header is just a
 standard IP header. This group includes IP4INIP4, IP6INIP4,
 IP6GEN.
 2. Modified IP in IP Encapsulation: the encapsulating header is a
 standard IP header plus additional information. This group
 includes all GRE-related IP tunneling, MINENC and IPSEC tunneling
 mode. The additional information in these cases is the GRE
 header, minimum encapsulation header and ESP header respectively.
 This information is usually placed between the encapsulating IP
 header and the original IP header. (MINENC is an exception
 because it modifies the original IP header). Note that in the
 IPSEC case, the original IP header is also encrypted along with
 the original IP payload.

2.1.2. Different Signaling Capability of IP Tunnels

 By default any end-to-end signaling messages arriving at the tunnel
 endpoint will be encapsulated the same way as data packets. Tunnel
 intermediate nodes do not identify them as signaling messages.
 Therefore the tunnel appears as a signaling unaware logical link to
 the end-to-end session.

 A signaling aware tunnel may participate in a signaling network in
 various ways. For example, [18] identifies two types of QoS aware
 tunnels: a tunnel that can promise that some overall level of
 resources is available to carry traffic, but not to allocate
 resources specifically to individual data flows; or a tunnel that can
 make reservations for individual end-to-end data flows. An
 individual tunnel signaling session may be created and torn down
 dynamically as end-to-end session come and go. An aggregate tunnel
 sessions could be a pre-configured session that never gets changed,
 or could be dynamically adjusted as the actually used session
 resources increase or decrease.

 A tunnel may also be a mixed one that combines the properties of both
 types of the tunnels.

2.2. NSIS Tunnel Operation Overview

 This document presents a scheme to enable NSIS operation over IP
 tunnels with different tunnel capabilities. The design goals of the
 scheme are as follows,

Shen, et al. Expires September 7, 2006 [Page 5]

Internet-Draft NSIS Operation over IP Tunnels March 2006

 o For best effort tunnel, make sure NSIS messages traverse the link
 correctly, and the presence of the non-NSIS aware link is
 detected.
 o For signaling aware tunnels, make sure proper signaling is carried
 out when necessary, to set up the tunnel sessions for use by the
 end-to-end sessions.
 o Work with most, if not all, existing IP in IP tunneling schemes.
 o Place the specific tunnel related functionalities only in one or
 both of the tunnel endpoints.

 The overall design of NSIS operation over IP tunnels is conceptually
 similar to RSVP operation over IP tunnels [18]. (A short summary of
 [18] is provided in appendix Section 9.1). However, the scheme
 described in this document also addresses the important differences
 of NSIS from RSVP, e.g.,

 o NSIS is based on a two-layer architecture, namely a signaling
 transport layer and a signaling application layer. It is designed
 as a generic framework to accommodate various signaling
 application needs. The basic RSVP protocol does not have a layer
 split and is only for QoS signaling.
 o NSIS QoS NSLP allows both sender-initiated and receiver-initiated
 reservations; RSVP only supports receiver-initiated reservations.
 o NSIS deals only with unicast; RSVP also supports multicast.
 o NSIS integrates new features, such as the Session ID, to
 facilitate operation in specific environments (e.g. mobility and
 multi-homing).

 From a high level point of view, the main issues in a signaling
 operation over IP tunnel scheme are, how packet classification is
 performed inside the tunnel, and how signaling is carried out inside
 the tunnel.

 Packets belonging to qualified data flows need to be recognized by
 tunnel intermediate nodes to receive special treatment. Packet
 classification is traditionally based on flow ID, which is derived
 from various fields in Message Routing Information (MRI). The
 problem is, after a typical IP-in-IP tunnel encapsulation, all
 packets going through the tunnel appear as having the same flow ID
 (which consists of the Tunnel Entry (Tentry) address and Tunnel Exit
 (Texit) address. Therefore the flow ID for signaled flows needs to
 contain further demultiplexing fields in order to be distinguished
 from non-signaled flows, and also from one another among all signaled
 flows.

 The special flow ID for signaled flows inside the tunnel then needs
 to be carried in tunnel signaling messages to set up or modify the
 state information in tunnel intermediate nodes. The original end-to-

Shen, et al. Expires September 7, 2006 [Page 6]

Internet-Draft NSIS Operation over IP Tunnels March 2006

 end signaling messages do not contain tunnel specific parameters such
 as the tunnel flow ID and tunnel adjusted QoS parameters. Therefore,
 separate tunnel signaling sessions are generated and maintained
 between the tunnel endpoints, as in the case of RSVP operation over
 IP tunnels [18]. When end-to-end signaling sessions and tunnel
 signaling sessions are carried out separately, it will be necessary
 in many cases to maintain the state association between the end-to-
 end session and its corresponding tunnel session so that any change
 to one session may be reflected in the other.

 In the next section, we will illustrate details on packet
 classification over the tunnel, signaling over the tunnel as well as
 association of end-to-end and tunnel signaling.

3. Protocol Design Decisions

3.1. Packet Classification over the Tunnel

 Tunnel flows need to be assigned special flow IDs in order to allow
 tunnel packet classification. A flow can be an individual flow or an
 aggregate flow. Possible flow ID formats that may be used to
 identify individual tunnel flows are grouped below:

 o Selected fields from the base IP header of the tunnel encapsulated
 packet (outer IP header). For example, the IP source and
 destination address fields, which contain the IP addresses of
 Tentry and Texit, together with another field for tunnel-wide
 demultiplexing. This could be the IPv6 flow label field, or the
 Traffic Class (TC) field. Note that the TC field can also be used
 in DiffServ to carry DiffServ Code Point (DSCP) and thus represent
 an aggregate flow. As long as individual flow classification is
 processed before aggregate flow classification, or a longest match
 kind of packet classifier is used, the tunnel flow demultiplexing
 with TC field should work. In the rare cases where these
 conditions could not be satisfied, it is still possible to choose
 different range of DSCP values so that the values used for
 individual tunnel flow demultiplexing do not collide with those
 used for DiffServ aggregate flows. Compared to the IPv6 flow
 label approach, the tunnel flow ID containing DSCP can be applied
 to both IPv4 and IPv6 and is probably easier to deploy. Its
 drawback is that the small number of bits in the DSCP field limits
 the total number of individual flows that can be distinguished in
 the tunnel. Overall, these flow ID formats in this group enable
 efficient packet classification over the tunnel without
 introducing additional processing requirements on the existing
 infrastructure. They are also easy to deploy.

Shen, et al. Expires September 7, 2006 [Page 7]

Internet-Draft NSIS Operation over IP Tunnels March 2006

 o Selected fields from the tunnel base IP header plus additional
 information outside the base IP header but still in the tunnel
 encapsulation header. This applies to modified IP-in-IP
 encapsulation as we defined in Section 2.1.1. An example of this
 additional information is the SPI field for IPSEC tunnels.
 Comparing with the first group, the flow ID formats in this group
 poses more requirements at the NSIS protocol side because it uses
 information unique to the specific tunnel mechanism. NSIS thus
 needs to be specifically tuned to recognize that information as
 part of a signaling message. This is similar to how [19] has
 extended RSVP to accommodate IPSEC.

 o UDP header insertion. Inserting a new UDP header between the
 tunnel IP header and the tunnel payload provides additional
 demultiplexing information for a tunnel flow. The drawback of the
 flow ID format in this group, as compared to the above two, is the
 additional UDP header overhead both for bandwidth and processing.
 In addition, this approach modifies the basic tunneling mechanism
 at the Tentry, so Texit will also need to be aware of the special
 encapsulation in order to correctly decapsulate and forward
 packets further along the path.

 Most of the above flow ID formats may also be used for aggregate
 tunnel flows. For example, a common aggregate flow ID contains the
 addresses of tunnel endpoints and the DSCP value. When additional
 interfaces at the tunnel endpoints are available, these addresses may
 also be used to form aggregate flow ID. For example, the IP address
 of an additional interface for a Tentry plus the IP address of the
 Texit, constitute an aggregate flow ID.

