
NFS Version 4 Working Group S. Shepler
INTERNET-DRAFT B. Callaghan
Document: draft-ietf-nfsv4-00.txt M. Eisler
 D. Robinson
 R. Thurlow
 Sun Microsystems
 February 1999

NFS version 4

Status of this Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet- Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

Abstract

 NFS version 4 is a distributed file system protocol which owes
 heritage to NFS versions 2 [RFC1094] and 3 [RFC1813]. Unlike earlier
 versions, NFS version 4 supports traditional file access while
 integrating support for file locking and the mount protocol. In
 addition, support for strong security (and its negotiation), compound
 operations, and internationlization have been added. Of course,
 attention has been applied to making NFS version 4 operate well in an
 Internet environment.

Expires: August 1999 [Page 1]

https://datatracker.ietf.org/doc/html/draft-ietf-nfsv4-00.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/rfc1094
https://datatracker.ietf.org/doc/html/rfc1813

Draft Protocol Specification NFS version 4 February 1999

Copyright

 Copyright (C) The Internet Society (1999). All Rights Reserved.

Key Words

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119.

Expires: August 1999 [Page 2]

https://datatracker.ietf.org/doc/html/rfc2119

Draft Protocol Specification NFS version 4 February 1999

Table of Contents

1. Introduction . 6
2. RPC and Security Flavor 7
2.1. Ports and Transports 7
2.2. Security Flavors . 7
2.2.1. Security mechanisms for NFS version 4 7
2.2.1.1. Kerberos V5 as security triple 7
2.2.1.2. <another security triple> 8
2.3. Security Negotiation 8
2.3.1. Security Error . 8
2.3.2. SECINFO . 9
3. File handles . 10
3.1. Obtaining the first file handle 10
3.2. The persistent and volatile file handle 10
4. Basic Data Types . 12
5. File Attributes . 14
5.1. Mandatory attributes 15
5.2. Recommended attributes 15
5.3. Extended attributes 16
5.4. Mandatory Attributes - Definitions 16
5.5. Recommended Attributes - Definitions 18
6. NFS Server Namespace 28
6.1. Server Exports . 28
6.2. Browsing Exports . 28
6.3. Server Pseudo File-System 29
6.4. Multiple Roots . 29
6.5. Filehandle Volatility 29
6.6. Exported Root . 29
6.7. Mount Point Crossing 30
6.8. Summary . 30
7. File Locking . 31
7.1. Definitions . 31
7.2. Locking . 32
7.2.1. Client ID . 32
7.2.2. nfs_lockowner and stateid definition 34
7.2.3. Use of the stateid 34
7.2.4. Sequencing of lock requests 35
7.3. Blocking locks . 35
7.4. Lease renewal . 36
7.5. Crash recovery . 36
7.6. Server revocation of locks 37
7.7. Share reservations 38
7.8. OPEN/CLOSE procedures 38
8. Defined Error Numbers 40
9. Compound Requests . 44
10. NFS Version 4 Requests 45
10.1. Evaluation of a Compound Request 45

Expires: August 1999 [Page 3]

Draft Protocol Specification NFS version 4 February 1999

11. NFS Version 4 Procedures 46
11.1. Procedure 0: NULL - No operation 47
11.2. Procedure 1: ACCESS - Check Access Permission 48
11.3. Procedure 2: CLOSE - close file 51
11.4. Procedure 3: COMMIT - Commit cached data 52

 11.5. Procedure 4: CREATE - Create a non-regular file object 55
11.6. Procedure 5: GETATTR - Get attributes 59
11.7. Procedure 6: GETFH - Get current filehandle 60
11.8. Procedure 7: LINK - Create link to an object 61
11.9. Procedure 8: LOCK - Create lock 63
11.10. Procedure 9: LOCKT - test for lock 64
11.11. Procedure 10: LOCKU - Unlock file 65
11.12. Procedure 11: LOOKUP - Lookup filename 66
11.13. Procedure 12: LOOKUPP - Lookup parent directory . . . 68

 11.14. Procedure 13: NVERIFY - Verify attributes different . 69
11.15. Procedure 14: OPEN - Open a regular file 70
11.16. Procedure 15: PUTFH - Set current filehandle 73
11.17. Procedure 16: PUTROOTFH - Set root filehandle 74
11.18. Procedure 17: READ - Read from file 75
11.19. Procedure 18: READDIR - Read directory 78
11.20. Procedure 19: READLINK - Read symbolic link 81
11.21. Procedure 20: REMOVE - Remove filesystem object . . . 83
11.22. Procedure 21: RENAME - Rename directory entry 85
11.23. Procedure 22: RENEW - renew a lease 87
11.24. Procedure 23: RESTOREFH - Restore saved filehandle . . 88
11.25. Procedure 24: SAVEFH - Save current filehandle 89
11.26. Procedure 25: SECINFO - Obtain Available Security . . 90
11.27. Procedure 26: SETATTR - Set attributes 92
11.28. Procedure 27: SETCLIENTID - negotiated clientid . . . 94
11.29. Procedure 28: VERIFY - Verify attributes same 95
11.30. Procedure 29: WRITE - Write to file 96
12. Locking notes . 101
12.1. Short and long leases 101
12.2. Clocks and leases 101
12.3. Locks and lease times 101
12.4. Locking of directories and other meta-files 102
12.5. Proxy servers and leases 102
12.6. Locking and the new latency 102
13. Internationalization 103
13.1. Universal Versus Local Character Sets 103
13.2. Overview of Universal Character Set Standards 104
13.3. Difficulties with UCS-4, UCS-2, Unicode 105
13.4. UTF-8 and its solutions 106
14. Security Considerations 107
15. NFS Version 4 RPC definition file 108
16. Bibliography . 127
17. Authors and Contributors 131
17.1. Contributors . 131

Expires: August 1999 [Page 4]

Draft Protocol Specification NFS version 4 February 1999

17.2. Editor's Address 131
17.3. Authors' Addresses 131
18. Full Copyright Statement 133

Expires: August 1999 [Page 5]

Draft Protocol Specification NFS version 4 February 1999

1. Introduction

 NFS version 4 is a further revision of the NFS protocol defined
 already by versions 2 [RFC1094] and 3 [RFC1813]. It retains the
 essential characteristics of previous versions: stateless design for
 easy recovery, independent of transport protocols, operating systems
 and filesystems, simplicity, and good performance. The NFS version 4
 revision has the following goals:

 o Improved access and good performance on the Internet.

 The protocol is designed to transit firewalls easily, perform
 well where latency is high and bandwidth is low, and scale to
 very large numbers of clients per server.

 o Strong security with negotiation built into the protocol.

 The protocol builds on the work of the ONCRPC working group in
 supporting the RPCSEC_GSS protocol. Additionally NFS version 4
 provides a mechanism to allow clients and servers to negotiate
 security and require clients and servers to support a minimal
 set of security schemes.

 o Good cross-platform interoperability.

 The protocol features a filesystem model that provides a useful,
 common set of features that does not unduly favor one filesystem
 or operating system over another.

 o Designed for protocol extensions.

 The protocol is designed to accept standard extensions that do
 not compromise backward compatibility.

https://datatracker.ietf.org/doc/html/rfc1094
https://datatracker.ietf.org/doc/html/rfc1813

Expires: August 1999 [Page 6]

Draft Protocol Specification NFS version 4 February 1999

2. RPC and Security Flavor

 The NFS version 4 protocol is a Remote Procedure Call (RPC)
 application that uses RPC version 2 and the corresponding eXternal
 Data Representation (XDR) as defined in [RFC1831] and [RFC1832]. The
 RPCSEC_GSS security flavor as defined in [RFC2203] MUST be used as
 the mechanism to deliver stronger security to NFS version 4.

2.1. Ports and Transports

 Historically, NFS version 2 and version 3 servers have resided on
 UDP/TCP port 2049. Port 2049 is a IANA registered port number for NFS
 and therefore will continue to be used for NFS version 4. Using the
 well known port for NFS services means the NFS client will not need
 to use the RPC binding protocols as described in [RFC1833]; this will
 allow NFS to transit firewalls.

 The NFS server SHOULD offer its RPC service via TCP as the primary
 transport. The server SHOULD also provide UDP for RPC service. The
 NFS client SHOULD also have a preference for TCP usage but may supply
 a mechanism to override TCP in favor of UDP as the RPC transport.

2.2. Security Flavors

 Traditional RPC implementations have included AUTH_NONE, AUTH_SYS,
 AUTH_DH, and AUTH_KRB4 as security flavors. With [RFC2203] an
 additional security flavor of RPCSEC_GSS has been introduced which
 uses the functionality of GSS-API [RFC2078]. This allows for the use
 of varying security mechanisms by the RPC layer without the
 additional implementation overhead of adding RPC security flavors.
 For NFS version 4, the RPCSEC_GSS security flavor MUST be used to
 enable the mandatory security mechanism. The flavors AUTH_NONE,
 AUTH_SYS, and AUTH_DH MAY be implemented as well.

2.2.1. Security mechanisms for NFS version 4

 The use of RPCSEC_GSS requires selection of: mechanism, quality of
 protection, and service (authentication, integrity, privacy). The
 remainder of this document will refer to these three parameters of
 the RPCSEC_GSS security as the security triple.

2.2.1.1. Kerberos V5 as security triple

 The Kerberos V5 GSS-API mechanism as described in [RFC1964] MUST be
 implemented and provide the following security triples.

 columns:

https://datatracker.ietf.org/doc/html/rfc1831
https://datatracker.ietf.org/doc/html/rfc1832
https://datatracker.ietf.org/doc/html/rfc2203
https://datatracker.ietf.org/doc/html/rfc1833
https://datatracker.ietf.org/doc/html/rfc2203
https://datatracker.ietf.org/doc/html/rfc2078
https://datatracker.ietf.org/doc/html/rfc1964

Expires: August 1999 [Page 7]

Draft Protocol Specification NFS version 4 February 1999

 1 == number of pseudo flavor
 2 == name of pseudo flavor
 3 == mechanism's OID
 4 == mechanism's algorithm(s)
 5 == RPCSEC_GSS service

 1 2 3 4 5

 390003 krb5 1.2.840.113554.1.2.2 DES MAC MD5 rpc_gss_svc_none
 390004 krb5i 1.2.840.113554.1.2.2 DES MAC MD5 rpc_gss_svc_integrity
 390005 krb5p 1.2.840.113554.1.2.2 DES MAC MD5 rpc_gss_svc_privacy
 for integrity,
 and 56 bit DES
 for privacy.

 This section will be expanded to include the pertinent
 details from draft-ietf-nfsv4-nfssec-00.txt.

2.2.1.2. <another security triple>

 Another GSS-API mechanism will need to be specified here
 along with the corresponding security triple(s).

2.3. Security Negotiation

 With the NFS version 4 server potentially offering multiple security
 mechanisms, the client will need a way to determine or negotiate
 which mechanism is to be used for its communication with the server.
 The NFS server may have multiple points within its file system name
 space that are available for use by NFS clients. In turn the NFS
 server may be configured such that each of these entry points may
 have different or multiple security mechanisms in use.

 The security negotiation between client and server must be done with
 a secure channel to eliminate the possibility of a third party
 intercepting the negotiation sequence and forcing the client and
 server to choose a lower level of security than required/desired.

2.3.1. Security Error

 Based on the assumption that each NFS version 4 client and server
 must support a minimum set of security (i.e. Kerberos-V5 under
 RPCSEC_GSS, <ed: add other>), the NFS client will start its
 communication with the server with one of the minimal security

https://datatracker.ietf.org/doc/html/draft-ietf-nfsv4-nfssec-00.txt

Expires: August 1999 [Page 8]

Draft Protocol Specification NFS version 4 February 1999

 triples. During communication with the server, the client may
 receive an NFS error of NFS4ERR_WRONGSEC. This error allows the
 server to notify the client that the security triple currently being
 used is not appropriate for access to the server's file system
 resources. The client is then responsible for determining what
 security triples are available at the server and choose one which is
 appropriate for the client.

2.3.2. SECINFO

 The new procedure SECINFO (see SECINFO procedure definition) will
 allow the client to determine, on a per filehandle basis, what
 security triple is to be used for server access. In general, the
 client will not have to use the SECINFO procedure except during
 initial communication with the server or when the client crosses
 policy boundaries at the server. It could happen that the server's
 policies change during the client's interaction therefore forcing the
 client to negotiate a new security triple.

Expires: August 1999 [Page 9]

Draft Protocol Specification NFS version 4 February 1999

3. File handles

 The file handle in the NFS protocol is an opaque identifier for a
 file system object. The server is responsible for translating the
 file handle to its internal representation of the file system object.
 The file handle is used to uniquely identify a file system object at
 the NFS server. The client should be able to depend on the fact that
 a file handle will not be reused once a file system object has been
 destroyed. If the file handle is reused, the time elapsed before
 reuse SHOULD be very significant. Note that each NFS procedure is
 defined in terms of its file handle(s) except for the NULL procedure.

3.1. Obtaining the first file handle

 If each of the meaningful operations of the NFS protocol require a
 file handle, the client must have a mechanism to obtain the first
 file handle. With NFS version 2 [RFC1094] and NFS version 3
 [RFC1813], there exists an ancillary, protocol to obtain the first
 file handle. The MOUNT protocol, RPC program number 100005, provides
 the mechanism of translating a string based file system path name to
 a file handle which can then be used by the NFS protocols.

 The MOUNT protocol as currently implemented has deficiencies in the
 area of security and use via firewalls. This is one reason that the
 use of the public file handle was introduced [RFC2054] [RFC2055].
 The public file handle is a special case file handle that is used in
 combination with a path name to avoid using the MOUNT protocol for
 obtaining the first file handle. With the introduction and use of
 the public file handle in the previous versions of NFS, it has been
 shown that the MOUNT protocol is unnecessary for viable interaction
 between the client and server with the use of file handles.

3.2. The persistent and volatile file handle

 For the first time in NFS version 4, the file handle constructed by
 the server can be volatile. In the previous versions of NFS, the
 server was responsible for ensuring the persistence of the file
 handle. This meant that as long as a file system object remained in
 existence at the server the file handle for that object had to be the
 same each time the client asked for it. This persistent quality
 eased the implementation at the client in the event of server restart
 or failure and recovery. For some servers, fulfilling the persistent
 requirement has been straight forward; for others it has been
 difficult and affected at best performance and at worst correctness.

 The existence of the volatile file handle requires the client to
 implement a method of recovering from the expiration of a file
 handle. Most commonly the client will need to store the component

https://datatracker.ietf.org/doc/html/rfc1094
https://datatracker.ietf.org/doc/html/rfc1813
https://datatracker.ietf.org/doc/html/rfc2054
https://datatracker.ietf.org/doc/html/rfc2055

Expires: August 1999 [Page 10]

Draft Protocol Specification NFS version 4 February 1999

 names associated with the file system object in question. With these
 names, the client will be able to recover by finding a file handle in
 the name space that is still available or by starting at the root of
 the server's file system name space.

 The use of a volatile file handle provides these advantages:

 o Eases the server implementation requirements.

 o Server can provide extended services more easily with the use of
 volatile file handles (HSM software, file system reorganization)

 o Allows for server file systems that have difficulty in mapping a
 stable file handle to a file object. In this case, a server
 implementation would be able to build a mapping dynamically
 between a volatile file handle and the file system object.