 The choice of using which of the above flow ID format is left to a
 policy mechanism outside the scope of this document. Tunnel
 signaling is performed based on the chosen flow ID and Tentry should
 encapsulate all incoming packets for the specific data flows
 according to the chosen flow ID format.

3.2. Tunnel Signaling and its Association with End-to-end Signaling

 Tunnel signaling messages contain tunnel specific parameters such as
 tunnel MRI and tunnel adjusted QoS parameters. But the formats of
 tunnel signaling messages are the same as end-to-end signaling
 messages and tunnel signaling is carried out according to the same
 signaling flows of the end-to-end signaling. The main challenge is
 therefore the interaction between tunnel signaling and end-to-end
 signaling. The interaction is achieved by special functionalities
 supported in the NSIS-aware tunnel endpoints. These special
 functionalities include assigning tunnel flow IDs, creating tunnel

Shen, et al. Expires September 7, 2006 [Page 8]

Internet-Draft NSIS Operation over IP Tunnels March 2006

 session association, notifying the other endpoint about tunnel
 association, adjusting one session based on change of the other
 session, encapsulating (decapsulating) packets according to the
 chosen tunnel flow ID at Tentry (Texit), etc. In most cases, we
 expect to have bi-directional tunnels, where both endpoints are NSIS-
 tunnel aware.

 When both Tentry and Texit are NSIS-tunnel aware, the endpoint that
 creates the tunnel session may need to notify the other endpoint of
 the association between the end-to-end and tunnel session. This is
 achieved by using the QoS NSLP BOUND_SESSION_ID object with a binding
 code indicating this binding is for tunnel handling. In the rest of
 this document, we refer to a BOUND_SESSION_ID object with the tunnel
 binding_code as a tunnel BOUND_SESSION_ID object or a tunnel binding
 object. The tunnel binding object is carried in the end-to-end
 signaling messages with the session ID of the corresponding tunnel
 session. The NSIS-tunnel aware endpoints that receive this tunnel
 BOUND_SESSION_ID object should perform tunnel related procedures and
 then remove it for any end-to-end signaling messages to be sent out
 of the tunnel.

3.3. Tunnel Signaling Capability Discovery

 Tunnel signaling may only be initiated when both Tentry and Texit are
 NSIS-tunnel aware. When prior knowledge of the other endpoint's NSIS
 tunnel capability is not available, we need a discovery mechanism to
 find it out. This mechanism is expected to be the responsibility of
 the NSLP layer. One option is to define a ''Tunnel Capable'' bit in
 the INFO_SPEC object of its informational class and exchange it
 between the Tentry and Texit. More details will be provided in the
 next version of this document. The messaging flow diagrams in the
 current document assume that the tunnel capability discovery has
 already been made.

4. Protocol Operation with Dynamically Created Tunnel Sessions

4.1. Operation Scenarios

 To dynamically create a mapping tunnel session upon receiving an end-
 to-end session, we identify four scenarios based on the sender-
 initiated and receiver-initiated reservation modes of NSIS QoS NSLP:

 o A. End-to-end session is sender-initiated; tunnel session is
 sender-initiated.
 o B. End-to-end session is receiver-initiated; tunnel session is
 receiver-initiated.
 o C. End-to-end session is sender-initiated; tunnel session is

Shen, et al. Expires September 7, 2006 [Page 9]

Internet-Draft NSIS Operation over IP Tunnels March 2006

 receiver-initiated.
 o D. End-to-end session is receiver-initiated; tunnel session is
 sender-initiated.

 In the following we present a typical NSIS end-to-end and tunnel
 signaling interaction during the tunnel set up phase in each of these
 four scenarios. The end-to-end QoS flow is assumed to be one that
 qualifies an individual dynamic tunnel session, whose reservation
 must be confirmed.

 It should be noted that different flow requirements and policy
 assumptions may cause the timing sequence of the messaging flow to be
 slightly different, which will be discussed in Section 4.2.

 Once the tunnel session has been created and associated with the end-
 to-end session, any subsequent changes (modification or termination)
 to either session may be communicated to the other one by the binding
 endpoint so the state of the two binding sessions may keep
 consistent. The exception is when the tunnel session is an aggregate
 session. In this case, after setup, the adjustment of the tunnel
 session should follow the rules for pre-configured aggregate tunnel
 adjustment in Section 5.

4.1.1. Sender-initiated Reservation for both End-to-end and Tunnel
 Signaling

 Sender Tentry Tnode Texit Receiver

 | | | | |
 | RESERVE | | | |
 +--------->| | | |
 | | RESERVE' | | |
 | +=========>| | |
 | | | RESERVE' | |
 | | +=========>| |
 | | RESERVE | |
 | +-------------------->| |
 | | | RESPONSE'| RESERVE |
 | | |<=========+--------->|
 | | RESPONSE'| | |
 | |<=========+ | |
 | | | | RESPONSE |
 | | | |<---------+
 | | RESPONSE | | |
 | |<--------------------+ |
 | RESPONSE | | | |

Shen, et al. Expires September 7, 2006 [Page 10]

Internet-Draft NSIS Operation over IP Tunnels March 2006

 |<---------+ | | | |
 | | | | |
 | | | | |

 Figure 1: Sender-initiated Reservation for both End-to-end and Tunnel
 Signaling

 This scenario assumes both end-to-end and tunnel sessions are sender-
 initiated. Figure 1 shows the messaging flow of NSIS operation over
 IP tunnels in this case. Tunnel signaling messages are distinguished
 from end-to-end messages by a "'" after the message name. Tnode
 denotes an intermediate tunnel node that participates in tunnel
 signaling. The sender first sends an end-to-end RESERVE message
 which arrives at Tentry. If Tentry supports tunnel signaling and
 determines that an individual tunnel session needs to be established
 for the end-to-end session, it chooses the tunnel flow ID, creates
 the tunnel session and associates the end-to-end session with the
 tunnel session. It then sends a tunnel RESERVE' message matching the
 requests of the end-to-end session toward the Texit to reserve tunnel
 resources. Tentry also appends to the original RESERVE message a
 tunnel BOUND_SESSION_ID object containing the session ID of the
 tunnel session and sends it toward Texit using normal tunnel
 encapsulation.

 The tunnel RESERVE' message is processed hop by hop inside the tunnel
 for the flow identified by the chosen tunnel flow ID. When Texit
 receives the tunnel RESERVE' message, reservation state for the
 tunnel session will be created. Texit may also send a tunnel
 RESPONSE' message to Tentry. On the other hand, the end-to-end
 RESERVE message passes through the tunnel intermediate nodes just
 like any other tunneled packets. When Texit receives the end-to-end
 RESERVE message, it notices the binding of a tunnel session and
 checks the state for the tunnel session. When the tunnel session
 state is available, it updates the end-to-end reservation state using
 the tunnel session state, removes the tunnel BOUND_SESSION_ID object
 and forwards the end-to-end RESERVE message further along the path
 towards the receiver. When the end-to-end reservation finishes, an
 end-to-end RESPONSE may be sent back from the receiver to the sender.

4.1.2. Receiver-initiated Reservation for both End-to-end and Tunnel
 Signaling

 Sender Tentry Tnode Texit Receiver

Shen, et al. Expires September 7, 2006 [Page 11]

Internet-Draft NSIS Operation over IP Tunnels March 2006

 | | | | |
 | QUERY | | | |
 +--------->| | | |
 | | QUERY | | |
 | +-------------------->| |
 | | QUERY' | | |
 | +=========>| | |
 | | | QUERY' | |
 | | +=========>| |
 | | | | QUERY |
 | | | +--------->|
 | | | | RESERVE |
 | | | |<---------+
 | | RESERVE | | |
 | |<--------------------+ |
 | | | RESERVE' | |
 | | |<=========+ |
 | | RESERVE' | | |
 | |<=========+ | |
 | RESERVE | RESPONSE'| | |
 |<---------+=========>| | |
 | | | RESPONSE'| |
 | | +=========>| |
 | RESPONSE | | | |
 +--------->| | | |
 | | RESPONSE | | |
 | +-------------------->| |
 | | | | RESPONSE |
 | | | +--------->|
 | | | | |
 | | | | |

 Figure 2: Receiver-initiated Reservation for both End-to-end and
 Tunnel Signaling

 This scenario assumes both end-to-end and tunnel sessions are
 receiver-initiated. Figure 2 shows the messaging flow of NSIS
 operation over IP tunnels in this case. When Tentry receives the
 first end-to-end QUERY message from the sender, it chooses the tunnel
 flow ID, creates the tunnel session and sends a tunnel QUERY' message
 matching the requests of the end-to-end session toward the Texit.
 Tentry also appends to the original QUERY message with a tunnel
 BOUND_SESSION_ID object containing the session ID of the tunnel
 session and sends it toward the Texit using normal tunnel
 encapsulation.

 The tunnel QUERY' message is processed hop by hop inside the tunnel

Shen, et al. Expires September 7, 2006 [Page 12]

Internet-Draft NSIS Operation over IP Tunnels March 2006

 for the flow identified by the chosen tunnel flow ID. When Texit
 receives the tunnel QUERY' message, it creates a reservation state
 for the tunnel session without sending out a tunnel RESERVE' message
 immediately.

 The end-to-end QUERY message passes along tunnel intermediate nodes
 just like any other tunneled packets. When Texit receives the end-
 to-end QUERY message, it notices the binding of a tunnel session and
 checks state for the tunnel session. When the tunnel session state
 is available, Texit updates the end-to-end QUERY message using the
 tunnel session state, removes the tunnel BOUND_SESSION_ID object and
 forwards the end-to-end QUERY message further along the path.

 When Texit receives the first end-to-end RESERVE message issued by
 the receiver, it finds the reservation state of the tunnel session
 and triggers a tunnel RESERVE' message for that session. Meanwhile
 the end-to-end RESERVE message will be appended with a tunnel
 BOUND_SESSION_ID object and forwarded towards Tentry. When Tentry
 receives the tunnel RESERVE', it creates the reservation state for
 the tunnel session and may send a tunnel RESPONSE' back to Texit.
 When Tentry receives the end-to-end RESERVE, it creates the end-to-
 end reservation state and updates it with information from the
 associated tunnel session reservation state. Then Tentry further
 forwards the end-to-end RESERVE upstream toward the sender.

4.1.3. Sender-initiated Reservation for End-to-end and Receiver-
 initiated Reservation for Tunnel Signaling

 Sender Tentry Tnode Texit Receiver
 | | | | |
 | RESERVE | | | |
 +--------->| | | |
 | | QUERY' | | |
 | +=========>| | |
 | | | QUERY' | |
 | | +=========>| |
 | | | RESERVE' | |
 | | |<=========+ |
 | | RESERVE' | | |
 | |<=========+ | |
 | | RESPONSE'| | |
 | +=========>| | |
 | | | RESPONSE'| |
 | | +=========>| |
 | | RESERVE | |
 | +-------------------->| |
 | | | | RESERVE |

Shen, et al. Expires September 7, 2006 [Page 13]

Internet-Draft NSIS Operation over IP Tunnels March 2006

 | | | +--------->|
 | | | | RESPONSE |
 | | | |<---------+
 | | RESPONSE | | |
 | |<--------------------+ |
 | RESPONSE | | | |
 |<---------+ | | |
 | | | | |
 | | | | |

 Figure 3: Sender-initiated Reservation for End-to-end and Receiver-
 initiated Reservation for Tunnel Signaling

 This scenario assumes the end-to-end signaling mode is sender-
 initiated and the tunnel signaling mode is receiver-initiated.
 Figure 3 shows the messaging flow of NSIS operation over IP tunnels
 in this case. When Tentry receives the first end-to-end RESERVE
 message from the sender, it chooses the tunnel flow ID, creates the
 tunnel session and sends a tunnel QUERY' message matching the
 requests of the end-to-end session toward the Texit. This Tunnel
 QUERY' message should have the "RESERVE-INIT" bit set. Tentry also
 appends to the original QUERY message with a tunnel BOUND_SESSION_ID
 object containing the session ID of the tunnel session and sends it
 toward the Texit using normal tunnel encapsulation.

 The tunnel QUERY' message is processed hop by hop inside the tunnel
 for the flow identified by the chosen tunnel flow ID. When Texit
 receives the tunnel QUERY' message, it creates a reservation state
 for the tunnel session and immediately send out a tunnel RESERVE'
 message back to Tentry.

 When the Tentry receives the tunnel RESERVE' message it learns the
 outcome of the tunnel reservation. So it appends to the end-to-end
 RESERVE message a BOUND_SESSION_ID object containing the tunnel
 session ID and sends it over the tunnel with normal encapsulation.
 It may send out a tunnel RESPONSE' message if requested.

 When Texit receives the end-to-end RESERVE message, it notices the
 binding of a tunnel session and creates the end-to-end reservation
 state with reference to the tunnel session state, removes the tunnel
 BOUND_SESSION_ID object and forwards the end-to-end RESERVE message
 further along the path towards the receiver. When the end-to-end
 reservation finishes, an end-to-end RESPONSE may be sent back from
 the receiver to the sender.

4.1.4. Receiver-initiated Reservation for End-to-end and Sender-
 initiated Reservation for Tunnel Signaling

Shen, et al. Expires September 7, 2006 [Page 14]

Internet-Draft NSIS Operation over IP Tunnels March 2006

 Sender Tentry Tnode Texit Receiver
 | | | | |
 | QUERY | | | |
 +--------->| | | |
 | | QUERY | | |
 | +-------------------->| |
 | | QUERY' | | |
 | +=========>| | |
 | | | QUERY' | |
 | | +=========>| |
 | | | | QUERY |
 | | | +--------->|
 | | | | RESERVE |
 | | | |<---------+
 | | RESERVE | | |
 | |<--------------------+ |
 | | | RESERVE' | |
 | | +=========>| |
 | | RESERVE' | | |
 | +=========>| | |
 | | | RESPONSE'| |
 | | |<=========| |
 | | RESPONSE'| | |
 | |<=========| | |
 | RESERVE | | | |
 |<---------| | | |
 | RESPONSE | | | |
 +--------->| | | |
 | | RESPONSE | | |
 | +-------------------->| |
 | | | | RESPONSE |
 | | | +--------->|
 | | | | |
 | | | | |

 Figure 4: Receiver-initiated Reservation for End-to-end and Sender-
 initiated Reservation for Tunnel Signaling

 This scenario assumes the end-to-end signaling mode is receiver-
 initiated and the tunnel signaling mode is sender-initiated.
 Figure 4 shows the messaging flow of NSIS operation over IP tunnels
 in this case. When Tentry receives the first end-to-end QUERY
 message from the sender, it chooses the tunnel flow ID, creates the
 tunnel session and sends a tunnel QUERY' message matching the
 requests of the end-to-end session toward the Texit. Tentry also
 appends to the original QUERY message a tunnel BOUND_SESSION_ID

Shen, et al. Expires September 7, 2006 [Page 15]

Internet-Draft NSIS Operation over IP Tunnels March 2006

 object containing the session ID of the tunnel session and sends it
 toward the Texit using normal tunnel encapsulation.

 The tunnel QUERY' message is processed hop by hop inside the tunnel
 for the flow identified by the chosen tunnel flow ID. When Texit
 receives the tunnel QUERY' message, it creates a reservation state
 for the tunnel session without sending out a tunnel RESERVE' message
 immediately.

 The end-to-end QUERY message passes along tunnel intermediate nodes
 just like any other tunneled packets. When Texit receives the end-
 to-end QUERY message, it notices the binding of a tunnel session and
 checks state for the tunnel session. When the tunnel session state
 is available, Texit updates the end-to-end QUERY message using the
 tunnel session state, removes the tunnel BOUND_SESSION_ID object and
 forwards the end-to-end QUERY message further along the path.