 In some cases a file handle is stale (no longer valid, perhaps
 because the file was removed from the server), or it is expired (the
 underlying file is valid, but since the file handle is volatile, it
 may have expired, requiring the client to get a new file handle).
 Thus the server needs to be able to return NFS4ERR_STALE in the
 former case, and NFS4ERR_EXPIRED in the latter case. This can be done
 by careful construction of the volatile file handle. One
 implementation that has been suggested is the following. A volatile
 file handle, while opaque to the client could contain:

 volatile bit = 1 | server boot time | slot | generation number

 slot is an index in the server volatile file handle table. generation
 number is the generation number for the table entry/slot. If the
 server boot time is less than the current server boot time, return
 NFS4ERR_EXPIRED. If slot is out of range, return NFS4ERR_EXPIRED. If
 the generation number does not match, return NFS4ERR_EXPIRED.

 When the server reboots, the table is gone (it is volatile).

 If volatile bit is 0, then it is a persistent file handle with a
 different structure following it.

Expires: August 1999 [Page 11]

Draft Protocol Specification NFS version 4 February 1999

4. Basic Data Types

 Arguments and results from operations will be described in terms of
 basic XDR types defined in [RFC1832]. The following data types will
 be defined in terms of basic XDR types:

 filehandle: opaque <128>

 An NFS version 4 filehandle. A filehandle with zero length is
 recognized as a "public" filehandle.

 utf8string: opaque <>

 A counted array of octets that contains a UTF-8 string.

 Note: Section 11, Internationalization, covers the rational of
 using UTF-8.

 bitmap: uint32 <>

 A counted array of 32 bit integers used to contain bit values.
 The position of the integer in the array that contains bit n can
 be computed from the expression (n / 32) and its bit within that
 integer is (n mod 32).

 0 1
 +-----------+-----------+-----------+--
 | count | 31 .. 0 | 63 .. 32 |
 +-----------+-----------+-----------+--

 createverf: opaque<8>

 Verify used for exclusive create semantics

 nfstime4
 struct nfstime4 {
 int64_t seconds;
 uint32_t nseconds;
 }

 The nfstime4 structure gives the number of seconds and
 nanoseconds since midnight or 0 hour January 1, 1970 Coordinated
 Universal Time (UTC). Values greater than zero for the seconds
 field denote dates after the 0 hour January 1, 1970. Values
 less than zero for the seconds field denote dates before the 0
 hour January 1, 1970. In both cases, the nseconds field is to
 be added to the seconds field for the final time representation.
 For example, if the time to be represented is one-half second

https://datatracker.ietf.org/doc/html/rfc1832

Expires: August 1999 [Page 12]

Draft Protocol Specification NFS version 4 February 1999

 before 0 hour January 1, 1970, the seconds field would have a
 value of negative one (-1) and the nseconds fields would have a
 value of one-half second (500000000). Values greater than
 999,999,999 for nseconds are considered invalid.

 This data type is used to pass time and date information. A
 server converts to and from local time when processing time
 values, preserving as much accuracy as possible. If the
 precision of timestamps stored for a file system object is less
 than defined, loss of precision can occur. An adjunct time
 maintenance protocol is recommended to reduce client and server
 time skew.

 specdata4
 struct specdata4 {
 uint32_t specdata1;
 uint32_t specdata2;
 }

 This data type represents additional information for the device
 file types NFCHR and NFBLK.

Expires: August 1999 [Page 13]

Draft Protocol Specification NFS version 4 February 1999

5. File Attributes

 To meet the NFS Version 4 requirements of extensibility and increased
 interoperability with non-Unix platforms, attributes must be handled
 in a more flexible manner. The NFS Version 3 fattr3 structure
 contained a fixed list of attributes that not all clients and servers
 are able to support or care about, which cannot be extended as new
 needs crop up, and which provides no way to indicate non-support.
 With NFS Version 4, the client will be able to ask what attributes
 the server supports, and will be able to request only those
 attributes in which it is interested.

 To this end, attributes will be divided into three groups: mandatory,
 recommended and extended. Both mandatory and recommended attributes
 are supported in the NFS V4 protocol by a specific and well-defined
 encoding, and are identified by number. They are requested by
 setting a bit in the bit vector sent in the GETATTR request; the
 server response includes a bit vector to list what attributes were
 returned in response. New mandatory or recommended attributes may be
 added to the NFS protocol between revisions by publishing a
 standards-track RFC which allocates a new attribute number value and
 defines the encoding for the attribute.

 Extended attributes are accessed by the new OPENATTR operation, which
 accesses a hidden directory of attributes associated with a
 filesystem object. OPENATTR takes a filehandle for the object and
 returns the filehandle for the attribute hierarchy, which is a
 directory object accessible by LOOKUP or READDIR, and which contains
 files whose names and are the names of the extended attributes and
 whose data bytes are the value of the attribute. For example:

 LOOKUP "foo" ; look up file
 GETATTR attrbits
 OPENATTR ; access foo's extended attributes
 LOOKUP "x11icon" ; look up specific attribute
 READ 0,4096 ; read stream of bytes

 Extended attributes are intended primarily for data needed by
 applications rather than by an NFS client implementation per se; NFS
 implementors are strongly encouraged to define their new attributes
 as recommended attributes by bringing them to the working group.

 The set of attributes which are classified as mandatory is
 deliberately small, since servers must do whatever it takes to
 support them. The recommended attributes may be unsupported, though
 a server should support as many as it can. Attributes are deemed

Expires: August 1999 [Page 14]

Draft Protocol Specification NFS version 4 February 1999

 mandatory if the data is both needed by a large number of clients and
 is not otherwise reasonably computable by the client when support is
 not provided on the server.

5.1. Mandatory attributes

 These MUST be supported by every NFS Version 4 client and server in
 order to ensure a minimum level of interoperability. The server must
 store and return these attributes, and the client must be able to
 function with an attribute set limited to these attributes, though
 some operations may be impaired or limited in some ways in this case.
 A client may ask for any of these attributes to be returned by
 setting a bit in the GETATTR request, and the server must return
 their value.

5.2. Recommended attributes

 These attributes are understood well enough to warrant support in the
 NFS Version 4 protocol, though they may not be supported on all
 clients and servers. A client may ask for any of these attributes to
 be returned by setting a bit in the GETATTR request, but must be able
 to deal with not receiving them. A client may ask for the set of
 attributes the server supports and should not request attributes the
 server does not support. A server should be tolerant of requests for
 unsupported attributes, and simply not return them, rather than
 considering the request an error. It is expected that servers will
 support all attributes they comfortably can, and only fail to support
 attributes which are difficult to support in their operating
 environments. A server should provide attributes whenever they don't
 have to "tell lies" to the client - for example, a file modification
 time should be either an accurate time or should not be supported by
 the server. This will not always be comfortable to clients, but in
 general it seems that the client has a better ability to fake data or
 do without.

 Most attributes from NFS V3's FSINFO, FSSTAT and PATHCONF procedures
 have been added as recommended attributes, so that filesystem info
 may be collected via the filehandle of any object the filesystem.
 This renders those procedures unnecessary in NFS V4. If a server
 supports any per-filesystem attributes, it must support the fsid
 attribute so that the client may always determine when filesystems
 are crossed so that it can work correctly with these attributes.

Expires: August 1999 [Page 15]

Draft Protocol Specification NFS version 4 February 1999

5.3. Extended attributes

 These attributes are not supported by direct encoding in the NFS
 Version 4 protocol, but are accessed by string names rather than
 numbers, and correspond to an uninterpreted stream of bytes which are
 stored with the filesystem object. The namespace for these
 attributes may be accessed by using the OPENATTR operation to get a
 filehandle for a virtual "attribute directory" and using READDIR and
 LOOKUP operations on this filehandle. Extended attributes may then
 be examined or changed by normal READ and WRITE and CREATE operations
 on the filehandles returned from READDIR and LOOKUP. Attributes may
 have attributes, for example, a security label may have access
 control information in its own right.

 It is recommended that servers support arbitrary extended attributes.
 A client should not depend on the ability to store any extended
 attributes in the server's filesystem. If a server does support
 extended attributes, a client which is also able to handle them
 should be able to copy a file's data and meta-data with complete
 transparency from one location to another; this would imply that
 there should be no attribute names which will be considered illegal
 by the server.

 Names of attributes will not be controlled by a standards body,
 however vendors and application writers are encouraged to register
 attribute names and the interpretation and semantics of the stream of
 bytes via informational RFC so that vendors may interoperate where
 common interests exist.

 The following is a list of mandatory and recommended attributes.

5.4. Mandatory Attributes - Definitions

 Name: supp_attr

 Data Type: nfs_attrvec4

 Access: Read

 Description: the bit vector which would retrieve all mandatory and
 recommended attributes which may be requested for
 this object

 Justification: the client must ask this question to request correct
 attributes

Expires: August 1999 [Page 16]

Draft Protocol Specification NFS version 4 February 1999

 Name: object_type

 Data Type: nfs_type4

 Access: Read

 Description: the type of the object (file/directory/symlink)

 Justification: the client cannot handle object correctly without
 type

 Name: object_size

 Data Type: uint64

 Access: Read Write

 Description: the size of the object in bytes

 Justification: could be very expensive to derive, likely to be
 available

 Name: change

 Data Type: uint64

 Description: A value created by the server that the client can use
 to determine if a file data, directory contents or
 attributes have been modified. The server can just
 return the file mtime in this field though if a more
 precise value exists then it can be substituted, for
 instance, a checksum or sequence number.

 Justification: necessary for any useful caching, likely to be
 available

 Name: persistent_fh

 Data Type: boolean

 Access: Read

 Description: is the filehandle for this object persistent?

Expires: August 1999 [Page 17]

Draft Protocol Specification NFS version 4 February 1999

 Justification: Server should know if the file handles being provided
 are persistent or not. If the server is not able to
 make this determination, then it can choose volatile
 or non-persistent.

 Name: extended

 Data Type: boolean

 Access: Read

 Description: whether or not this object has extended attributes

 Justification:

 Name: link_support

 Data Type: boolean

 Access: Read

 Description: whether or not this object's filesystem supports hard
 links

 Justification: Server can easily determine if links are supported

 Name: symlink_support

 Data Type: boolean

 Access: Read

 Description: whether or not this object's filesystem supports
 symbolic links

 Justification: Server can easily determine if links are supported

5.5. Recommended Attributes - Definitions

 Name: owner

 Data Type: utf8<>

Expires: August 1999 [Page 18]

Draft Protocol Specification NFS version 4 February 1999

 Access: Read Write

 Description: the string name of the owner of this object; note
 that the concept of a numeric uid has been dropped

 Name: group_owner

 Data Type: utf8<>

 Access: Read Write

 Description: the string name of the group of the owner of this
 object; note that the concept of a numeric gid has
 been dropped

 Name: file_id

 Data Type: fileid4

 Access: Read

 Description: a number uniquely identifying the file within the
 filesystem

 Name: file_name

 Data Type: utf8<>

 Access: Read

 Description: the name of this object (primarily for readdir
 requests)

 Name: filehandle

 Data Type: nfs_fh4

 Access: Read

 Description: the filehandle of this object (primarily for readdir
 requests)

 Name: ACL

Expires: August 1999 [Page 19]

Draft Protocol Specification NFS version 4 February 1999

 Data Type: nfsacl4

 Access: Read Write

 Description: the access control list for the object [The nature
 and format of ACLs is still to be determined.]

 Name: mode

 Data Type: uint32

 Access: Read Write

 Description: Unix-style permission bits for this object
 (deprecated in favor of ACLs)

 Name: object_links

 Data Type: uint32

 Access: Read

 Description: number of links to this object

 Name: space_used

 Data Type: uint64

 Access: Read

 Description: number of filesystem bytes allocated to this object

 Name: fsid.major

 Data Type: uint64

 Access: Read

 Description: unique filesystem identifier for the filesystem
 holding this object

 Name: fsid.minor

Expires: August 1999 [Page 20]

Draft Protocol Specification NFS version 4 February 1999

 Data Type: uint64

 Access: Read

 Description: unique filesystem identifier within the fsid.major
 filesystem identifier for the filesystem holding this
 object

 Name: quota_used

 Data Type: uint64

 Access: Read

 Description: number of bytes of disk space occupied by the owner
 of this object on this filesystem

 Name: quota_soft

 Data Type: uint64

 Access: Read

 Description: number of bytes of disk space at which the client may
 choose to warn the user about limited space

 Name: quota_hard

 Data Type: uint64

 Access: Read

 Description: number of bytes of disk space beyond which the server
 will decline to allocate new space

 Name: rawdev

 Data Type: specdata4

 Access: Read

 Description: raw device identifier

Expires: August 1999 [Page 21]

Draft Protocol Specification NFS version 4 February 1999

 Name: access_time

 Data Type: nfstime4

 Access: Read Write

 Description: the time of last access to the object

 Name: create_time

 Data Type: nfstime4

 Access: Read Write

 Description: the time of creation of the object. This attribute
 does not have any relation to the traditional Unix
 file attribute 'ctime' or 'change time'.

 Name: meta-data_time

 Data Type: nfstime4

 Access: Read Write

 Description: the time of last meta-data modification of the
 object.

 Name: mod_time

 Data Type: nfstime4

 Access: Read Write

 Description: the time since the epoch of last modification to the
 object

 Name: backup_time

 Data Type: nfstime4

 Access: Read Write

 Description: the time of last backup of the object

Expires: August 1999 [Page 22]

Draft Protocol Specification NFS version 4 February 1999

 Name: mime_type

 Data Type: utf8<>

 Access: Read Write

 Description: MIME body type/subtype of this object

 Name: version

 Data Type: utf8<>

 Access: Read Write

 Description: version number of this document

 Name: hidden

 Data Type: boolean

 Access: Read Write

 Description: whether or not this file is considered hidden

 Name: archive

 Data Type: boolean

 Access: Read Write

 Description: whether or not this file has been archived since the
 time of last modification (deprecated in favor of
 backup_time)

 Name: system

 Data Type: boolean

 Access: Read Write

 Description: whether or not this file is a system file

 Name: homogeneous

Expires: August 1999 [Page 23]

Draft Protocol Specification NFS version 4 February 1999

 Data Type: boolean

 Access: Read

 Description: whether or not this object's filesystem is
 homogeneous, i.e. whether pathconf is the same for
 all filesystem objects

 Name: cansettime

 Data Type: boolean

 Access: Read

 Description: whether or not this object's filesystem can fill in
 the times on a SETATTR request without an explicit
 time

 Name: no_trunc

 Data Type: boolean

 Access: Read

 Description: if a name longer than name_max is used, will an error
 be returned or will the name be truncated?

 Name: chown_restricted

 Data Type: boolean

 Access: Read

 Description: will a request to change ownership be honored?

 Name: case_insensitive

 Data Type: boolean

 Access: Read

 Description: are filename comparisons on this filesystem case
 insensitive?

Expires: August 1999 [Page 24]

Draft Protocol Specification NFS version 4 February 1999

 Name: case_preserving

 Data Type: boolean

 Access: Read

 Description: is filename case on this filesystem preserved?