 When Texit receives the first end-to-end RESERVE message issued by
 the receiver, it finds the reservation state of the tunnel session.
 Texit appends to the end-to-end RESERVE message a tunnel
 BOUND_SESSION_ID object containing the matching tunnel session ID and
 sends it upstream to Tentry.

 When Tentry receives the end-to-end RESERVE message, it notices the
 binding and immediately sends out a tunnel RESERVE' message matching
 the end-to-end RESERVE request over the tunnel. This RESERVE'
 message should include the Request Identification Information (RII)
 to trigger a RESPONSE' from Texit.

 When Tentry receives the result of tunnel reservation from the tunnel
 RESPONSE' message, it updates the end-to-end RESERVE message and
 forwards the end-to-end RESERVE message upstream to the Sender. The
 Sender may send an end-to-end RESPONSE message to the receiver when
 the whole process completes.

4.2. Implementation Considerations

4.2.1. End-to-end and Tunnel Signaling Interaction

 Given the two separate end-to-end and tunnel signaling sessions,
 there are many ways of integrating the signaling of each session. In
 general, different approaches can be grouped into two modes,
 sequential mode and parallel mode. In sequential mode, end-to-end
 signaling pauses when it is waiting for results of tunnel signaling,
 and resumes upon receipt of the tunnel signaling outcome; in parallel
 mode, end-to-end signaling continues outside the tunnel while tunnel
 signaling is still in process and its outcome is unknown. The
 operation outlined in Section 4.1 shows the sequential mode. While

Shen, et al. Expires September 7, 2006 [Page 16]

Internet-Draft NSIS Operation over IP Tunnels March 2006

 this mode is ideal for a flow that requires hard guarantee of tunnel
 reservation. It may not be the best for a flow that can tolerate
 some QoS uncertainty but wants to establish signaling state on the
 path as fast as possible. The parallel mode is clearly for the
 latter case.

 Therefore, an actual implementation may vary the timing sequence of
 the NSIS-tunnel signaling interaction by taking into account whether
 the end-to-end flow can tolerate the "reservation uncertainly". The
 root of this problem has to do with the possible racing condition
 that always exists in a separate end-to-end and tunnel session model.
 When an end-to-end session message carrying tunnel binding object
 arrives at one of the tunnel endpoints, if the corresponding tunnel
 session state has already been created, then the tunnel endpoint may
 refer to information from the tunnel session state (e.g. about tunnel
 reservation status, or tunnel resource availability) and construct an
 end-to-end signaling message to be sent out of the tunnel
 immediately.

 On the other hand, if the tunnel endpoint receives an end-to-end
 signaling message carrying tunnel binding referring to a tunnel
 session not yet exists, it may either wait a short period and see if
 the tunnel signaling arrives, or forward the end-to-end session
 immediately but indicate in the outgoing end-to-end signaling message
 that there is a NON-QoSM aware link in the end-to-end path. The
 period that the node decides to wait is purely implementation
 specific. In normal cases we expect the tunnel signaling message to
 lag behind (if it does) by only some node processing time (because
 the end-to-end signaling messages are not processed by NSLP inside
 the tunnel). As to whether wait or not, the decision will be based
 on the flow's toleration about "reservation uncertainly". With the
 current QSPEC [14], one option is to wait shorter or does not wait
 for end-to-end reservations requirements that are downgradable, and
 to wait until the tunnel session status is known if the end-to-end
 reservations requirement is fixed. However, to really directly
 address this issue, we suggest that an explicit indication flag, e.g.
 "QoS Unknown - intolerable" be defined as part of the QSPEC.

 In the situation where the end-to-end signaling missed the tunnel
 session state in the tunnel endpoint and proceeds as if the tunnel is
 NON-QoSM aware, the tunnel session may still be created (after some
 delay). Since the tunnel signaling message does not contain the end-
 to-end session's session ID, it cannot immediately change the state
 of the end-to-end session. However, the next refresh of the end-to-
 end signaling message will carry the tunnel binding information and
 thus update its own state. If the period waiting for end-to-end
 refresh is considered too long, the tunnel endpoint may choose to
 actively poll the session state table about the existence of tunnel

Shen, et al. Expires September 7, 2006 [Page 17]

Internet-Draft NSIS Operation over IP Tunnels March 2006

 session before the refresh timer expires. In any case, once the end-
 to-end signaling session learns about the tunnel signaling it can
 send an immediate refresh out of the tunnel with the knowledge of
 tunnel session.

 In addition to the broad concept of sequential and parallel modes of
 interaction. There are also other flexible aspects in the end-to-end
 and tunnel signaling interaction. One is tunnel session initiation
 location. e.g., it is possible to initiate the tunnel session from
 Texit instead of Tentry. Second is the tunnel session initiation
 time point. E.g. in cases when both end-to-end session and tunnel
 session are receiver-initiated, it is possible to start the tunnel
 session when Tentry receives the first end-to-end RESERVE message.
 The drawback of this scheme is that it will not allow the first end-
 to-end QUERY message to trigger a tunnel QUERY' and gather tunnel
 characteristics along with the rest of the end-to-end path. A third
 aspect of flexibility is how the tunnel signaling messages are used.
 e.g., in the case where end-to-end session is receiver initiated and
 tunnel session is sender initiated as in Section 4.1.4, the first
 tunnel QUERY' message sent after receiving end-to-end QUERY message
 by Tentry can be replaced by a tunnel RESERVE' message, if the
 application wants to trade temporary oversized or unnecessary (if the
 end-to-end reservation turns out to be unsatisfied) tunnel resource
 reservations for signaling setup delay. All these may be seen as
 local optimization issues. An implementation should at least support
 the basic scheme to allow interoperability.

4.2.2. Aggregate vs. Individual Tunnel Session Setup

 The operation outlined in Section 4.1 applies to a flow that
 qualifies an individual dynamic tunnel session. For a tunnel that
 contains multiple end-to-end sessions, however, it is generally
 recommended to keep aggregate tunnel session rather than creating
 individual tunnel sessions for each end-to-end session whenever
 possible. This will save the cost of setting up a new session and
 avoid the set up latency as well as the session establishment racing
 conditions mentioned above. Therefore, when the tunnel endpoint
 creates the reservation for the tunnel session based on the
 individual end-to-end session, it is up to local policy that whether
 it wants to actually create an aggregate session by requesting more
 resources than the current end-to-end session requires. If it does,
 other end-to-end sessions arrived later may also make use of this
 tunnel session. The tunnel endpoint will also need to determine how
 long to keep the tunnel session if no end-to-end session is active.
 The decision may be based on knowledge of likelihood of traffic in
 the future. It should be noted that once these kinds of on-demand
 aggregate tunnel session is setup, it looks exactly the same as a
 pre-configured tunnel session to future end-to-end sessions.

Shen, et al. Expires September 7, 2006 [Page 18]

Internet-Draft NSIS Operation over IP Tunnels March 2006

 Therefore, the adjustment of such aggregate sessions should follow
Section 5.

 Note that the session ID of an aggregate tunnel session should be
 different from that of the end-to-end session because they usually
 have separate lifetime. If the tunnel endpoint is certain that the
 tunnel session is for an individual end-to-end session alone, it may
 in some cases want to use the same session ID for both sessions.
 This may require additional manipulation of the NSLP state at the
 tunnel endpoints, since the NSLP state is usually keyed by the
 session ID.

5. Protocol Operation with Pre-configured Tunnel Sessions

 A tunnel may be pre-configured through management interface with one
 or more tunnel sessions. One or more end-to-end sessions may be
 mapped to each of these pre-configured sessions. Therefore in most
 cases these pre-configured tunnel sessions are aggregate sessions.

5.1. Tunnel with Exactly One Pre-configured Aggregate Session

 If only one aggregate session is configured in the tunnel and all
 traffic will receive the reserved tunnel resources, all the packets
 just need to be normal IP-in-IP encapsulated. If there is only one
 aggregate session configured in the tunnel and only some traffic
 should receive the reserved resources through that aggregate tunnel
 session, then the aggregate tunnel session should be assigned an
 appropriate flow ID. Qualified packets need to be encapsulated with
 this flow ID. The rest of the traffic will be normal IP-in-IP
 encapsulated.

5.2. Tunnel with Multiple Pre-configured Aggregate Sessions

 If there are multiple configured aggregate sessions over a tunnel set
 up by the management interface, these sessions must be distinguished
 by their aggregate tunnel flow IDs based on appropriate flow ID. In
 this case it is necessary to explicitly bind the end-to-end sessions
 with the specific tunnel sessions. This binding is provided by the
 tunnel BOUND_SESSION_ID object which is carried in the end-to-end
 signaling messages. Once the binding has been established, Tentry
 should encapsulate qualified data packets from different flows
 according to the associated aggregate tunnel flow ID. Intermediate
 nodes in the tunnel will then be able to filter these packets to
 receive reserved resources.

5.3. Adjustment of Pre-configured Tunnel Sessions

Shen, et al. Expires September 7, 2006 [Page 19]

Internet-Draft NSIS Operation over IP Tunnels March 2006

 The reservation of a configured tunnel session may or may not be
 adjustable. When the tunnel session is adjustable and there can be a
 many-to-one mapping to the tunnel session, related policy mechanism
 needs to decide how the adjustment to the tunnel reservation should
 be done to accommodate the end-to-end sessions mapped onto it. As
 discussed in [18], there could be multiple choices. In the first,
 the tunnel reservation is never adjusted, which makes the tunnel a
 rough equivalent of a fixed-capacity hardware link ("hard pipe"). In
 the second, the tunnel reservation is adjusted whenever a new end-to-
 end reservation arrives or an old one is torn down ("soft pipe").
 Doing this will require the Texit to keep track of the resources
 allocated to the tunnel and the resources actually in use by end-to-
 end reservations separately. It is often appropriate to adopt a
 third choice, where we use some hysteresis in the adjustment of the
 tunnel reservation parameters. The tunnel reservation is adjusted
 upwards or downwards occasionally, whenever the end-to-end
 reservation level has changed enough to warrant the adjustment. This
 trades off extra resource usage in the tunnel for reduced control
 traffic and overhead.

5.4. Tunnels with both Dynamic and Pre-configured Signaling Sessions

 If a tunnel contains both dynamic and pre-configured tunnel sessions,
 it can be handled by corresponding mechanisms discussed above. The
 choice of mapping an end-to-end session to a specific type of tunnel
 session is up to policy control.

6. Processing Rules for Selected End-to-end QoS NSLP Messages

 The following lists basic message processing rules for end-to-end QoS
 NSLP messages working in the sequential interaction mode with tunnel
 signaling. More details may be provided for this section in future
 version of this document.

 Note that in case of aggregate tunnels, the actual tunnel session
 reservation, adjustment and termination are not (necessarily)
 determined by every end-to-end signaling messages, but by
 implementation specific algorithms instead.

6.1. End-to-end QUERY Message at Tentry

 When an end-to-end QUERY message is received at Tentry, Tentry checks
 whether the end-to-end session is entitled to tunnel resources.

 If the end-to-end session should be bound to a tunnel session yet to
 be created. Tentry creates a tunnel QUERY' message and sends it to
 Texit. Tentry also appends a tunnel BOUND_SESSION_ID object to the

Shen, et al. Expires September 7, 2006 [Page 20]

Internet-Draft NSIS Operation over IP Tunnels March 2006

 end-to-end QUERY message. The tunnel BOUND_SESSION_ID object
 contains the session ID of the tunnel session. The end-to-end QUERY
 message is then encapsulated and sent out through the tunnel
 interface.

 If the end-to-end session should be bound to an existing tunnel
 session (whether aggregate or individual), Tentry appends a tunnel
 BOUND_SESSION_ID object to the end-to-end tunnel QUERY message and
 sends it toward Texit through the tunnel interface.

6.2. End-to-end QUERY Message at Texit

 When an end-to-end QUERY message containing a tunnel BOUND_SESSION_ID
 object is received, Texit creates a conditional reservation state for
 the end-to-end session (i.e., a state is created but the related
 outgoing signaling message, in this case the QUERY message, is held
 until further information is available). It also checks to see if a
 conditional reservation state for the associated tunnel session is
 available. If yes, it reads information from the tunnel session
 state and sends the end-to-end QUERY downstream. If the conditional
 reservation state for tunnel session is not yet available, it will be
 created upon receiving the tunnel QUERY', and then Texit should
 forward the end-to-end QUERY downstream with information from results
 of the tunnel QUERY'.

6.3. End-to-end RESERVE Message at Tentry

 When a RESERVE message is received, in addition to normal processing
 for the request, the following tunnel related functionality is
 performed.

 For sender-initiated RESERVE message,

 If the RESERVE message is received with its T-bit set (RESERVE tear),
 Tentry removes the local state, then encapsulates the RESERVE message
 and tunnels it to Texit. If there is a tunnel session associated
 with this end-to-end session, Tentry also sends a tunnel RESERVE with
 T-bit set for that tunnel session.

 If the end-to-end RESERVE message is a refresh for an existing end-
 to-end session and this session is associated with a tunnel session,
 the RESERVE message refreshes both two sessions. If the RESERVE
 message causes changes in resources reserved for the end-to-end
 session, depending on whether the tunnel signaling is sender
 initiated or receiver initiated, Tentry should create a new tunnel
 RESERVE' message or tunnel QUERY' message to start changing the
 tunnel reservation as well. At the same time, Tentry appends a
 tunnel BOUND_SESSION_ID object to the end-to-end RESERVE message and

Shen, et al. Expires September 7, 2006 [Page 21]

Internet-Draft NSIS Operation over IP Tunnels March 2006

 sends it to Texit through the tunnel interface.

 If the message is the first RESERVE message for an end-to-end
 session, Tentry determines whether the end-to-end session is entitled
 to tunnel resources based on policy control mechanisms outside the
 scope of this document. If not, no special tunnel related processing
 is needed. Otherwise, if this session should be bound to an existing
 tunnel session (whether aggregate or individual), Tentry creates the
 association between the end-to-end session and the tunnel session.
 Then it appends a tunnel BOUND_SESSION_ID object to the end-to-end
 RESERVE message and sends it through the tunnel interface (i.e. the
 message is encapsulated and tunneled to Texit as normal).

 If the end-to-end session should be bound to a tunnel session yet to
 be created, Tentry assigns the tunnel flow ID, and constructs a
 tunnel RESERVE' or QUERY' message, depending on whether the tunnel
 signaling is sender initiated or receiver initiated. The QSPEC in
 this tunnel message may be different from the original QSPEC, taking
 into consideration the tunnel overhead of the encapsulation of data
 packets. Tentry then associates the tunnel session with the end-to-
 end session in the NSLP state and sends the tunnel message toward
 Texit to start reserving resources over the tunnel. At the same
 time, Tentry appends a tunnel BOUND_SESSION_ID object to the end-to-
 end RESERVE message and sends it through the tunnel interface.

 For receiver-initiated RESERVE messages,

 If the RESERVE message is received with its T-bit set (RESERVE tear),
 Tentry removes the local state and forwards the message upstream. If
 the tunnel signaling is sender initiated, Tentry also sends a tunnel
 RESERVE' message to teardown the tunnel session.

 If the end-to-end RESERVE message contains a tunnel BOUND_SESSION_ID
 and is the first end-to-end RESERVE message, Tentry checks whether
 the tunnel session bound to the end-to-end session indicated by the
 RESERVE message already exists. If yes, Tentry records the
 association between the end-to-end and the tunnel session, reads
 information from the tunnel session to create the end-to-end RESERVE
 message to be forwarded upstream. If the state for the tunnel
 session is not available yet, Tentry should create state information
 for the tunnel session and indicate that a conditional reservation is
 pending. If tunnel signaling is sender initiated, Tentry also sends
 a tunnel RESERVE' message toward Texit to reserve tunnel resources.
 When the actual tunnel session status is known at Tentry (from a
 tunnel RESERVE' if tunnel signaling is receiver initiated or at
 tunnel RESPONSE' if tunnel signaling is sender initiated) and if at
 this time there is a pending reservation, Tentry should generate an
 end-to-end RESERVE message and forward it upstream.