 Name: name_max

 Data Type: uint32

 Access: Read

 Description: maximum filename size supported for this object

 Name: link_max

 Data Type: uint32

 Access: Read

 Description: maximum number of links for this object

 Name: read_max

 Data Type: uint64

 Access: Read

 Description: maximum read size supported for this object

 Name: write_max

 Data Type: uint64

 Access: Read

 Description: maximum write size supported for this object. This
 attribute SHOULD be supported if the file is
 writable. Lack of this attribute can lead to the
 client either wasting bandwidth or not receiving the
 best performance.

Expires: August 1999 [Page 25]

Draft Protocol Specification NFS version 4 February 1999

 Name: maxfilesize

 Data Type: uint64

 Access: Read

 Description: maximum supported file size for the filesystem of
 this object

 Name: time_delta

 Data Type: nfstime4

 Access: Read

 Description: smallest useful server time granularity

 Name: total_space

 Data Type: uint64

 Access: Read

 Description: total disk space in bytes on the filesystem
 containing this object

 Name: free_space

 Data Type: uint64

 Access: Read

 Description: free disk space in bytes on the filesystem containing
 this object - this should be the smallest relevant
 limit

 Name: avail_space

 Data Type: uint64

 Access: Read

 Description: disk space in bytes available to this user on the
 filesystem containing this object - this should be

Expires: August 1999 [Page 26]

Draft Protocol Specification NFS version 4 February 1999

 the smallest relevant limit

 Name: total_files

 Data Type: uint64

 Access: Read

 Description: total file slots on the filesystem containing this
 object

 Name: free_files

 Data Type: uint64

 Access: Read

 Description: free file slots on the filesystem containing this
 object - this should be the smallest relevant limit

 Name: avail_files

 Data Type: uint64

 Access: Read

 Description: file slots available to this user on the filesystem
 containing this object - this should be the smallest
 relevant limit

 Name: volatility

 Data Type: nfstime4

 Access: Read

 Description: approximate time until next expected change on this
 filesystem, as a measure of volatility

Expires: August 1999 [Page 27]

Draft Protocol Specification NFS version 4 February 1999

6. NFS Server Namespace

6.1. Server Exports

 On a UNIX server the name-space describes all the files reachable by
 pathnames under the root directory "/". On a Windows NT server the
 name-space constitutes all the files on disks named by mapped disk
 letters. NFS server administrators rarely make the entire server's
 file-system name-space available to NFS clients. Typically, pieces
 of the name-space are made available via an "export" feature. The
 root filehandle for each export is obtained through the MOUNT
 protocol; the client sends a string that identifies the export of
 name-space and the server returns the root filehandle for it. The
 MOUNT protocol supports an EXPORTS procedure that will enumerate the
 server's exports.

6.2. Browsing Exports

 The NFS version 4 protocol provides a root filehandle that clients
 can use to obtain filehandles for these exports via a multi-component
 LOOKUP. A common user experience is to use a graphical user
 interface (perhaps a file "Open" dialog window) to find a file via
 progressive browsing through a directory tree. The client must be
 able to move from one export to another export via single-component,
 progressive LOOKUP operations.

 This style of browsing is not well supported by NFS version 2 and 3
 protocols. The client expects all LOOKUP operations to remain within
 a single server file-system, i.e. the device attribute will not
 change. This prevents a client from taking name-space paths that
 span exports.

 An automounter on the client can obtain a snapshot of the server's
 name-space using the EXPORTS procedure of the MOUNT protocol. If it
 understands the server's pathname syntax, it can create an image of
 the server's name-space on the client. The parts of the name-space
 that are not exported by the server are filled in with a "pseudo
 file-system" that allows the user to browse from one mounted file-
 system to another. There is a drawback to this representation of the
 server's name-space on the client: it is static. If the server
 administrator adds a new export the client will be unaware of it.

Expires: August 1999 [Page 28]

Draft Protocol Specification NFS version 4 February 1999

6.3. Server Pseudo File-System

 NFS version 4 servers avoid this name-space inconsistency by
 presenting all the exports within the framework of a single server
 name-space. An NFS version 4 client uses LOOKUP and READDIR
 operations to browse seamlessly from one export to another. Portions
 of the server name-space that are not exported are bridged via a
 "pseudo file-system" that provides a view only of exported
 directories. The pseudo file-system has a unique fsid and behaves
 like a normal, read-only file-system.

6.4. Multiple Roots

 DOS, Windows 95, 98 and NT are sometimes described as having
 "multiple roots". File-Systems are commonly represented as disk
 letters. MacOS represents file-systems as top-level names. NFS
 version 4 servers for these platforms can construct a pseudo file-
 system above these root names so that disk letters or volume names
 are simply directory names in the pseudo-root.

6.5. Filehandle Volatility

 The nature of the server's pseudo file-system is that it is a logical
 representation of file-system(s) available from the server.
 Therefore, the pseudo file-system is most likely constructed
 dynamically when the NFS version 4 is first instantiated. It is
 expected the pseudo file-system may not have an on-disk counterpart
 from which persistent filehandles could be constructed. Even though
 it is preferable that the server provide persistent filehandles for
 the pseudo file-system, the NFS client should expect that pseudo
 file-system file-handles are volatile. This can be confirmed by
 checking the associated "persistent_fh" attribute for those
 filehandles in question. If the filehandles are volatile, the NFS
 client must be prepared to recover a filehandle value (i.e. with a v4
 multi-component LOOKUP) when receiving an error of NFS4ERR_FHEXPIRED.

6.6. Exported Root

 If the server's root file-system is exported, it might be easy to
 conclude that a pseudo-file-system is not needed. This would be
 wrong. Assume the following file-systems on a server:

 / disk1 (exported)
 /a disk2 (not exported)

Expires: August 1999 [Page 29]

Draft Protocol Specification NFS version 4 February 1999

 /a/b disk3 (exported)

 Because disk2 is not exported, disk3 cannot be reached with simple
 LOOKUPs. The server must bridge the gap with a pseudo-file-system.

6.7. Mount Point Crossing

 The server file-system environment may constructed in such a way that
 one file-system contains a directory which is 'covered' or mounted
 upon by a second file-system. For example:

 /a/b (file system 1)
 /a/b/c/d (file system 2)

 The pseudo file-system for this server may be constructed to look
 like:

 / (place holder/not exported)
 /a/b (file system 1)
 /a/b/c/d (file system 2)

 It is the server's responsibility to present the pseudo file-system
 that is complete to the client. If the client sends a lookup request
 for the path "/a/b/c/d", the server's response is the filehandle of
 the file system "/a/b/c/d". In previous versions of NFS, the server
 would respond with the directory "/a/b/d/d" within the file-system
 "/a/b".

 The NFS client will be able to determine if it crosses a server mount
 point by a change in the value of the "fsid" attribute.

6.8. Summary

 NFS version 4 provides LOOKUP and READDIR operations for browsing of
 NFS file-systems. These operations are also used to browse server
 exports. A v4 server supports export browsing by including exported
 directories in a pseudo-file-system. A browsing client can cross
 seamlessly between a pseudo-file-system and a real, exported file-
 system. Clients must support volatile filehandles and recognize
 mount point crossing of server file-systems.

Expires: August 1999 [Page 30]

Draft Protocol Specification NFS version 4 February 1999

7. File Locking

 Integrating locking into NFS necessarily causes it to be state-full,
 with the invasive nature of "share" file locks it becomes
 substantially more dependent on state than the traditional
 combination of NFS and NLM [XNFS]. There are three components to
 making this state manageable:

 o Clear division between client and server

 o Ability to reliably detect inconsistency in state between client
 and server

 o Simple and robust recovery mechanisms

 In this model, the server owns the state information. The client
 communicates its view of this state to the server as needed. The
 client is also able to detect inconsistent state before modifying a
 file.

 To support Windows "share" locks, it is necessary to atomically open
 or create files. Having a separate share/unshare operation will not
 allow correct implementation of the Windows OpenFile API. In order
 to correctly implement share semantics, the existing mechanisms used
 when a file is opened or created (LOOKUP, CREATE, ACCESS) need to be
 replaced. NFS V4 will have an OPEN procedure that subsumes the
 functionality of LOOKUP, CREATE, and ACCESS. However, because many
 operations require a file handle, the traditional LOOKUP is preserved
 to map a file name to file handle without establishing state on the
 server. Policy of granting access or modifying files is managed by
 the server based on the client's state. It is believed that these
 mechanisms can implement policy ranging from advisory only locking to
 full mandatory locking. While ACCESS is just a subset of OPEN, the
 ACCESS procedure is maintained as a lighter weight mechanism.

7.1. Definitions

 Lock The term "lock" will be used to refer to both record
 (byte-range) locks as well as file (share) locks unless
 specifically stated otherwise.

 Client Throughout this proposal the term "client" is used to
 indicate the entity that maintains a set of locks on behalf
 of one or more applications. The client is responsible for
 crash recovery of those locks it manages. Multiple clients
 may share the same transport and multiple clients may exist

Expires: August 1999 [Page 31]

Draft Protocol Specification NFS version 4 February 1999

 on the same network node.

 Clientid A 64-bit quantity returned by a server that uniquely
 corresponds to a client supplied Verifier and ID.

 Lease An interval of time defined by the server for which the
 client is irrevokeably granted a lock. At the end of a
 lease period the lock may be revoked if the lease has not
 been extended. The lock must be revoked if a conflicting
 lock has been granted after the lease interval. All leases
 granted by a server have the same fixed interval.

 Stateid A 64-bit quantity returned by a server that uniquely
 defines the locking state granted by the server for a
 specific lock owner for a specific file. A stateid
 composed of all bits 0 or all bits 1 have special meaning
 and are reserved.

 Verifier A 32-bit quantity generated by the client that the server
 can use to determine if the client has restarted and lost
 all previous lock state.

7.2. Locking

 It is assumed that manipulating a lock is rare when compared to I/O
 operations. It is also assumed that crashes and network partitions
 are relatively rare. Therefore it is important that I/O operations
 have a light weight mechanism to indicate if they possess a held
 lock. A lock request contains the heavy weight information required
 to establish a lock and uniquely define the lock owner.

 The following sections describe the transition from the heavy weight
 information to the eventual stateid used for most client and server
 locking and lease interactions.

7.2.1. Client ID

 For each LOCK request, the client must identify itself to the server.
 This is done in such a way as to allow for correct lock
 identification and crash recovery. Client identification is
 accomplished with two values.

 o A verifier that is used to detect client reboots.

 o A variable length opaque array to uniquely define a client.

 For an operating system this may be a fully qualified host

Expires: August 1999 [Page 32]

Draft Protocol Specification NFS version 4 February 1999

 name or IP address, and for a user level NFS client it may
 additionally contain a process id or other unique sequence.

 The data structure for the Client ID would then appear as:
 struct nfs_client_id {
 opaque verifier[4];
 opaque id<>;
 }:

 It is possible through the mis-configuration of a client or the
 existence of a rogue client that two clients end up using the same
 nfs_client_id. This situation is avoided by 'negotiating' the
 nfs_client_id between client and server with the use of the
 SETCLIENTID. The following describes the two scenarios of
 negotiation.

 1 Client has never connected to the server

 In this case the client generates an nfs_client_id and
 unless another client has the same nfs_client_id.id field,
 the server accepts the request. The server also records the
 principal (or principal to uid mapping) from the credential
 in the RPC request that contains the nfs_client_id
 negotiation request.

 Two clients might still use the same nfs_client_id.id due
 to perhaps configuration error (say a High Availability
 configuration where the nfs_client_id.id is derived from
 the ethernet controller address and both systems have the
 same address). In this case, nfs4err can be a switched
 union that returns in addition to NFS4ERR_CLID_IN_USE, the
 network address (the rpcbind netid and universal address)
 of the client that is using the id.

 2 Client is re-connecting to the server after a client reboot

 In this case, the client still generates an nfs_client_id
 but the nfs_client_id.id field will be the same as the
 nfs_client_id.id generated prior to reboot. If the server
 finds that the principal/uid is equal to the previously
 "registered" nfs_client_id.id, then locks associated with
 the old nfs_client_id are immediately released. If the
 principal/uid is not equal, then this ia rogue client and
 the request is returned in error. For more discussion of
 crash recovery semantics, see the section on "Crash
 Recovery"

Expires: August 1999 [Page 33]

Draft Protocol Specification NFS version 4 February 1999

 In both cases, upon success, NFS4_OK is returned. To help reduce the
 amount of data transferred on OPEN and LOCK, the server will also
 return a unique 64-bit clientid value that is a short hand reference
 to the nfs_client_id values presented by the client. From this point
 forward, the client can use the clientid to refer to itself.

7.2.2. nfs_lockowner and stateid definition

 When requesting a lock, the client must present to the server the
 clientid and an identifier for the owner of the requested lock.
 These two fields are referred to as the nfs_lockowner and the
 definition of those fields are:

 o A clientid returned by the server as part of the clients use of
 the SETCLIENTID procedure

 o A variable length opaque array used to uniquely define the owner
 of a lock managed by the client.

 This may be a thread id, process id, or other unique value.

 When the server grants the lock it responds with a unique 64-bit
 stateid. The stateid is used as a short hand reference to the
 nfs_lockowner, since the server will be maintaining the
 correspondence between them.

7.2.3. Use of the stateid

 All I/O requests contain a stateid. If the nfs_lockowner performs
 I/O on a range of bytes within a locked range, the stateid returned
 by the server must be used to indicate the appropriate lock (record
 or share) is held. If no state is established by the client, either
 record lock or share lock, a stateid of all bits 0 is used. If no
 conflicting locks are held on the file, the server may grant the I/O
 request. If a conflict with an explicit lock occurs, the request is
 failed (NFS4ERR_LOCKED). This allows "mandatory locking" to be
 implemented.

 A stateid of all bits 1 allows read requests to bypass locking checks
 at the server. However, write requests with stateid with bits all 1
 does not bypass file locking requirements.

 An explicit lock may not be granted while an I/O operation with
 conflicting implicit locking is being performed.

Expires: August 1999 [Page 34]

Draft Protocol Specification NFS version 4 February 1999

 The byte range of a lock is indivisible. A range may be locked,
 unlocked, or changed between read and write but may not have
 subranges unlocked or changed between read and write. This is the
 semantics provided by Win32 but only a subset of the semantics
 provided by Unix. It is expected that Unix clients can more easily
 simulate modifying subranges than Win32 servers adding this feature.

7.2.4. Sequencing of lock requests

 Locking is different than most NFS operations as it requires "at-
 most-one" semantics that are not provided by ONC RPC. In the face of
 retransmission or reordering, lock or unlock requests must have a
 well defined and consistent behavior. To accomplish this each lock
 request contains a sequence number that is a monotonically increasing
 integer. Different nfs_lockowners have different sequences. The
 server maintains the last sequence number (L) received and the
 response that was returned. If a request with a previous sequence
 number (r < L) is received it is silently ignored as its response
 must have been received before the last request (L) was sent. If a
 duplicate of last request (r == L) is received, the stored response
 is returned. If a request beyond the next sequence (r == L + 2) is
 received it is silently ignored. Sequences are reinitialized
 whenever the client verifier changes.