Shen, et al. Expires September 7, 2006 [Page 22]

Internet-Draft NSIS Operation over IP Tunnels March 2006

 If the end-to-end RESERVE message contains a tunnel BOUND_SESSION_ID
 and is a refresh, Texit refreshes the end-to-end session. If the
 RESERVE message causes changes in resources reserved for the end-to-
 end session and if tunnel signaling is sender initiated, Tentry sends
 a tunnel RESERVE' message to Texit to change the reservation. In any
 case, Texit checks the state information of the tunnel session. If
 it finds that the reservation has been updated inside the tunnel,
 Texit forwards the changed RESERVE message toward the sender. If the
 tunnel reservation update failed, Texit MUST send a RESPONSE with
 appropriate Error_Spec to the originator of the end-to-end RESERVE
 message.

6.4. End-to-end RESERVE Message at Texit

 When Texit receives a RESERVE message, in addition to normal
 processing of the request, the Texit performs the following steps,

 Sender-initiated RESERVE,

 If the end-to-end RESERVE message is received with its T-bit set
 (RESERVE tear), Texit removes the local state, then forwards the
 RESERVE message downstream. If tunnel signaling is receiver-
 initiated, Texit also sends a tunnel RESERVE tear upstream toward
 Tentry to tear down the tunnel session.

 If the end-to-end RESERVE message contains a tunnel BOUND_SESSION_ID
 and is the first end-to-end RESERVE message, Texit checks whether the
 state for the tunnel session indicated by the RESERVE message already
 exists. If yes, Texit records the association between the end-to-end
 and the tunnel session and reads information from the tunnel session
 to create the end-to-end RESERVE message to be forwarded downstream.
 If the state for the tunnel session is not available yet, Texit
 should create state information for the tunnel session and indicate
 that a conditional reservation is pending. When the actual tunnel
 RESERVE' arrives, the tunnel session state will be updated. If at
 this time there is a pending reservation, Texit will generate an end-
 to-end RESERVE message and forwards it downstream.

 If the end-to-end RESERVE message contains a tunnel BOUND_SESSION_ID
 and is a refresh, Texit refreshes the end-to-end session. If the
 RESERVE message causes changes in resources reserved for the end-to-
 end session, Texit checks the state information of the tunnel
 session. If the reservation has been updated inside the tunnel,
 Texit forwards the RESERVE message toward the receiver. If the
 tunnel reservation update failed, Texit MUST send a RESPONSE with
 appropriate Error_Spec to the originator of the end-to-end RESERVE
 message.

Shen, et al. Expires September 7, 2006 [Page 23]

Internet-Draft NSIS Operation over IP Tunnels March 2006

 Note that the processing rules for end-to-end RESERVE at Texit in
 end-to-end sender-initiated case is similar to those for end-to-end
 RESERVE at Tentry in end-to-end receiver-initiated case.

 Receiver-initiated RESERVE,

 If the RESERVE message is received with its T-bit set (RESERVE tear),
 Texit removes the local state, then forwards the RESERVE message
 upstream. If there is an individual tunnel session associated with
 this end-to-end session, Texit also sends a tunnel RESERVE' with
 T-bit set for that tunnel session.

 Otherwise Texit checks to see if the end-to-end session is associated
 with a tunnel session. If only conditional reservation state is
 found and no actual reservation has been made, this RESERVE is the
 first end-to-end RESERVE message. Texit appends a tunnel
 BOUND_SESSION_ID object to this end-to-end RESERVE message and sends
 it toward Tentry through the tunnel interface. Meanwhile if tunnel
 signaling is receiver initiated Texit sends tunnel RESERVE' message
 toward Tentry to reserve tunnel resources.

 If the end-to-end session is bound to a tunnel session and the
 RESERVE message is a refresh, it refreshes both the end-to-end
 session and tunnel session. If the RESERVE message causes changes in
 resources reserved for the end-to-end session and if tunnel signaling
 is receiver initiated, Texit may create a new tunnel RESERVE' message
 to change the tunnel reservation as well. Meanwhile, the end-to-end
 RESERVE is appended with the tunnel BOUND_SESSION_ID object and sent
 to Tentry through the reverse path.

6.5. Special Processing Rules for Tunnels with Aggregate Sessions

 In situations where the end-to-end session is bound to aggregate
 tunnel sessions, the handling is similar to that of [18].

 If the associated tunnel session is a "hard pipe" session, arrival of
 a new end-to-end reservation or adjustment of an existing end-to-end
 session may cause the overall resources needed in the tunnel session
 to exceed its capacity, this case is treated as admission control
 failure same as that of a tunnel reservation failure. Tentry should
 create a RESPONSE message with appropriate Error_Spec and send it to
 the originator of the RESERVE message.

 If the associated tunnel session is a "soft pipe" session, arrival of
 a new end-to-end reservation or adjustment/deletion of existing
 sessions may cause the tunnel session to be modified. It is
 recommended that some hysteresis is enforced in the adjustment of the
 tunnel reservation parameters. This requires tunnel endpoint to keep

Shen, et al. Expires September 7, 2006 [Page 24]

Internet-Draft NSIS Operation over IP Tunnels March 2006

 track of both the allocated tunnel session resources and the
 resources actually used by end-to-end sessions bound to that tunnel
 session.

7. Other Considerations

7.1. Other Types of NSLP

 This document discusses QoS NSLP. It will be good if the scheme in
 this document could work with other NSLPs as well. Since NSIS-tunnel
 operation involves specific NSLP itself and different NSLPs have
 different message exchange semantics, the NSIS-tunnel specification
 would not be the same for all NSLPs. However the basic aspects
 behind NSIS-tunnel operation are indeed similar. NATFW NSLP is the
 only other main NSLP currently developed by the NSIS working group.
 The most important signaling operation in NATFW NSLP is CREATE.
 Assuming Tentry is a NATFW NSLP, the tunnel-handling for CREATE
 operation will be very similar to the sender-initiated QoS
 reservation case. There are also a number of reverse directional
 operations in NATFW NSLP, e.g., RESERVE_EXTERNAL_ADDRESS, UCREATE.
 It is not very clear whether tunnel will cause problems with these
 messages in general. But they are likely easier to be dealt with
 than the receiver-initiated reservation case in QoS NSLP. This topic
 will be discussed in future version of this document if necessary.

7.2. IPSEC Flows

 If the tunnel supports IPSEC (especially ESP in Tunnel-Mode with or
 without AH), it may use the flow label, TC field, or IPSEC SPI along
 with the tunnel source and destination address, as discussed in

Section 3.1 to form the tunnel Flow ID. All these are standard NSIS
 MRI fields that should be matched by the NSIS packet classifier. We
 may also define virtual destination ports as in [19] to provide
 further flow demultiplexing capability at the destination side if
 necessary.

7.3. NSIS-Tunnel and Mobility

 The NSIS-tunnel operation needs to interact with IP mobility in an
 efficient way. In places where pre-configured tunnel sessions are
 available, the process is relatively straightforward. For dynamic
 individual signaling tunnel sessions, one way to improve tunnel NSIS-
 mobility efficiency is to reuse the session ID of the tunnel session
 when tunnel flow ID changes during mobility, as illustrated below.

 With a mobile IP tunnel, one tunnel endpoint is the Home Agent (HA),
 and the other endpoint is the Mobile Node (MN) if collocated Care-of-

Shen, et al. Expires September 7, 2006 [Page 25]

Internet-Draft NSIS Operation over IP Tunnels March 2006

 Address (CoA) is used, or the Foreign Agent (FA) if FA CoA is used.
 When MN is a receiver, Tentry is the HA and Texit is the MN or FA.
 In case of a mobility event, handoff tunnel signaling messages will
 start from HA, which may use the same session ID for the new tunnel
 session. When MN is a sender and collocated CoA is used, Tentry is
 the MN and Texit is the HA. Handoff tunnel signaling is started at
 the MN. It may also use the session ID of the previous tunnel
 session for the new tunnel session. When MN is a sender and FA CoA
 is used, the situation is complicated, because Tentry has changed
 from the old FA to the new FA. The new FA does not have the session
 ID of the previous tunnel session.

 When mobile IP is working on a bi-directional tunneling mode, NSIS-
 tunnel operation with mobility may be further improved by localizing
 the handoff tunnel signaling process under the HA (i.e., without
 going through the path between HA and CN).

8. Security Considerations

 This draft does not draw new security threats. Security
 considerations for NSIS NTLP and QoS NSLP are discussed in [2] and
 [3] respectively. General threats for NSIS can be found in [21].

9. Appendix

9.1. Summary of RSVP Operation Over IP Tunnels

RFC 2746 [18] provides an example scheme for RSVP operation over IP
 tunnels. The scheme needs to be supported by both the Tentry and
 Texit. To address the tunnel signaling visibility problem, separate
 tunnel signaling sessions are performed for end-to-end sessions. A
 binding between the tunnel sessions and the end-to-end sessions is
 established. Both the Tentry and Texit must agree on the binding so
 that changes in the original reservation state can be correctly
 mapped into changes in the tunnel reservation state, and that errors
 reported by intermediate routers to the tunnel endpoints can be
 correctly transformed into errors reported by the tunnel endpoints to
 the end-to-end RSVP session. To address the tunnel QoS data
 visibility problem, a UDP header is inserted to all QoS data packets
 following the tunnel IP header. The additional UDP header provides
 source and destination ports that allow intermediate tunnel nodes to
 use standard RSVP filterspec handling and demultiplex different
 tunnel RSVP sessions.

 The RFC 2746 scheme also mentions that in the case where the IP-in-IP
 tunnel supports IPSEC (especially ESP in tunnel-mode with or without

https://datatracker.ietf.org/doc/html/rfc2746
https://datatracker.ietf.org/doc/html/rfc2746

Shen, et al. Expires September 7, 2006 [Page 26]

Internet-Draft NSIS Operation over IP Tunnels March 2006

 AH), the tunnel session uses the GPI SESSION and GPI SENDER_TEMPLATE,
 FILTER_SPEC as defined in [19] for the PATH and RESV messages. Data
 packets are not encapsulated with a UDP header since the SPI can be
 used by the intermediate nodes for classification purposes.

9.2. Various Design Alternatives

9.2.1. End-to-end and Tunnel Signaling Interaction Model

 The contents of original end-to-end singling messages are not
 directly examined by tunnel intermediate nodes. To carry out tunnel
 signaling we choose to maintain a separate tunnel session for the
 end-to-end end session by generating separate signaling messages for
 the tunnel signaling session. Another possibility is to stack tunnel
 specific objects on top of the original end-to-end message and make
 these messages visible to tunnel intermediate nodes so they may serve
 both the end-to-end session and tunnel session. This turns out to be
 difficult because the actual tunnel signaling messages differ from
 the end-to-end signaling message both in GIST layer and NSLP layer
 information, such as MRI, PACKET CLASSIFIER and QSPEC. Although
 QSPEC can be stacked in an NSLP message, there doesn't seem to be a
 handy way to stack MRI and the PACKET CLASSIFIER in the NSLP layer.
 In addition, the stacking method only applies to individual signaling
 tunnels.

 The separate end-to-end tunnel session signaling model adopted in
 this document handles both individual and aggregate signaling tunnels
 in a consistent way. Its major drawback is the racing condition we
 mentioned in Section 4.2. However, this can be readily handled with
 the introducing of a flag indicating whether the flow is willing to
 tolerate "tunnel reservation uncertainty".

 To support tunnel signaling it is natural that at least one of the
 tunnel endpoints will need to understand the NSIS-tunnel operation.
 We see that Tentry always needs to be NSIS-Tunnel aware because it at
 least needs to encapsulate packets into special tunnel flow IDs.
 Texit needs to be NSIS-tunnel aware if the tunnel reservation is
 receiver initiated. When the tunnel reservation is sender-initiated,
 it is possible that Texit is NSIS-Tunnel unaware and the tunnel
 signaling still works. However, the condition is that no special
 packet decapsulation is needed (e.g. when UDP insertion is used for
 tunnel flow ID). Considering that most of the time we might have a
 bi-directional tunnel and also for more general applicability, we
 assumed both tunnel endpoints to be NSIS-Tunnel aware in this
 document.

9.2.2. Packet Classification over the Tunnel

Shen, et al. Expires September 7, 2006 [Page 27]

Internet-Draft NSIS Operation over IP Tunnels March 2006

 Packet classification over the tunnel may be done in either of the
 two ways: first, retaining the end-to-end packet classification
 rules; second, using tunnel specific classification rules. In the
 first approach, tunnel packet classification is not tied with tunnel
 MRI. This is a useful property especially in handling tunnel
 mobility - as mobility occurs, the tunnel MRI changes, but the packet
 classification rule does not change. Therefore, the common path
 after a handoff does not need to be updated about the packet
 classification, resulting in a better handoff performance. The main
 problem with this approach is that most existing routers do not
 support inspection of inner IP headers in an IP tunnel, where the
 tunnel independent packet classification fields usually reside.
 Therefore this document chooses the second approach which does not
 pose special requirements on intermediate tunnel nodes.

9.2.3. Tunnel Binding Methods

 In this document, the end-to-end session and tunnel session use
 different session IDs and they are associated with each other using
 the BOUND_SESSION_ID object. This choice is obvious for aggregate
 signaling tunnels because in that case the original end-to-end
 session and the corresponding aggregate tunnel session require
 independent control.

 Sessions in individual signaling tunnels are created and deleted
 along with the related end-to-end session. So association between
 the end-to-end session and the corresponding individual tunnel
 session has another choice: the two sessions may share the same
 session ID. Instead of sending a BOUND_SESSION_ID object, it may be
 possible to define a BOUND_FLOW_ID object, to bind the flow ID of the
 end-to-end session to the flow ID of the tunnel session at the tunnel
 endpoints. However, since flow ID is usually derived from MRI, if a
 NAT is present in the tunnel, this BOUND_FLOW_ID object will have to
 be modified in the middle, which makes the process fairly
 complicated. Furthermore, it is not desired to have different
 session association mechanisms for aggregate signaling tunnels and
 individual signaling tunnels. Therefore, we decide to use the same
 tunnel BOUND_SESSION_ID mechanism in individual signaling tunnels.
 Note that, in this case the mobility handling inside the tunnel can
 still be optimized in certain situations, as discussed in

Section 7.3.

9.2.4. Tunnel Binding Indication

 In this document we used the existing BOUND_SESSION_ID object with a
 tunnel Binding_code to indicate the reason of binding. Two other
 options considered are:

Shen, et al. Expires September 7, 2006 [Page 28]

Internet-Draft NSIS Operation over IP Tunnels March 2006

 1. Define a designated "tunnel object" to be included when the
 tunnel binding needs to be conveyed.
 2. Define a "tunnel bit" in corresponding NSLP message headers.

 These options are not chosen because they either need to create
 entirely new object, or need to change basic message headers. They
 are also not generic solutions that can cover other binding causes.

9.2.5. Carrying the Tunnel Binding Object

 There are basically three ways to carry the binding object between
 Tentry and Texit, using (a) end-to-end signaling messages (b) tunnel
 signaling messages. (c) both end-to-end and tunnel signaling
 messages.