7.3. Blocking locks

 Some clients require the support of blocking locks. The current
 proposal lacks a call-back mechanism, similar to NLM, to notify a
 client when the lock has been granted. Clients have no choice but to
 continually poll for the lock, which presents a fairness problem.
 Two new lock types are added, READW and WRITEW used to indicate to
 the server that the client is requesting a blocking lock. The server
 should maintain an ordered list of pending blocking locks. When the
 conflicting lock is released, the server may wait the lease period
 for the first client to re-request the lock. After the lease period
 expires the next waiting client request is allowed the lock. Clients
 are required to poll at an interval sufficiently small that it is
 likely to acquire the lock in a timely manner. The server is not
 required to maintain a list of pending blocked locks as it is used to
 increase fairness and not correct operation. Because of the
 unordered nature of crash recovery, storing of lock state to stable
 storage would be required to guarantee ordered granting of blocking
 locks.

Expires: August 1999 [Page 35]

Draft Protocol Specification NFS version 4 February 1999

7.4. Lease renewal

 The purpose of a lease is to allow a server to remove stale locks
 that are held by a client that has crashed or is otherwise
 unreachable. It is not a mechanism for cache consistency and lease
 renewals may not be denied if the lease interval has not expired.
 Any I/O request that has been made with a valid stateid is a positive
 indication that the client is still alive and locks are being
 maintained. This becomes an implicit renewal of the lease. In the
 case no I/O has been performed within the lease interval, a lease can
 be renewed by having the client issue a zero length READ. Because
 the nfs_lockowner contains a unique client value, any stateid for a
 client will renew all leases for locks held with the same client
 field. This will allow very low overhead lease renewal that scales
 extremely well. In the typical case, no extra RPC calls are needed
 and in the worst case one RPC is required every lease period
 regardless of the number of locks held by the client.

7.5. Crash recovery

 The important requirement in crash recovery is that both the client
 and the server know when the other has failed. Additionally it is
 required that a client sees a consistent view of data across server
 reboots. I/O operations that may have been queued within the client
 or network buffers, cannot complete until after the client has
 successfully recovered the lock protecting the I/O operation.

 If a client fails, the server only needs to wait the lease period to
 allow conflicting locks. If the client reinitializes within the
 lease period, it may be forced to wait the remainder of the period
 before resuming service. To minimize this delay, lock requests
 contain a verifier field in the lock_owner, if the server receives a
 verifier field that does not match the existing verifier, the server
 knows that the client has lost all lock state and locks held for that
 client that do not match the current verifier may be released. In a
 secure environment, a change in the verifier must only cause the
 locks held by the authenticated requester to be released in order to
 prevent a rogue user from freeing otherwise valid locks. The
 verifier must have the same uniqueness properties of the COMMIT
 verifier.

 If the server fails and loses locking state, the server must wait the
 lease period before granting any new locks or allowing any I/O. An
 I/O request during the grace period with an invalid stateid will fail
 with NFS4ERR_GRACE, the client will reissue the lock request with
 reclaim set to TRUE, and upon receiving a successful reply, the I/O
 may be reissued with the new stateid. Any time a client receives an

Expires: August 1999 [Page 36]

Draft Protocol Specification NFS version 4 February 1999

 NFS4ERR_GRACE error it should start recovering all outstanding locks.
 A lock request during the grace period without reclaim set will also
 result in a NFS4ERR_GRACE, triggering the client recovery processing.
 A lock request outside the grace period with reclaim set will succeed
 only if the server can guarantee that no conflicting lock or I/O
 request has been granted since reboot.

 In the case of a network partition longer than the lease period, the
 server will have not received an implicit lease renewal and may free
 all locks held for the client, thus invalidating any stateid held by
 the client. Subsequent reconnection will cause I/O with invalid
 stateid to fail with NFS4ERR_EXPIRED, the client will suitably notify
 the application holding the lock. After the lease period has expired
 the server may optionally continue to hold the locks for the client.
 In this case, if a conflicting lock or I/O request is received, the
 lock must be freed to allow the client to detect possible corruption.
 When there is a network partition and the lease expires, the server
 must record on stable storage the client information relating to
 those leases. This is to prevent the case where another client
 obtains the conflicting lock, frees the lock, and the server reboots.
 After the server recovers the original client may recover the network
 partition and attempt to reclaim the lock. Without any state to
 indicate that a conflicting may have occurred, the client could get
 in an inconsistent state. Storing just the client information is the
 minimal state necessary to detect this condition, but could lead to
 losing locks unnecessarily. However this is considered to be a very
 rare event, and a sophisticated server could store more state
 completely eliminate any unnecessary locks being lost.

7.6. Server revocation of locks

 The server can revoke the locks held by a client at any time, when
 the client detects revocation it must ensure its state matches that
 of the server. If locks are revoked due to a server reboot, the
 client will receive a NFS4ERR_GRACE and normal crash recovery
 described above will be performed.

 The server may revoke a lock within the lease period, this is
 considered a rare event likely to be initiated only by a human (as
 part of an administration task). The client may assume that only the
 file that caused the NFS4ERR_EXPIRED to be returned has lost the
 lock_owner's locks and notifies the holder appropriately. The client
 can not assume the lease period has been renewed.

 The client not being able to renew the lease period is a relatively
 rare and unusual state. Both sides will detect this state and can
 recover without data corruption. The client must mark all locks held

Expires: August 1999 [Page 37]

Draft Protocol Specification NFS version 4 February 1999

 as "invalidated" and then must issue an I/O request, either a pending
 I/O or zero length read to revalidate the lock. If the response is
 success the lock is upgraded to valid, otherwise it was revoked by
 the server and the owner is notified.

7.7. Share reservations

 A share reservation is a mechanism to control access to a file. It
 is a separate and independent mechanism from record locking. When a
 client that shares opens a file, it issues an OPEN request to the
 server specifying the type of access required (READ, WRITE, or BOTH)
 and the type of access to deny others (deny NONE, READ, WRITE, or
 BOTH). If the OPEN fails the client will fail the applications open
 request.

 Pseudo-code definition of the semantics:

 if ((request.access & file_state.deny)) ||
 (request.deny & file_state.access))
 return (NFS4ERR_DENIED)

 Old DOS applications specify shares in compatibility mode. Microsoft
 has indicated in the Win32 specification that it will be deprecated
 in the future and recommends that deny NONE be used. This
 specification does not support compatibility mode.

7.8. OPEN/CLOSE procedures

 To provide correct semantics for share semantics, a client MUST use
 the OPEN procedure to obtain the initial file handle and indicate the
 desired access and what if any access to deny. Even if the client
 intends to use a stateid of all 0's or all 1's, it must still obtain
 the filehandle for the regular file with the OPEN procedure. For
 clients that do not have a deny mode built into their open API, deny
 equal to NONE should be used.

 The OPEN procedure with the CREATE flag, also subsumes the CREATE
 procedure for regular files as used in previous versions of NFS,
 allowing a create with a share to be done atomicly.

 Will expand on create semantics here.

 The CLOSE procedure removes all share locks held by the lock_owner on

Expires: August 1999 [Page 38]

Draft Protocol Specification NFS version 4 February 1999

 that file. If record locks are held they should be explicitly
 unlocked. Some servers may not support the CLOSE of a file that
 still has record locks held; if so, CLOSE will fail and return an
 error.

 The LOOKUP procedure is preserved and will return a file handle
 without establishing any lock state on the server. Without a valid
 stateid, the server will assume the client has the least access. For
 example, a file opened with deny READ/WRITE cannot be accessed using
 a file handle obtained through LOOKUP.

Expires: August 1999 [Page 39]

Draft Protocol Specification NFS version 4 February 1999

8. Defined Error Numbers

 NFS error numbers are assigned to failed operations within a compound
 request. A compound request contains a number of NFS operations that
 have their results encoded in sequence in a compound reply. The
 results of successful operations will consist of an NFS4_OK status
 followed by the encoded results of the operation. If an NFS
 operation fails, an error status will be entered in the reply and the
 compound request will be terminated.

 A description of each defined error follows:

 NFS4_OK Indicates the operation completed successfully.

 NFS4ERR_PERM Not owner. The operation was not allowed because
 the caller is either not a privileged user (root)
 or not the owner of the target of the operation.

 NFS4ERR_NOENT No such file or directory. The file or directory
 name specified does not exist.

 NFS4ERR_IO I/O error. A hard error (for example, a disk
 error) occurred while processing the requested
 operation.

 NFS4ERR_NXIO I/O error. No such device or address.

 NFS4ERR_ACCES Permission denied. The caller does not have the
 correct permission to perform the requested
 operation. Contrast this with NFS4ERR_PERM, which
 restricts itself to owner or privileged user
 permission failures.

 NFS4ERR_DENIED An attempt to lock a file is denied. Since this
 may be a temporary condition, the client is
 encouraged to retry the lock request (with
 exponential backoff of timeout) until the lock is
 accepted.

 NFS4ERR_EXIST File exists. The file specified already exists.

Expires: August 1999 [Page 40]

Draft Protocol Specification NFS version 4 February 1999

 NFS4ERR_XDEV Attempt to do a cross-device hard link.

 NFS4ERR_NODEV No such device.

 NFS4ERR_NOTDIR Not a directory. The caller specified a non-
 directory in a directory operation.

 NFS4ERR_ISDIR Is a directory. The caller specified a directory
 in a non-directory operation.

 NFS4ERR_INVAL Invalid argument or unsupported argument for an
 operation. Two examples are attempting a READLINK
 on an object other than a symbolic link or
 attempting to SETATTR a time field on a server
 that does not support this operation.

 NFS4ERR_FBIG File too large. The operation would have caused a
 file to grow beyond the server's limit.

 NFS4ERR_NOSPC No space left on device. The operation would have
 caused the server's file system to exceed its
 limit.

 NFS4ERR_ROFS Read-only file system. A modifying operation was
 attempted on a read-only file system.

 NFS4ERR_MLINK Too many hard links.

 NFS4ERR_NAMETOOLONG The filename in an operation was too long.

 NFS4ERR_NOTEMPTY An attempt was made to remove a directory that
 was not empty.

 NFS4ERR_DQUOT Resource (quota) hard limit exceeded. The user's
 resource limit on the server has been exceeded.

Expires: August 1999 [Page 41]

Draft Protocol Specification NFS version 4 February 1999

 NFS4ERR_LOCKED A read or write operation was attempted on a
 locked file.

 NFS4ERR_STALE Invalid file handle. The file handle given in the
 arguments was invalid. The file referred to by
 that file handle no longer exists or access to it
 has been revoked.

 NFS4ERR_BADHANDLE Illegal NFS file handle. The file handle failed
 internal consistency checks.

 NFS4ERR_NOT_SYNC Update synchronization mismatch was detected
 during a SETATTR operation.

 NFS4ERR_BAD_COOKIE READDIR cookie is stale.

 NFS4ERR_NOTSUPP Operation is not supported.

 NFS4ERR_TOOSMALL Buffer or request is too small.

 NFS4ERR_SAME Returned if an NVERIFY operation shows that no
 attributes have changed.

 NFS4ERR_SERVERFAULT An error occurred on the server which does not
 map to any of the legal NFS version 4 protocol
 error values. The client should translate this
 into an appropriate error. UNIX clients may
 choose to translate this to EIO.

 NFS4ERR_BADTYPE An attempt was made to create an object of a type
 not supported by the server.

 NFS4ERR_JUKEBOX The server initiated the request, but was not
 able to complete it in a timely fashion. The
 client should wait and then try the request with
 a new RPC transaction ID. For example, this
 error should be returned from a server that
 supports hierarchical storage and receives a

Expires: August 1999 [Page 42]

Draft Protocol Specification NFS version 4 February 1999

 request to process a file that has been migrated.
 In this case, the server should start the
 immigration process and respond to client with
 this error.

 NFS4ERR_FHEXPIRED The file handle provided is volatile and has
 expired at the server. The client should attempt
 to recover the new file handle by traversing the
 server's file system name space. The file handle
 may have expired because the server has
 restarted, the file system object has been
 removed, or the file handle has been flushed from
 the server's internal mappings.

 NOTE: This error definition will need to be crisp and match
 the section describing the volatile file handles.

 NFS4ERR_WRONGSEC THe security mechanism being used by the client
 for the procedure does not match the server's
 security policy. The client should change the
 security mechanism being used and retry the
 operation.

Expires: August 1999 [Page 43]

Draft Protocol Specification NFS version 4 February 1999

9. Compound Requests

 NFS version 4 requires a client to combine multiple NFS operations
 into a single request. Compound requests provide:

 o Good performance on high latency networks

 If a client can combine multiple, dependent operations into a
 single request then it can avoid the cumulative latency in many
 request/response round-trips across the network. This is
 particularly important on the Internet or through geosynchronous
 satellite connections.

 o Protocol simplification

 Clients can build NFS requests of arbitrary complexity from more
 primitive operations. These requests can be tailored to the
 unique needs of each client.

 A compound request looks like this:

 +-----------+-----------+-----------+--
 | op + args | op + args | op + args |
 +-----------+-----------+-----------+--

 and the reply looks like this:

 +----------------+----------------+----------------+--
 | code + results | code + results | code + results |
 +----------------+----------------+----------------+--

 Where "code" is an indication of the success or failure of the
 operation including the opcode itself.

Expires: August 1999 [Page 44]

Draft Protocol Specification NFS version 4 February 1999

10. NFS Version 4 Requests

 Nearly all NFS version 4 operations are defined as compound
 operations - not as RPC procedures. There is a single RPC procedure
 for all compound requests.

10.1. Evaluation of a Compound Request

 The server evaluates the operations in sequence. Each operation
 consists of a 32 bit operation code, followed by a sequence of
 arguments of length determined by the type of operation. The results
 of each operation are encoded in sequence into a reply buffer. The
 results of each operation are preceded by the opcode and a status
 code (normally zero). If an operation fails a non-zero status code
 will be encoded, evaluation of the compound request will halt, and
 the reply will be returned.

 The client is responsible for recovering from any partially completed
 compound request.

 Each operation assumes a "current" filehandle that is available as
 part of the execution context of the compound request. Operations
 may set, change, or return this filehandle.

Expires: August 1999 [Page 45]

Draft Protocol Specification NFS version 4 February 1999

11. NFS Version 4 Procedures

Expires: August 1999 [Page 46]

Draft Protocol Specification NFS version 4 February 1999

11.1. Procedure 0: NULL - No operation

 SYNOPSIS

 (cfh) -> (cfh)

 ARGS

 (none)

 RESULTS

 (none)

 DESCRIPTION

 The server does no work other than to return a NFS_OK result in
 the reply.

 ERRORS

 (none)

Expires: August 1999 [Page 47]

Draft Protocol Specification NFS version 4 February 1999

11.2. Procedure 1: ACCESS - Check Access Permission

 SYNOPSIS

 (cfh), permbits -> permbits

 ARGS

 permbits: uint32

 RESULTS

 permbits: uint32

 DESCRIPTION

 ACCESS determines the access rights that a user, as identified by
 the credentials in the request, has with respect to a file system
 object. The client encodes the set of permissions that are to be
 checked in a bit mask. The server checks the permissions encoded
 in the bit mask. A status of NFS4_OK is returned along with a bit
 mask encoded with the permissions that the client is allowed.

 The results of this procedure are necessarily advisory in nature.
 That is, a return status of NFS4_OK and the appropriate bit set in
 the bit mask does not imply that such access will be allowed to
 the file system object in the future, as access rights can be
 revoked by the server at any time.

 The following access permissions may be requested:

 ACCESS_READ: bit 0 Read data from file or read
 a directory.
 ACCESS_LOOKUP: bit 1 Look up a name in a
 directory (no meaning for
 non-directory objects).
 ACCESS_MODIFY: bit 2 Rewrite existing file data or modify
 existing directory entries.
 ACCESS_EXTEND: bit 3 Write new data or add
 directory entries.
 ACCESS_DELETE: bit 4 Delete an existing
 directory entry.
 ACCESS_EXECUTE: bit 5 Execute file (no meaning
 for a directory).

Expires: August 1999 [Page 48]

Draft Protocol Specification NFS version 4 February 1999

 The server must return an error if the any access permission
 cannot be determined.

 IMPLEMENTATION

 In general, it is not sufficient for the client to attempt to
 deduce access permissions by inspecting the uid, gid, and mode
 fields in the file attributes, since the server may perform uid or
 gid mapping or enforce additional access control restrictions. It
 is also possible that the NFS version 4 protocol server may not be
 in the same ID space as the NFS version 4 protocol client. In
 these cases (and perhaps others), the NFS version 4 protocol
 client can not reliably perform an access check with only current
 file attributes.

 In the NFS version 2 protocol, the only reliable way to determine
 whether an operation was allowed was to try it and see if it
 succeeded or failed. Using the ACCESS procedure in the NFS version
 4 protocol, the client can ask the server to indicate whether or
 not one or more classes of operations are permitted. The ACCESS
 operation is provided to allow clients to check before doing a
 series of operations. This is useful in operating systems (such as
 UNIX) where permission checking is done only when a directory is
 opened. This procedure is also invoked by NFS client access
 procedure (called possibly through access(2)). The intent is to
 make the behavior of opening a remote file more consistent with
 the behavior of opening a local file.

 For NFS version 4, the use of the ACCESS procedure when opening a
 regular file is deprecated in favor of using OPEN.

 The information returned by the server in response to an ACCESS
 call is not permanent. It was correct at the exact time that the
 server performed the checks, but not necessarily afterwards. The
 server can revoke access permission at any time.

 The NFS version 4 protocol client should use the effective
 credentials of the user to build the authentication information in
 the ACCESS request used to determine access rights. It is the
 effective user and group credentials that are used in subsequent
 read and write operations.

 Many implementations do not directly support the ACCESS_DELETE
 permission. Operating systems like UNIX will ignore the
 ACCESS_DELETE bit if set on an access request on a non-directory
 object. In these systems, delete permission on a file is
 determined by the access permissions on the directory in which the
 file resides, instead of being determined by the permissions of

Expires: August 1999 [Page 49]

Draft Protocol Specification NFS version 4 February 1999

 the file itself. Thus, the bit mask returned for such a request
 will have the ACCESS_DELETE bit set to 0, indicating that the
 client does not have this permission.

 ERRORS

 NFS4ERR_IO

 NFS4ERR_SERVERFAULT

 SEE

 GETATTR.

Expires: August 1999 [Page 50]

Draft Protocol Specification NFS version 4 February 1999

11.3. Procedure 2: CLOSE - close file

 SYNOPSIS

 (cfh), stateid -> stateid

 ARGS

 stateid: uint64

 RESULTS

 stateid: uint64

 DESCRIPTION
 The CLOSE procedure notifies the server that all share locks
 corresponding to the client supplied stateid should be released.

 IMPLEMENTATION
 Share locks for the matching stateid will be released on
 successful completion of the CLOSE procedure.

 ERRORS
 To be determined

 SEE

 OPEN

Expires: August 1999 [Page 51]

Draft Protocol Specification NFS version 4 February 1999

11.4. Procedure 3: COMMIT - Commit cached data

 SYNOPSIS

 (cfh), offset, count -> verifier

 Procedure COMMIT forces or flushes data to stable storage that was
 previously written with a WRITE operation with the stable field
 set to UNSTABLE.

 ARGS

 offset: uint64

 The position within the file at which the flush is to begin. An
 offset of 0 means to flush data starting at the beginning of the
 file.

 count: uint32

 The number of bytes of data to flush. If count is 0, a flush from
 offset to the end of file is done.

 RESULTS

 verifier: uint32

 This is a cookie that the client can use to determine whether the
 server has rebooted between a call to WRITE and a subsequent call
 to COMMIT. This cookie must be consistent during a single boot
 session and must be unique between instances of the NFS version 4
 protocol server where uncommitted data may be lost.

 IMPLEMENTATION

 Procedure COMMIT is similar in operation and semantics to the
 POSIX fsync(2) system call that synchronizes a file's state with
 the disk, that is it flushes the file's data and metadata to disk.
 COMMIT performs the same operation for a client, flushing any
 unsynchronized data and metadata on the server to the server's
 disk for the specified file. Like fsync(2), it may be that there
 is some modified data or no modified data to synchronize. The data
 may have been synchronized by the server's normal periodic buffer
 synchronization activity. COMMIT will always return NFS4_OK,
 unless there has been an unexpected error.

 COMMIT differs from fsync(2) in that it is possible for the client

Expires: August 1999 [Page 52]

Draft Protocol Specification NFS version 4 February 1999

 to flush a range of the file (most likely triggered by a buffer-
 reclamation scheme on the client before file has been completely
 written).

 The server implementation of COMMIT is reasonably simple. If the
 server receives a full file COMMIT request, that is starting at
 offset 0 and count 0, it should do the equivalent of fsync()'ing
 the file. Otherwise, it should arrange to have the cached data in
 the range specified by offset and count to be flushed to stable
 storage. In both cases, any metadata associated with the file
 must be flushed to stable storage before returning. It is not an
 error for there to be nothing to flush on the server. This means
 that the data and metadata that needed to be flushed have already
 been flushed or lost during the last server failure.

 The client implementation of COMMIT is a little more complex.
 There are two reasons for wanting to commit a client buffer to
 stable storage. The first is that the client wants to reuse a
 buffer. In this case, the offset and count of the buffer are sent
 to the server in the COMMIT request. The server then flushes any
 cached data based on the offset and count, and flushes any
 metadata associated with the file. It then returns the status of
 the flush and the verf verifier. The other reason for the client
 to generate a COMMIT is for a full file flush, such as may be done
 at close. In this case, the client would gather all of the buffers
 for this file that contain uncommitted data, do the COMMIT
 operation with an offset of 0 and count of 0, and then free all of
 those buffers. Any other dirty buffers would be sent to the
 server in the normal fashion.

 This implementation will require some modifications to the buffer
 cache on the client. After a buffer is written with stable
 UNSTABLE, it must be considered as dirty by the client system
 until it is either flushed via a COMMIT operation or written via a
 WRITE operation with stable set to FILE_SYNC or DATA_SYNC. This is
 done to prevent the buffer from being freed and reused before the
 data can be flushed to stable storage on the server.

 When a response comes back from either a WRITE or a COMMIT
 operation that contains an unexpected verf, the client will need
 to retransmit all of the buffers containing uncommitted cached
 data to the server. How this is to be done is up to the
 implementor. If there is only one buffer of interest, then it
 should probably be sent back over in a WRITE request with the
 appropriate stable flag. If there more than one, it might be
 worthwhile retransmitting all of the buffers in WRITE requests
 with stable set to UNSTABLE and then retransmitting the COMMIT
 operation to flush all of the data on the server to stable

Expires: August 1999 [Page 53]

Draft Protocol Specification NFS version 4 February 1999

 storage. The timing of these retransmissions is left to the
 implementor.

 The above description applies to page-cache-based systems as well
 as buffer-cache-based systems. In those systems, the virtual
 memory system will need to be modified instead of the buffer
 cache.

 ERRORS

 NFS4ERR_IO NFS4ERR_LOCKED NFS4ERR_SERVERFAULT

 SEE

 WRITE.

Expires: August 1999 [Page 54]

Draft Protocol Specification NFS version 4 February 1999

11.5. Procedure 4: CREATE - Create a non-regular file object

 SYNOPSIS

 (cfh), name, type, how -> (cfh)

 ARGS

 name: utf8string

 objtype: filetype

 how: union

 UNCHECKED:
 GUARDED:

 attrbits: bitmap
 attrvals

 EXCLUSIVE:

 verifier: createverf

 RESULTS

 (cfh): filehandle

 DESCRIPTION

 Procedure CREATE creates an non-regular file object in a directory
 with a given name. The OPEN procedure MUST be used to create a
 regular file.

 The objtype determines the type of object to be created:
 directory, symlink, etc. The how union may have a value of
 UNCHECKED, GUARDED, and EXCLUSIVE. UNCHECKED means that the object
 should be created without checking for the existence of a
 duplicate object in the same directory. In this case, attrbits and
 attrvals describe the initial attributes for the file object.
 GUARDED specifies that the server should check for the presence of
 a duplicate object before performing the create and should fail
 the request with NFS4ERR_EXIST if a duplicate object exists. If
 the object does not exist, the request is performed as described
 for UNCHECKED. EXCLUSIVE specifies that the server is to follow
 exclusive creation semantics, using the verifier to ensure
 exclusive creation of the target. No attributes may be provided in

Expires: August 1999 [Page 55]

Draft Protocol Specification NFS version 4 February 1999

 this case, since the server may use the target object meta-data to
 store the verifier.

 The current filehandle is replaced by that of the new object.

 IMPLEMENTATION
 The CREATE procedure carries support for EXCLUSIVE create forward
 from NFS version 3. As in NFS version 3, this mechanism provides
 reliable exclusive creation. Exclusive create is invoked when the
 how parameter is EXCLUSIVE. In this case, the client provides a
 verifier that can reasonably be expected to be unique. A
 combination of a client identifier, perhaps the client network
 address, and a unique number generated by the client, perhaps the
 RPC transaction identifier, may be appropriate.

 If the object does not exist, the server creates the object and
 stores the verifier in stable storage. For file systems that do
 not provide a mechanism for the storage of arbitrary file
 attributes, the server may use one or more elements of the object
 meta-data to store the verifier. The verifier must be stored in
 stable storage to prevent erroneous failure on retransmission of
 the request. It is assumed that an exclusive create is being
 performed because exclusive semantics are critical to the
 application. Because of the expected usage, exclusive CREATE does
 not rely solely on the normally volatile duplicate request cache
 for storage of the verifier. The duplicate request cache in
 volatile storage does not survive a crash and may actually flush
 on a long network partition, opening failure windows. In the UNIX
 local file system environment, the expected storage location for
 the verifier on creation is the meta-data (time stamps) of the
 object. For this reason, an exclusive object create may not
 include initial attributes because the server would have nowhere
 to store the verifier.

 If the server can not support these exclusive create semantics,
 possibly because of the requirement to commit the verifier to
 stable storage, it should fail the CREATE request with the error,
 NFS4ERR_NOTSUPP.

 During an exclusive CREATE request, if the object already exists,
 the server reconstructs the object's verifier and compares it with
 the verifier in the request. If they match, the server treats the
 request as a success. The request is presumed to be a duplicate of
 an earlier, successful request for which the reply was lost and
 that the server duplicate request cache mechanism did not detect.
 If the verifiers do not match, the request is rejected with the
 status, NFS4ERR_EXIST.

Expires: August 1999 [Page 56]

Draft Protocol Specification NFS version 4 February 1999

 Once the client has performed a successful exclusive create, it
 must issue a SETATTR to set the correct object attributes. Until
 it does so, it should not rely upon any of the object attributes,
 since the server implementation may need to overload object meta-
 data to store the verifier.

 Use of the GUARDED attribute does not provide exactly-once
 semantics. In particular, if a reply is lost and the server does
 not detect the retransmission of the request, the procedure can
 fail with NFS4ERR_EXIST, even though the create was performed
 successfully.

 Note:

 1. Need to determine an initial set of attributes
 that must be set, and a set of attributes that
 can optionally be set, on a per-filetype basis.
 For instance, if the filetype is a NF4BLK then
 the device attributes must be set.

 2. Need to consider the symbolic link path as
 an "attribute". No need for a READLINK op
 if this is so. Similarly, a filehandle could
 be defined as an attribute for LINK.

 3. The presence of a generic create for
 multiple file types makes the protocol
 easier to extend to new file types in
 a minor rev (without defining new ops)

 4. The specific exclusive create semantics can be
 removed if there is guaranteed support for extended
 attributes. The client could specify the verifier
 be stored in an extended attribute and then check
 the attribute value itself instead of relying on the
 server to do so.

 ERRORS

 NFS4ERR_IO

 NFS4ERR_ACCES

 NFS4ERR_EXIST

 NFS4ERR_NOTDIR

Expires: August 1999 [Page 57]

Draft Protocol Specification NFS version 4 February 1999

 NFS4ERR_NOSPC

 NFS4ERR_ROFS

 NFS4ERR_NAMETOOLONG

 NFS4ERR_DQUOT

 NFS4ERR_NOTSUPP

 NFS4ERR_SERVERFAULT

Expires: August 1999 [Page 58]

Draft Protocol Specification NFS version 4 February 1999

11.6. Procedure 5: GETATTR - Get attributes

 SYNOPSIS

 (cfh), attrbits -> attrbits, attrvals

 ARGS

 attrbits: bitmap

 RESULTS

 attrbits: bitmap

 attrvals: sequence of attributes

 DESCRIPTION

 Obtain attributes from the server. The client sets a bit in the
 bitmap argument for each attribute value that it would like the
 server to return. The server returns an attribute bitmap that
 indicates the attribute values that it was able to return,
 followed by the attribute values ordered lowest attribute number
 first.

 The server must return a value for each attribute that the client
 requests if the attribute is supported by the server. If the
 server does not support an attribute or cannot approximate a
 useful value then it must not return the attribute value and must
 not set the attribute bit in the result bitmap. The server must
 return an error if it supports an attribute but cannot obtain its
 value. In that case no attribute values will be returned.

 All servers must support attribute 0 which is a bitmap of all
 supported attributes for the filesystem object.

 IMPLEMENTATION

 ?

 ERRORS

 NFS4ERR_IO

 NFS4ERR_SERVERFAULT

Expires: August 1999 [Page 59]

Draft Protocol Specification NFS version 4 February 1999

11.7. Procedure 6: GETFH - Get current filehandle

 SYNOPSIS

 (cfh) -> filehandle

 ARGS

 RESULTS

 filehandle: filehandle

 DESCRIPTION

 Returns the current filehandle. Operations that change the
 current filehandle like LOOKUP or CREATE to not automatically
 return the new filehandle as a result. For instance, if a client
 needs to lookup a directory entry and obtain its filehandle then
 the following request will do it:

 1: PUTFH (directory filehandle)
 2: LOOKUP (entry name)
 3: GETFH

 IMPLEMENTATION

 ?

 ERRORS

 NFS4ERR_SERVERFAULT

Expires: August 1999 [Page 60]

Draft Protocol Specification NFS version 4 February 1999

11.8. Procedure 7: LINK - Create link to an object

 SYNOPSIS

 (cfh), dir, newname -> (cfh)

 ARGS

 dir: filehandle

 newname: utf8string

 RESULTS

 (none)

 DESCRIPTION

 Procedure LINK creates an additional newname for the file with the
 current filehandle in the new directory dir file and link.dir must
 reside on the same file system and server. On entry, the arguments
 in LINK3args are:

 IMPLEMENTATION

 Changes to any property of the hard-linked files are reflected in
 all of the linked files. When a hard link is made to a file, the
 attributes for the file should have a value for nlink that is one
 greater than the value before the LINK.

 The comments under RENAME regarding object and target residing on
 the same file system apply here as well. The comments regarding
 the target name applies as well.

 ERRORS

 NFS4ERR_IO

 NFS4ERR_ACCES

 NFS4ERR_EXIST

 NFS4ERR_XDEV

 NFS4ERR_NOTDIR

Expires: August 1999 [Page 61]

Draft Protocol Specification NFS version 4 February 1999

 NFS4ERR_INVAL

 NFS4ERR_NOSPC

 NFS4ERR_ROFS

 NFS4ERR_MLINK

 NFS4ERR_NAMETOOLONG

 NFS4ERR_DQUOT

 NFS4ERR_NOTSUPP

 NFS4ERR_SERVERFAULT

Expires: August 1999 [Page 62]

Draft Protocol Specification NFS version 4 February 1999

11.9. Procedure 8: LOCK - Create lock

 SYNOPSIS

 (cfh) type, seqid, reclaim, owner, offset, length -> stateid,
 access

 ARGS

 type: {READ, WRITE, READW, WRITEW}

 seqid: uint32

 reclaim: boolean

 owner: nfs_lockowner

 offset: uint64

 length: uint64

 RESULTS

 stateid: uint64

 access: int

 DESCRIPTION
 The LOCK procedure requests that a record lock starting at
 'offset' for length 'length' be set on the file represented by
 'cfh'. The integer. The 'reclaim' field is used for failure
 recovery.

 IMPLEMENTATION
 See locking section for now.

 ERRORS
 To be determined.

Expires: August 1999 [Page 63]

Draft Protocol Specification NFS version 4 February 1999

11.10. Procedure 9: LOCKT - test for lock

 SYNOPSIS

 (cfh) type, seqid, reclaim, owner, offset, length -> {void,
 NFS4ERR_DENIED -> owner}

 ARGStype: {READ, WRITE, READW, WRITEW}

 seqid: uint32

 reclaim: boolean

 owner: nfs_lockowner

 offset: uint64

 length: uint64

 RESULTS

 owner: nfs_lockowner

 DESCRIPTION

 The LOCKT procedure tests the lock specified by the parameters.
 The owner of the lock is returned in the event it is currently
 being held; if no lock is held, nothing other than NFS4_OK is
 returned.

 ERRORS

 NFS4ERR_DENIED

Expires: August 1999 [Page 64]

Draft Protocol Specification NFS version 4 February 1999

11.11. Procedure 10: LOCKU - Unlock file

 SYNOPSIS

 (cfh) type, seqid, reclaim, owner, offset, length -> stateid

 ARGS

 type: {READ, WRITE, READW, WRITEW}

 seqid: uint32

 reclaim: boolean

 owner: nfs_lockowner

 offset: uint64

 length: uint64

 RESULTS

 stateid: uint64

 DESCRIPTION

 The LOCKU procedure unlocks the record lock specified by the
 parameters.

 ERRORS
 To be determined.

Expires: August 1999 [Page 65]

Draft Protocol Specification NFS version 4 February 1999

11.12. Procedure 11: LOOKUP - Lookup filename

 SYNOPSIS

 (cfh), filenames -> (cfh)

 ARGS

 filename: utf8string[]

 RESULTS

 (none)

 DESCRIPTION

 The current filehandle is assumed to refer to a directory. LOOKUP
 evaluates the pathname contained in the array of names and obtains
 a new current filehandle from the final name. All but the final
 name in the list must be the names of directories.

 If the pathname cannot be evaluated either because a component
 doesn't exist or because the client doesn't have permission to
 evaluate a component of the path, then an error will be returned
 and the current filehandle will be unchanged.

 IMPLEMENTATION

 If the client prefers a partial evaluation of the path then a
 sequence of LOOKUP operations can be substituted e.g.

 1. PUTFH (directory filehandle)
 2. LOOKUP "pub" "foo" "bar"
 3. GETFH

 or

 1. PUTFH (directory filehandle)
 2. LOOKUP "pub"
 3. GETFH
 4. LOOKUP "foo"
 5. GETFH
 6. LOOKUP "bar"
 7. GETFH

 NFS version 4 servers depart from the semantics of previous NFS
 versions in allowing LOOKUP requests to cross mountpoints on the

Expires: August 1999 [Page 66]

Draft Protocol Specification NFS version 4 February 1999

 server. The client can detect a mountpoint crossing by comparing
 the fsid attribute of the directory with the fsid attribute of the
 directory looked up. If the fsids are different then the new
 directory is a server mountpoint. Unix clients that detect a
 mountpoint crossing will need to mount the server's filesystem.

 Servers that limit NFS access to "shares" or "exported"
 filesystems should provide a pseudo-filesystem into which the
 exported filesystems can be integrated, so that clients can browse
 the server's namespace. The clients view of a pseudo filesystem
 will be limited to paths that lead to exported filesystems.

 Note: previous versions of the protocol assigned special semantics
 to the names "." and "..". NFS version 4 assigns no special
 semantics to these names. The LOOKUPP operator must be used to
 lookup a parent directory.

 Note that this procedure does not follow symbolic links. The
 client is responsible for all parsing of filenames including
 filenames that are modified by symbolic links encountered during
 the lookup process.

 ERRORS

 NFS4ERR_IO

 NFS4ERR_NOENT

 NFS4ERR_ACCES

 NFS4ERR_NOTDIR

 NFS4ERR_NAMETOOLONG

 NFS4ERR_SERVERFAULT

 SEE

 CREATE

Expires: August 1999 [Page 67]

Draft Protocol Specification NFS version 4 February 1999

11.13. Procedure 12: LOOKUPP - Lookup parent directory

 SYNOPSIS

 (cfh) -> (cfh)

 ARGS

 (none)

 RESULTS

 (none)

 DESCRIPTION

 The current filehandle is assumed to refer to a directory.
 LOOKUPP assigns the filehandle for its parent directory to be the
 current filehandle. If there is no parent directory an ENOENT
 error must be returned.

 IMPLEMENTATION

 As for LOOKUP, LOOKUPP will also cross mountpoints.

 ERRORS

 NFS4ERR_IO

 NFS4ERR_NOENT

 NFS4ERR_ACCES

 NFS4ERR_SERVERFAULT

 SEE

 CREATE

Expires: August 1999 [Page 68]

Draft Protocol Specification NFS version 4 February 1999

11.14. Procedure 13: NVERIFY - Verify attributes different

 SYNOPSIS

 (cfh), attrbits, attrvals -> -

 ARGS

 attrbits: bitmap

 attrvals: sequence of attributes

 RESULTS

 (none)

 DESCRIPTION

 This operation is used to prefix a sequence of operations to be
 performed if one or more attributes have changed on some
 filesystem object. If all the attributes match then the error
 NFS4ERR_SAME must be returned.

 IMPLEMENTATION

 This operation is useful as a cache validation operator. If the
 object to which the attributes belong has changed then the
 following operations may obtain new data associated with that
 object. For instance, to check if a file has been changed and
 obtain new data if it has:

 1. PUTFH (public)
 2. LOOKUP "pub" "foo" "bar"
 3. NVERIFY attrbits attrs
 4. READ 0 32767

 ERRORS

 NFS4ERR_IO

 NFS4ERR_ACCES

 NFS4ERR_SERVERFAULT

 NFS4ERR_SAME

Expires: August 1999 [Page 69]

Draft Protocol Specification NFS version 4 February 1999

11.15. Procedure 14: OPEN - Open a regular file

 SYNOPSIS

 (cfh) filename, flag, owner, seqid, reclaim, access, deny ->
 stateid, access

 ARGS

 filename: utf8string

 flag: openflag (union (createhow4, void))

 owner: nfs_lockowner

 seqid: uint32

 reclaim: boolean

 access: int (flag)

 deny: int (flag)

 RESULTS

 stateid: uint64

 access: int

 DESCRIPTION

 OPEN

 Procedure OPEN creates and/or opens a regular file in a directory
 with a given name. The flag determines if the file should be
 created if it does not exist and the how union contains a value of
 UNCHECKED, GUARDED, or EXCLUSIVE. UNCHECKED means that the file
 should be created without checking for the existence of a
 duplicate object in the same directory. In this case, attrbits and
 attrvals describe the initial attributes for the file. GUARDED
 specifies that the server should check for the presence of a
 duplicate object before performing the create and should fail the
 request with NFS4ERR_EXIST if a duplicate object exists. If the
 object does not exist, the request is performed as described for
 UNCHECKED. EXCLUSIVE specifies that the server is to follow
 exclusive creation semantics, using the verifier to ensure
 exclusive creation of the target. No attributes may be provided in

Expires: August 1999 [Page 70]

Draft Protocol Specification NFS version 4 February 1999

 this case, since the server may use the target object meta-data to
 store the verifier.

 The current filehandle is replaced by that of the new object.

 IMPLEMENTATION
 The OPEN procedure carries support for EXCLUSIVE create forward
 from NFS version 3. As in NFS version 3, this mechanism provides
 reliable exclusive creation. Exclusive create is invoked when the
 how parameter is EXCLUSIVE. In this case, the client provides a
 verifier that can reasonably be expected to be unique. A
 combination of a client identifier, perhaps the client network
 address, and a unique number generated by the client, perhaps the
 RPC transaction identifier, may be appropriate.

 If the object does not exist, the server creates the object and
 stores the verifier in stable storage. For file systems that do
 not provide a mechanism for the storage of arbitrary file
 attributes, the server may use one or more elements of the object
 meta-data to store the verifier. The verifier must be stored in
 stable storage to prevent erroneous failure on retransmission of
 the request. It is assumed that an exclusive create is being
 performed because exclusive semantics are critical to the
 application. Because of the expected usage, exclusive CREATE does
 not rely solely on the normally volatile duplicate request cache
 for storage of the verifier. The duplicate request cache in
 volatile storage does not survive a crash and may actually flush
 on a long network partition, opening failure windows. In the UNIX
 local file system environment, the expected storage location for
 the verifier on creation is the meta-data (time stamps) of the
 object. For this reason, an exclusive object create may not
 include initial attributes because the server would have nowhere
 to store the verifier.

 If the server can not support these exclusive create semantics,
 possibly because of the requirement to commit the verifier to
 stable storage, it should fail the OPEN request with the error,
 NFS4ERR_NOTSUPP.

 During an exclusive CREATE request, if the object already exists,
 the server reconstructs the object's verifier and compares it with
 the verifier in the request. If they match, the server treats the
 request as a success. The request is presumed to be a duplicate of
 an earlier, successful request for which the reply was lost and
 that the server duplicate request cache mechanism did not detect.
 If the verifiers do not match, the request is rejected with the
 status, NFS4ERR_EXIST.

Expires: August 1999 [Page 71]

Draft Protocol Specification NFS version 4 February 1999

 Once the client has performed a successful exclusive create, it
 must issue a SETATTR to set the correct object attributes. Until
 it does so, it should not rely upon any of the object attributes,
 since the server implementation may need to overload object meta-
 data to store the verifier.

 Use of the GUARDED attribute does not provide exactly-once
 semantics. In particular, if a reply is lost and the server does
 not detect the retransmission of the request, the procedure can
 fail with NFS4ERR_EXIST, even though the create was performed
 successfully.

 Note: Need to determine an initial set of attributes that
 must be set, and a set of attributes that can optionally be
 set.

 ERRORS

 NFS4ERR_IO

 NFS4ERR_ACCES

 NFS4ERR_EXIST

 NFS4ERR_NOTDIR

 NFS4ERR_NOSPC

 NFS4ERR_ROFS

 NFS4ERR_NAMETOOLONG

 NFS4ERR_DQUOT

 NFS4ERR_NOTSUPP

 NFS4ERR_SERVERFAULT

Expires: August 1999 [Page 72]

Draft Protocol Specification NFS version 4 February 1999

11.16. Procedure 15: PUTFH - Set current filehandle

 SYNOPSIS

 filehandle -> (cfh)

 ARGS

 filehandle: filehandle

 RESULTS
 (none)

 DESCRIPTION

 Replaces the current filehandle with the filehandle provided as an
 argument. If no filehandle has previously been installed as the
 current filehandle then root filehandle is assumed. If the length
 of the filehandle is zero, it is recognized by the server as a
 "public" filehandle.

 IMPLEMENTATION

 Commonly used as the first operator in any NFS request to set the
 context for following operations.

 ERRORS

 NFS4ERR_BADHANDLE

 NFS4ERR_SERVERFAULT

Expires: August 1999 [Page 73]

Draft Protocol Specification NFS version 4 February 1999

11.17. Procedure 16: PUTROOTFH - Set root filehandle

 SYNOPSIS

 - -> (cfh)

 ARGS

 (none)

 RESULTS

 (none)

 DESCRIPTION

 Replaces the current filehandle with the filehandle that
 represents the root of the server's namespace. From this
 filehandle a LOOKUP operation can locate any other filehandle on
 the server. This filehandle may be different from the "public"
 filehandle which may be associated with some other directory on
 the server.

 IMPLEMENTATION

 Commonly used as the first operator in any NFS request to set the
 context for following operations.

 ERRORS

 NFS4ERR_SERVERFAULT

Expires: August 1999 [Page 74]

Draft Protocol Specification NFS version 4 February 1999

11.18. Procedure 17: READ - Read from file

 SYNOPSIS

 (cfh), offset, count, stateid -> eof, data

 ARGS

 offset: uint64

 count: uint32

 stateid: uint64

 RESULTS

 eof: bool

 data: opaque <>

 DESCRIPTION

 READ reads data from the file identified by the current
 filehandle.

 offset

 The position within the file at which the read is to begin.
 An offset of 0 means to read data starting at the beginning
 of the file. If offset is greater than or equal to the size
 of the file, the status, NFS4_OK, is returned with count set
 to 0 and eof set to TRUE, subject to access permissions
 checking.

 count

 The number of bytes of data that are to be read. If count is
 0, the READ will succeed and return 0 bytes of data, subject
 to access permissions checking. count must be less than or
 equal to the value of the rtmax for the file system that
 contains file. If greater, the server may return only rtmax
 bytes, resulting in a short read.

 stateid

 The stateid returned from a previous record or share lock
 request. Used by the server to verify that the associated

Expires: August 1999 [Page 75]

Draft Protocol Specification NFS version 4 February 1999

 lock is still valid and to update lease timeouts for the
 client.

 If the operation is successful the results are:

 eof

 If the read ended at the end-of-file (formally, in a
 correctly formed READ request, if offset + count is equal to
 the size of the file), eof is returned as TRUE; otherwise it
 is FALSE. A successful READ of an empty file will always
 return eof as TRUE.

 data

 The counted data read from the file.

 IMPLEMENTATION

 It is possible for the server to return fewer than count bytes of
 data. If the server returns less than the count requested and eof
 set to FALSE, the client should issue another READ to get the
 remaining data. A server may return less data than requested under
 several circumstances. The file may have been truncated by another
 client or perhaps on the server itself, changing the file size
 from what the requesting client believes to be the case. This
 would reduce the actual amount of data available to the client. It
 is possible that the server may back off the transfer size and
 reduce the read request return. Server resource exhaustion may
 also occur necessitating a smaller read return.

 If the file is locked the server will return an NFS4ERR_LOCKED
 error. Since the lock may be of short duration, the client may
 choose to retransmit the READ request (with exponential backoff)
 until the operation succeeds.

 ERRORS

 NFS4ERR_IO

 NFS4ERR_NXIO

 NFS4ERR_ACCES

 NFS4ERR_INVAL

 NFS4ERR_LOCKED

Expires: August 1999 [Page 76]

Draft Protocol Specification NFS version 4 February 1999

 NFS4ERR_SERVERFAULT

Expires: August 1999 [Page 77]

Draft Protocol Specification NFS version 4 February 1999

11.19. Procedure 18: READDIR - Read directory

 SYNOPSIS
 (cfh), cookie, dircount, maxcount, attrbits -> { cookie, filename,
 attrbits, attributes }...

 ARGS

 cookie: uint64

 This should be set to 0 in the first request to read the
 directory. On subsequent requests, it should be a cookie as
 returned by the server.

 dircount: uint32

 The maximum number of bytes of directory information
 returned. This number should not include the size of the
 attributes and file handle portions of the result.

 maxcount: uint32

 The maximum size of the result in bytes. The size must
 include all XDR overhead. The server is free to return less
 than count bytes of data.

 attrbits: bitmap

 The attributes to be returned for each directory entry.

 RESULTS

 A list of directory entries. Each entry contains:

 cookie: uint64

 A value recognized by the server as a "bookmark" into the
 directory. It may be an offset or an index into a table.
 Ideally, the cookie value should not change if the directory
 is modified.

 filename: utf8string;

 The name of the directory entry.

 attrbits: bitmap

Expires: August 1999 [Page 78]

Draft Protocol Specification NFS version 4 February 1999

 A bitmap that indicates which attributes follow. Ideally
 this bitmap will be identical to the attribute bitmap in the
 arguments, i.e. the server returns everything the client
 asked for. However, the returned bitmap may be different if
 the server does not support the attribute or if the attribute
 is not valid for the filetype.

 Note: need to consider the file handle as an "attribute"
 that may be optionally returned. The concept of file handle
 as attribute might also be useful for the CREATE of a hard
 link.

 DESCRIPTION

 Procedure READDIR retrieves a variable number of entries from a
 file system directory and returns complete information about each
 entry along with information to allow the client to request
 additional directory entries in a subsequent READDIR.

 IMPLEMENTATION

 Issues that need to be understood for this procedure include
 increased cache flushing activity on the client (as new file
 handles are returned with names which are entered into caches) and
 over-the-wire overhead versus expected subsequent LOOKUP and
 GETATTR elimination.

 The dircount and maxcount fields are included as an optimization.
 Consider a READDIR call on a UNIX operating system implementation
 for 1048 bytes; the reply does not contain many entries because of
 the overhead due to attributes and file handles. An alternative is
 to issue a READDIR call for 8192 bytes and then only use the first
 1048 bytes of directory information. However, the server doesn't
 know that all that is needed is 1048 bytes of directory
 information (as would be returned by READDIR). It sees the 8192
 byte request and issues a VOP_READDIR for 8192 bytes. It then
 steps through all of those directory entries, obtaining attributes
 and file handles for each entry. When it encodes the result, the
 server only encodes until it gets 8192 bytes of results which
 include the attributes and file handles. Thus, it has done a
 larger VOP_READDIR and many more attribute fetches than it needed
 to. The ratio of the directory entry size to the size of the
 attributes plus the size of the file handle is usually at least 8
 to 1. The server has done much more work than it needed to.

 The solution to this problem is for the client to provide two
 counts to the server. The first is the number of bytes of

Expires: August 1999 [Page 79]

Draft Protocol Specification NFS version 4 February 1999

 directory information that the client really wants, dircount. The
 second is the maximum number of bytes in the result, including the
 attributes and file handles, maxcount. Thus, the server will issue
 a VOP_READDIR for only the number of bytes that the client really
 wants to get, not an inflated number. This should help to reduce
 the size of VOP_READDIR requests on the server, thus reducing the
 amount of work done there, and to reduce the number of VOP_LOOKUP,
 VOP_GETATTR, and other calls done by the server to construct
 attributes and file handles.

 ERRORS

 NFS4ERR_IO

 NFS4ERR_ACCES

 NFS4ERR_NOTDIR

 NFS4ERR_BAD_COOKIE

 NFS4ERR_TOOSMALL

 NFS4ERR_NOTSUPP

 NFS4ERR_SERVERFAULT

Expires: August 1999 [Page 80]

Draft Protocol Specification NFS version 4 February 1999

11.20. Procedure 19: READLINK - Read symbolic link

 SYNOPSIS

 (cfh) -> linktext

 ARGS

 (none)

 RESULTS

 linktext: utf8string

 DESCRIPTION

 READLINK reads the data associated with a symbolic link. The data
 is a UTF-8 string that is opaque to the server. That is, whether
 created by an NFS client or created locally on the server, the
 data in a symbolic link is not interpreted when created, but is
 simply stored.

 IMPLEMENTATION

 A symbolic link is nominally a pointer to another file. The data
 is not necessarily interpreted by the server, just stored in the
 file. It is possible for a client implementation to store a path
 name that is not meaningful to the server operating system in a
 symbolic link. A READLINK operation returns the data to the
 client for interpretation. If different implementations want to
 share access to symbolic links, then they must agree on the
 interpretation of the data in the symbolic link.

 The READLINK operation is only allowed on objects of type, NFLNK.
 The server should return the error, NFS4ERR_INVAL, if the object
 is not of type, NFLNK.

 ERRORS

 NFS4ERR_IO

 NFS4ERR_INVAL

 NFS4ERR_ACCES

 NFS4ERR_NOTSUPP

Expires: August 1999 [Page 81]

Draft Protocol Specification NFS version 4 February 1999

 NFS4ERR_SERVERFAULT

Expires: August 1999 [Page 82]

Draft Protocol Specification NFS version 4 February 1999

11.21. Procedure 20: REMOVE - Remove filesystem object

 SYNOPSIS

 (cfh), filename -> -

 ARGS

 entryname: utf8string

 RESULTS

 (none)

 DESCRIPTION

 REMOVE removes (deletes) a directory entry named by filename from
 the directory corresponding to the current filehandle. If the
 entry in the directory was the last reference to the corresponding
 file system object, the object may be destroyed.

 IMPLEMENTATION

 NFS versions 2 and 3 required a different operator RMDIR for
 directory removal. NFS version 4 REMOVE can be used to delete any
 directory entry independent of its filetype.

 The concept of last reference is server specific. However, if the
 nlink field in the previous attributes of the object had the value
 1, the client should not rely on referring to the object via a
 file handle. Likewise, the client should not rely on the resources
 (disk space, directory entry, and so on.) formerly associated with
 the object becoming immediately available. Thus, if a client needs
 to be able to continue to access a file after using REMOVE to
 remove it, the client should take steps to make sure that the file
 will still be accessible. The usual mechanism used is to use
 RENAME to rename the file from its old name to a new hidden name.

 ERRORS

 NFS4ERR_NOENT

 NFS4ERR_IO

 NFS4ERR_ACCES

 NFS4ERR_NOTDIR

Expires: August 1999 [Page 83]

Draft Protocol Specification NFS version 4 February 1999

 NFS4ERR_NAMETOOLONG

 NFS4ERR_ROFS

 NFS4ERR_NOTEMPTY

 NFS4ERR_SERVERFAULT

Expires: August 1999 [Page 84]

Draft Protocol Specification NFS version 4 February 1999

11.22. Procedure 21: RENAME - Rename directory entry

 SYNOPSIS

 (cfh), oldname, newdir, newname -> -

 ARGS

 oldname: utf8string

 newdir: filehandle

 newname: utf8string

 RESULTS

 status: uint32

 DESCRIPTION

 RENAME renames the directory identified by oldname in the
 directory corresponding to the current filehandle to newname in
 directory newdir. The operation is required to be atomic to the
 client. Source and target directories must reside on the same file
 system on the server.

 If the directory, newdir, already contains an entry with the name,
 newname, the source object must be compatible with the target:
 either both are non-directories or both are directories and the
 target must be empty. If compatible, the existing target is
 removed before the rename occurs. If they are not compatible or if
 the target is a directory but not empty, the server should return
 the error, NFS4ERR_EXIST.

 IMPLEMENTATION

 The RENAME operation must be atomic to the client. The statement
 "source and target directories must reside on the same file system
 on the server" means that the fsid fields in the attributes for
 the directories are the same. If they reside on different file
 systems, the error, NFS4ERR_XDEV, is returned. Even though the
 operation is atomic, the status, NFS4ERR_MLINK, may be returned if
 the server used a "unlink/link/unlink" sequence internally.

 A file handle may or may not become stale on a rename. However,
 server implementors are strongly encouraged to attempt to keep
 file handles from becoming stale in this fashion.

Expires: August 1999 [Page 85]

Draft Protocol Specification NFS version 4 February 1999

 On some servers, the filenames, "." and "..", are illegal as
 either oldname or newname. In addition, neither oldname nor
 newname can be an alias for the source directory. These servers
 will return the error, NFS4ERR_INVAL, in these cases.

 If oldname and newname both refer to the same file (they might be
 hard links of each other), then RENAME should perform no action
 and return success.

 ERRORS

 NFS4ERR_NOENT

 NFS4ERR_IO

 NFS4ERR_ACCES

 NFS4ERR_EXIST

 NFS4ERR_XDEV

 NFS4ERR_NOTDIR

 NFS4ERR_ISDIR

 NFS4ERR_INVAL

 NFS4ERR_NOSPC

 NFS4ERR_ROFS

 NFS4ERR_MLINK

 NFS4ERR_NAMETOOLONG

 NFS4ERR_NOTEMPTY

 NFS4ERR_DQUOT

 NFS4ERR_NOTSUPP

 NFS4ERR_SERVERFAULT

Expires: August 1999 [Page 86]

Draft Protocol Specification NFS version 4 February 1999

11.23. Procedure 22: RENEW - renew a lease

 SYNOPSIS

 stateid -> ()

 ARGS

 stateid: uint64 length: uint64

 RESULTS

 none

 DESCRIPTION

 Renews all leases for the client associated with the stateid.

 ERRORS
 TDB

Expires: August 1999 [Page 87]

Draft Protocol Specification NFS version 4 February 1999

11.24. Procedure 23: RESTOREFH - Restore saved filehandle

 SYNOPSIS

 (sfh) -> (cfh)

 ARGS

 (none)

 RESULTS

 (none)

 DESCRIPTION

 Make the saved filehandle the current filehandle. If there is no
 saved filehandle then return an error NFS4ERR_INVAL.

 IMPLEMENTATION

 Operators like CREATE and LOOKUP use the current filehandle to
 represent a directory and replace it with a new filehandle.
 Assuming the previous filehandle was saved with a SAVEFH operator,
 the previous filehandle can be restored as the current filehandle.
 This is commonly used to obtain post-operation attributes for the
 directory, e.g.

 1. PUTFH (directory filehandle)
 2. SAVEFH
 3. GETATTR attrbits (pre-op dir attrs)
 4. CREATE optbits "foo" attrs
 5. GETATTR attrbits (file attributes)
 6. RESTOREFH
 7. GETATTR attrbits (post-op dir attrs)

 ERRORS

 NFS4ERR_SERVERFAULT

Expires: August 1999 [Page 88]

Draft Protocol Specification NFS version 4 February 1999

11.25. Procedure 24: SAVEFH - Save current filehandle

 SYNOPSIS

 (cfh) -> (sfh)

 ARGS

 (none)

 RESULTS

 (none)

 DESCRIPTION

 Save the current filehandle. If a previous filehandle was saved
 then it is no longer accessible. The saved filehandle can be
 restored as the current filehandle with the RESTOREFH operator.

 IMPLEMENTATION

 (see RESTOREFH)

 ERRORS

 NFS4ERR_SERVERFAULT

Expires: August 1999 [Page 89]

Draft Protocol Specification NFS version 4 February 1999

11.26. Procedure 25: SECINFO - Obtain Available Security

 SYNOPSIS

 (cfh), filename -> { secinfo }

 ARGS

 filename: utf8string

 RESULTS

 secinfo: secinfo
 This is a link list of security flavors available for the
 supplied file handle and filename.

 DESCRIPTION

 This procedure is used by the client to obtain a list of valid RPC
 authentication flavors for a specific file handle, file name pair.
 For the flavors, AUTH_NONE, AUTH_SYS, AUTH_DH, and AUTH_KRB4 no
 additional security information is returned. For a return value
 of AUTH_RPCSEC_GSS, a security triple is returned that contains
 the mechanism object id (as defined in [RFC2078]), the quality of
 protection (as defined in [RFC 2078]) and the service type (as
 defined in [RFC2203]). It is possible for SECINFO to return
 multiple entries with flavor equal to AUTH_RPCSEC_GSS with
 different security triple values.

 IMPLEMENTATION

 This procedure is expected to be used by the NFS client when the
 error value of NFS4ERR_WRONGSEC is returned from another NFS
 procedure. This signifies to the client that the server's
 security policy is different from what the client is currently
 using. At this point, the client is expected to obtain a list of
 possible security flavors and choose what best suits its policies.

 ERRORS

 NFS4ERR_NOENT

 NFS4ERR_IO

 NFS4ERR_ACCES

 NFS4ERR_NAMETOOLONG

https://datatracker.ietf.org/doc/html/rfc2078
https://datatracker.ietf.org/doc/html/rfc2078
https://datatracker.ietf.org/doc/html/rfc2203

Expires: August 1999 [Page 90]

Draft Protocol Specification NFS version 4 February 1999

 NFS4ERR_STALE

 NFS4ERR_SERVERFAULT

 NFS4ERR_FHEXPIRED

 NFS4ERR_WRONGSEC

Expires: August 1999 [Page 91]

Draft Protocol Specification NFS version 4 February 1999

11.27. Procedure 26: SETATTR - Set attributes

 SYNOPSIS

 (cfh), attrbits, attrvals -> -

 ARGS

 attrbits: bitmap

 attrvals

 DESCRIPTION

 Procedure SETATTR changes one or more of the attributes of a file
 system object on the server. The new attributes are specified with
 a bitmap and the attributes that follow the bitmap in bit order.

 IMPLEMENTATION

 The file size attribute is used to request changes to the size of
 a file. A value of 0 causes the file to be truncated, a value less
 than the current size of the file causes data from new size to the
 end of the file to be discarded, and a size greater than the
 current size of the file causes logically zeroed data bytes to be
 added to the end of the file. Servers are free to implement this
 using holes or actual zero data bytes. Clients should not make any
 assumptions regarding a server's implementation of this feature,
 beyond that the bytes returned will be zeroed. Servers must
 support extending the file size via SETATTR.

 SETATTR is not guaranteed atomic. A failed SETATTR may partially
 change a file's attributes.

 Changing the size of a file with SETATTR indirectly changes the
 mtime. A client must account for this as size changes can result
 in data deletion.

 If server and client times differ, programs that compare client
 time to file times can break. A time maintenance protocol should
 be used to limit client/server time skew.

 If the server cannot successfully set all the attributes it must
 return an NFS4ERR_INVAL error. An error may be returned if the
 server can not store a uid or gid in its own representation of
 uids or gids, respectively. If the server can only support 32 bit
 offsets and sizes, a SETATTR request to set the size of a file to

Expires: August 1999 [Page 92]

Draft Protocol Specification NFS version 4 February 1999

 larger than can be represented in 32 bits will be rejected with
 this same error.

 ERRORS

 NFS4ERR_PERM

 NFS4ERR_IO

 NFS4ERR_ACCES

 NFS4ERR_INVAL

 NFS4ERR_NOSPC

 NFS4ERR_ROFS

 NFS4ERR_DQUOT

 NFS4ERR_SERVERFAULT

Expires: August 1999 [Page 93]

Draft Protocol Specification NFS version 4 February 1999

11.28. Procedure 27: SETCLIENTID - negotiated clientid

 SYNOPSIS

 verifier, client -> clientid

 ARGS

 verifier: uint32

 client: opaque <>

 RESULTS

 clientid: uint64

 DESCRIPTION

 Procedure SETCLIENTID introduces the ability of the client to
 notify the server of its intention to use a particular client
 identifier and verifier pair. Upon successful completion the
 server will return a clientid which is used in subsequent file
 locking requests.

 IMPLEMENTATION

 The server takes the verifier and client identification supplied
 and search for a match of the client identification. If no match
 is found the server saves the principal/uid information along with
 the verifier and client identification and returns a unique
 clientid that is used as a short hand reference to the supplied
 information.

 If the server find matching client identification and a
 corresponding match in principal/uid, the server releases all
 locking state for the client and returns a new clientid.

 ERRORS
 TBD

Expires: August 1999 [Page 94]

Draft Protocol Specification NFS version 4 February 1999

11.29. Procedure 28: VERIFY - Verify attributes same

 SYNOPSIS

 (cfh), attrbits, attrvals -> -

 ARGS

 attrbits: bitmap

 attrvals

 RESULTS

 (none)

 DESCRIPTION

 This operation is used to verify that attributes have a value
 assumed by the client before proceeding with following operations
 in the compound request. For instance, a VERIFY can be used to
 make sure that the file size has not changed for an append-mode
 write:

 1. PUTFH 0x0123456
 2. VERIFY attrbits attrs
 3. WRITE 450328 4096

 If the attributes are not as expected, then the request fails and
 the data is not appended to the file.

 IMPLEMENTATION

 ERRORS

Expires: August 1999 [Page 95]

Draft Protocol Specification NFS version 4 February 1999

11.30. Procedure 29: WRITE - Write to file

 SYNOPSIS

 (cfh), offset, count, stability, stateid, data -> count,
 committed, verifier

 ARGS

 offset: uint64

 count: uint32

 stability: uint32

 stateid: uint64

 data: opaque

 RESULTS

 count: uint32

 committed: uint32

 verifier: uint32

 DESCRIPTION

 Write data to the file identified by the current filehandle.
 Arguments are as follows:

 offset

 The position within the file at which the write is to begin.
 An offset of 0 means to write data starting at the beginning
 of the file.

 count

 The number of bytes of data to be written. If count is 0, the
 WRITE will succeed and return a count of 0, barring errors
 due to permissions checking. The size of data must be less
 than or equal to the value of the wtmax attribute for the
 filesystem that contains file. If greater, the server may
 write only wtmax bytes, resulting in a short write.

Expires: August 1999 [Page 96]

Draft Protocol Specification NFS version 4 February 1999

 stability

 If stable is FILE_SYNC, the server must commit the data
 written plus all file system metadata to stable storage
 before returning results. This corresponds to the NFS version
 2 protocol semantics. Any other behavior constitutes a
 protocol violation. If stable is DATA_SYNC, then the server
 must commit all of the data to stable storage and enough of
 the metadata to retrieve the data before returning. The
 server implementor is free to implement DATA_SYNC in the same
 fashion as FILE_SYNC, but with a possible performance drop.
 If stable is UNSTABLE, the server is free to commit any part
 of the data and the metadata to stable storage, including all
 or none, before returning a reply to the client. There is no
 guarantee whether or when any uncommitted data will
 subsequently be committed to stable storage. The only
 guarantees made by the server are that it will not destroy
 any data without changing the value of verf and that it will
 not commit the data and metadata at a level less than that
 requested by the client.

 stateid

 The stateid returned from a previous record or share lock
 request. Used by the server to verify that the associated
 lock is still valid and to update lease timeouts for the
 client.

 data

 The data to be written to the file.

 If the operation is successful the following results are returned:

 count

 The number of bytes of data written to the file. The server
 may write fewer bytes than requested. If so, the actual
 number of bytes written starting at location, offset, is
 returned.

 committed

 The server should return an indication of the level of
 commitment of the data and metadata via committed. If the
 server committed all data and metadata to stable storage,
 committed should be set to FILE_SYNC. If the level of
 commitment was at least as strong as DATA_SYNC, then

Expires: August 1999 [Page 97]

Draft Protocol Specification NFS version 4 February 1999

 committed should be set to DATA_SYNC. Otherwise, committed
 must be returned as UNSTABLE. If stable was FILE_SYNC, then
 committed must also be FILE_SYNC: anything else constitutes a
 protocol violation. If stable was DATA_SYNC, then committed
 may be FILE_SYNC or DATA_SYNC: anything else constitutes a
 protocol violation. If stable was UNSTABLE, then committed
 may be either FILE_SYNC, DATA_SYNC, or UNSTABLE.

 verifier

 This is a cookie that the client can use to determine whether
 the server has changed state between a call to WRITE and a
 subsequent call to either WRITE or COMMIT. This cookie must
 be consistent during a single instance of the NFS version 4
 protocol service and must be unique between instances of the
 NFS version 4 protocol server, where uncommitted data may be
 lost.

 If a client writes data to the server with the stable argument set
 to UNSTABLE and the reply yields a committed response of DATA_SYNC
 or UNSTABLE, the client will follow up some time in the future
 with a COMMIT operation to synchronize outstanding asynchronous
 data and metadata with the server's stable storage, barring client
 error. It is possible that due to client crash or other error that
 a subsequent COMMIT will not be received by the server.

 IMPLEMENTATION

 It is possible for the server to write fewer than count bytes of
 data. In this case, the server should not return an error unless
 no data was written at all. If the server writes less than count
 bytes, the client should issue another WRITE to write the
 remaining data.

 It is assumed that the act of writing data to a file will cause
 the mtime of the file to be updated. However, the mtime of the
 file should not be changed unless the contents of the file are
 changed. Thus, a WRITE request with count set to 0 should not
 cause the mtime of the file to be updated.

 The definition of stable storage has been historically a point of
 contention. The following expected properties of stable storage
 may help in resolving design issues in the implementation. Stable
 storage is persistent storage that survives:

Expires: August 1999 [Page 98]

Draft Protocol Specification NFS version 4 February 1999

 1. Repeated power failures.
 2. Hardware failures (of any board, power supply, etc.).
 3. Repeated software crashes, including reboot cycle.

 This definition does not address failure of the stable storage
 module itself.

 The verifier, is defined to allow a client to detect different
 instances of an NFS version 4 protocol server over which cached,
 uncommitted data may be lost. In the most likely case, the
 verifier allows the client to detect server reboots. This
 information is required so that the client can safely determine
 whether the server could have lost cached data. If the server
 fails unexpectedly and the client has uncommitted data from
 previous WRITE requests (done with the stable argument set to
 UNSTABLE and in which the result committed was returned as
 UNSTABLE as well) it may not have flushed cached data to stable
 storage. The burden of recovery is on the client and the client
 will need to retransmit the data to the server.

 A suggested verifier would be to use the time that the server was
 booted or the time the server was last started (if restarting the
 server without a reboot results in lost buffers).

 The committed field in the results allows the client to do more
 effective caching. If the server is committing all WRITE requests
 to stable storage, then it should return with committed set to
 FILE_SYNC, regardless of the value of the stable field in the
 arguments. A server that uses an NVRAM accelerator may choose to
 implement this policy. The client can use this to increase the
 effectiveness of the cache by discarding cached data that has
 already been committed on the server.

 Some implementations may return NFS4ERR_NOSPC instead of
 NFS4ERR_DQUOT when a user's quota is exceeded.

 ERRORS

 NFS4ERR_IO

 NFS4ERR_ACCES

 NFS4ERR_FBIG

 NFS4ERR_DQUOT

Expires: August 1999 [Page 99]

Draft Protocol Specification NFS version 4 February 1999

 NFS4ERR_NOSPC

 NFS4ERR_ROFS

 NFS4ERR_INVAL

 NFS4ERR_LOCKED

 NFS4ERR_SERVERFAULT

Expires: August 1999 [Page 100]

Draft Protocol Specification NFS version 4 February 1999

12. Locking notes

12.1. Short and long leases

 The usual lease trade-offs apply: short leases are good for fast
 server recovery at a cost of increased RENEW or READ (with zero
 length) requests.

 Longer leases are certainly kinder and gentler to large internet
 servers trying to handle huge numbers of clients. RENEW requests drop
 in direct proportion to the lease time. The disadvantages of long
 leases are slower server recover after crash (server must wait for
 leases to expire and grace period before granting new lock requests)
 and increased file contention (if client fails to transmit an unlock
 request then server must wait for lease expiration before granting
 new locks).

 Long leases are usable if the server is to store lease state in non-
 volatile memory. Upon recovery, the server can reconstruct the lease
 state from its non-volatile memory and continue operation with its
 clients and therefore long leases are not an issue.

12.2. Clocks and leases

 To avoid the need for synchronized clocks, lease times are granted by
 the server as a time delta, though there is a requirement that the
 client and server clocks do not drift excessively over the duration
 of the lock. There is also the issue of propagation delay across the
 network which could easily be several hundred milliseconds across the
 Internet as well as the possibility that requests will be lost and
 need to be retransmitted.

 To take propagation delay into account, the client should subtract a
 it from lease times, e.g. if the client estimates the one-way
 propagation delay as 200 msec, then it can assume that the lease is
 already 200 msec old when it gets it. In addition, it'll take
 another 200 msec to get a response back to the server. So the client
 must send a lock renewal or write data back to the server 400 msec
 before the lease would expire.

 The client could measure propagation delay with reasonable accuracy
 by measuring the round-trip time for lock extensions assuming that
 there's not much server processing overhead in an extension.

12.3. Locks and lease times

 Lock requests do not contain desired lease times. The server

Expires: August 1999 [Page 101]

Draft Protocol Specification NFS version 4 February 1999

 allocates leases with no information from the client. The assumption
 here is that the client really has no idea of just how long the lock
 will be required. If a scenario can be found where a hint from the
 client as to the maximum lease time desired would be useful, then
 this feature could be added to lock requests.

12.4. Locking of directories and other meta-files

 A question: should directories and/or other file-system objects like
 symbolic links be lockable ? Clients will want to cache whole
 directories. It would be nice to have consistent directory caches,
 but it would require that any client creating a new file get a write
 lock on the directory and be prepared to handle lock denial. Is the
 weak cache consistency that we currently have for directories
 acceptable ? I think perhaps it is - given the expense of doing full
 consistency on an Internet scale.

12.5. Proxy servers and leases

 Proxy servers. There is some interest in having NFS V4 support
 caching proxies. Support for proxy caching is a requirement if
 servers are to handle large numbers of clients - clients that may
 have little or no ability to cache on their own. How could proxy
 servers use lease-based locking ?

12.6. Locking and the new latency

 Latency caused by locking. If a client wants to update a file then
 it will have to wait until the leases on read locks have expired. If
 the leases are of the order of 60 seconds or several minutes then the
 client (and end-user) may be blocked for a while. This is unfamiliar
 for current NFS users who are not bothered by mandatory locking - but
 it could be an issue if we decide we like the caching benefits. A
 similar problem exists for clients that wish to read a file that is
 write locked. The read-lock case is likely to be more common if
 read-locking is used to protect cached data on the client.

Expires: August 1999 [Page 102]

Draft Protocol Specification NFS version 4 February 1999

13. Internationalization

 The primary issue in which NFS needs to deal with
 internationalization ,or i18n, is with respect to file names and
 other strings as used within the protocol. NFS' choice of string
 representation must allow reasonable name/string access to clients
 which use various languages. The UTF-8 encoding allows for this type
 of access and this choice is explained in the following.

13.1. Universal Versus Local Character Sets

 [RFC1345] describes a table of 16 bit characters for many different
 languages (the bit encodings match Unicode, though of course RFC1345
 is somewhat out of date with respect to current Unicode assignments).
 Each character from each language has a unique 16 bit value in the 16
 bit character set. Thus this table can be thought of as a universal
 character set. [RFC1345] then talks about groupings of subsets of the
 entire 16 bit character set into "Charset Tables". For example one
 might take all the Greek characters from the 16 bit table (which are
 are consecutively allocated), and normalize their offsets to a table
 that fits in 7 bits. Thus we find that "lower case alpha" is in the
 same position as "upper case a" in the US-ASCII table, and "upper
 case alpha" is in the same position as "lower case a" in the US-ASCII
 table.

 These normalized subset character sets can be thought of as "local
 character sets", suitable for an operating system locale.

 Local character sets are not suitable for the NFS protocol. Consider
 someone who creates a file with a name in a Swedish character set. If
 someone else later goes to access the file with their locale set to
 the Swedish language, then there are no problems. But if someone in
 say the US-ASCII locale goes to access the file, the file name will
 look very different, because the Swedish characters in the 7 bit
 table will now be represented in US-ASCII characters on the display.
 It would be preferable to give the US-ASCII user a way to display the
 file name using Swedish glyphs. In order to do that, the NFS protocol
 would have to include the locale with the file name on each operation
 to create a file.

 But then what of the situation when we have a path name on the server
 like:

 /component-1/component-2/component-3

 Each component could have been created with a different locale. If
 one issues CREATE with multi-component path name, and if some of the
 leading components already exist, what is to be done with the

https://datatracker.ietf.org/doc/html/rfc1345
https://datatracker.ietf.org/doc/html/rfc1345

Expires: August 1999 [Page 103]

Draft Protocol Specification NFS version 4 February 1999

 existing components? Is the current locale attribute replaced with
 the user's current one? These types of situations quickly become too
 complex when there is an alternate solution.

 If NFS V4 used a universal 16 bit or 32 bit character set (or a
 encoding of a 16 bit or 32 bit character set into octets), then
 server and client need not care if the locale of the user accessing
 the file is different than the locale of the user who created the
 file. The unique 16 bit or 32 bit encoding of the character allows
 for determination of what language the character is from and also how
 to display that character on the client. The server need not know
 what locales are used.

13.2. Overview of Universal Character Set Standards

 The previous section makes a case for using a universal character set
 in NFS version 4. This section makes the case for using UTF-8 as the
 specific universal character set for NFS version 4.

 [RFC2279] discusses UTF-* (UTF-8 and other UTF-XXX encodings),
 Unicode, and UCS-*. There are two standards bodies managing universal
 code sets:

 o ISO/IEC which has the standard 10646-1

 o Unicode which has the Unicode standard

 Both standards bodies have pledged to track each other's assignments
 of character codes.

 The following is a brief analysis of the various standards.

 UCS Universal Character Set. This is ISO/IEC 10646-1: "a
 multi-octet character set called the Universal