 In option (a) only tunnel endpoints sees the tunnel binding
 information. While in option (b), every intermediate node sees the
 binding information. Since there will be no state for the end-to-end
 session in the tunnel intermediate nodes, they will all generate a
 message containing an "INFO_SPEC" object indicating no bound session
 found according to [3], which is not acceptable. Option (c) has a
 good point that if both end-to-end and tunnel signaling messages have
 tunnel binding information, the racing condition will be resolved
 faster. However it suffers the same problem as in (b). Therefore
 the choice in this document is option (a).

9.3. Change History

9.3.1. Changes in Version -02

 1. Rearranged section names to emphasize the difference between
 dynamically created tunnel sessions and pre-configured tunnel
 sessions.
 2. Added implementation considerations section about how to deal
 with the race condition in the separate session model, and
 allowed the dynamically created tunnel session to be an aggregate
 session.
 3. Added operation examples on the two scenarios where e2e and
 tunnel session uses different signaling initiation modes.
 4. Removed the illustration of binding_code for tunnel
 BOUND_SESSION_ID object since it has been added to NSLP
 specification.
 5. Clarified that tunnel capability discovery is at NSLP layer.
 6. Updated some of the message processing rules.
 7. Updated some parts of the appendix.

9.3.2. Changes in Version -01

Shen, et al. Expires September 7, 2006 [Page 29]

Internet-Draft NSIS Operation over IP Tunnels March 2006

 1. Added message processing rules.
 2. Put some of the backgrounds and alternative design choices to
 appendix.
 3. Proposed the binding_code for tunnel BOUND_SESSION_ID object.

10. Acknowledgements

11. References

11.1. Normative References

 [1] Bradner, S., "Key words for use in RFCs to Indicate Requirement
 Levels", BCP 14, RFC 2119, March 1997.

 [2] Schulzrinne, H. and R. Hancock, "GIST: General Internet
 Signaling Transport", draft-ietf-nsis-ntlp-09 (work in
 progress), February 2006.

 [3] Manner, J., "NSLP for Quality-of-Service signalling",
draft-ietf-nsis-qos-nslp-09 (work in progress), February 2006.

11.2. Informative References

 [4] Hanks, S., Li, T., Farinacci, D., and P. Traina, "Generic
 Routing Encapsulation (GRE)", RFC 1701, October 1994.

 [5] Hanks, S., Li, T., Farinacci, D., and P. Traina, "Generic
 Routing Encapsulation over IPv4 networks", RFC 1702,
 October 1994.

 [6] Gilligan, R. and E. Nordmark, "Transition Mechanisms for IPv6
 Hosts and Routers", RFC 2893, August 2000.

 [7] Perkins, C., "IP Encapsulation within IP", RFC 2003,
 October 1996.

 [8] Perkins, C., "Minimal Encapsulation within IP", RFC 2004,
 October 1996.

 [9] Kent, S. and R. Atkinson, "Security Architecture for the
 Internet Protocol", RFC 2401, November 1998.

 [10] Kent, S. and R. Atkinson, "IP Encapsulating Security Payload
 (ESP)", RFC 2406, November 1998.

 [11] Conta, A. and S. Deering, "Generic Packet Tunneling in IPv6

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/draft-ietf-nsis-ntlp-09
https://datatracker.ietf.org/doc/html/draft-ietf-nsis-qos-nslp-09
https://datatracker.ietf.org/doc/html/rfc1701
https://datatracker.ietf.org/doc/html/rfc1702
https://datatracker.ietf.org/doc/html/rfc2893
https://datatracker.ietf.org/doc/html/rfc2003
https://datatracker.ietf.org/doc/html/rfc2004
https://datatracker.ietf.org/doc/html/rfc2401
https://datatracker.ietf.org/doc/html/rfc2406

Shen, et al. Expires September 7, 2006 [Page 30]

Internet-Draft NSIS Operation over IP Tunnels March 2006

 Specification", RFC 2473, December 1998.

 [12] Blake, S., Black, D., Carlson, M., Davies, E., Wang, Z., and W.
 Weiss, "An Architecture for Differentiated Services", RFC 2475,
 December 1998.

 [13] Hancock, R., "Next Steps in Signaling: Framework",
draft-ietf-nsis-fw-07 (work in progress), December 2004.

 [14] Ash, J., "QoS-NSLP QSPEC Template", draft-ietf-nsis-qspec-08
 (work in progress), December 2005.

 [15] Stiemerling, M., "NAT/Firewall NSIS Signaling Layer Protocol
 (NSLP)", draft-ietf-nsis-nslp-natfw-09 (work in progress),
 February 2006.

 [16] Lee, S., "Applicability Statement of NSIS Protocols in Mobile
 Environments",

draft-ietf-nsis-applicability-mobility-signaling-03 (work in
 progress), October 2005.

 [17] Farinacci, D., Li, T., Hanks, S., Meyer, D., and P. Traina,
 "Generic Routing Encapsulation (GRE)", RFC 2784, March 2000.

 [18] Terzis, A., Krawczyk, J., Wroclawski, J., and L. Zhang, "RSVP
 Operation Over IP Tunnels", RFC 2746, January 2000.

 [19] Berger, L. and T. O'Malley, "RSVP Extensions for IPSEC Data
 Flows", RFC 2207, September 1997.

 [20] Rajahalme, J., Conta, A., Carpenter, B., and S. Deering, "IPv6
 Flow Label Specification", RFC 3697, March 2004.

 [21] Tschofenig, H. and D. Kroeselberg, "Security Threats for Next
 Steps in Signaling (NSIS)", RFC 4081, June 2005.

https://datatracker.ietf.org/doc/html/rfc2473
https://datatracker.ietf.org/doc/html/rfc2475
https://datatracker.ietf.org/doc/html/draft-ietf-nsis-fw-07
https://datatracker.ietf.org/doc/html/draft-ietf-nsis-qspec-08
https://datatracker.ietf.org/doc/html/draft-ietf-nsis-nslp-natfw-09
https://datatracker.ietf.org/doc/html/draft-ietf-nsis-applicability-mobility-signaling-03
https://datatracker.ietf.org/doc/html/rfc2784
https://datatracker.ietf.org/doc/html/rfc2746
https://datatracker.ietf.org/doc/html/rfc2207
https://datatracker.ietf.org/doc/html/rfc3697
https://datatracker.ietf.org/doc/html/rfc4081

Shen, et al. Expires September 7, 2006 [Page 31]

Internet-Draft NSIS Operation over IP Tunnels March 2006

Authors' Addresses

 Charles Shen
 Columbia University
 Department of Computer Science
 1214 Amsterdam Avenue, MC 0401
 New York, NY 10027
 USA

 Phone: +1 212 854 5599
 Email: charles@cs.columbia.edu

 Henning Schulzrinne
 Columbia University
 Department of Computer Science
 1214 Amsterdam Avenue, MC 0401
 New York, NY 10027
 USA

 Phone: +1 212 939 7004
 Email: schulzrinne@cs.columbia.edu

 Sung-Hyuck Lee
 SAMSUNG Advanced Institute of Technology
 San 14-1, Nongseo-ri, Giheung-eup
 Yongin-si, Gyeonggi-do 449-712
 KOREA

 Phone: +82 31 280 9552
 Email: starsu.lee@samsung.com

 Jong Ho Bang
 SAMSUNG Advanced Institute of Technology
 San 14-1, Nongseo-ri, Giheung-eup
 Yongin-si, Gyeonggi-do 449-712
 KOREA

 Phone: +82 31 280 9585
 Email: jh0278.bang@samsung.com

Shen, et al. Expires September 7, 2006 [Page 32]

Internet-Draft NSIS Operation over IP Tunnels March 2006

Intellectual Property Statement

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at

http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Disclaimer of Validity

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Copyright Statement

 Copyright (C) The Internet Society (2006). This document is subject
 to the rights, licenses and restrictions contained in BCP 78, and
 except as set forth therein, the authors retain all their rights.

Acknowledgment

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr
https://datatracker.ietf.org/doc/html/bcp78

Shen, et al. Expires September 7, 2006 [Page 33]

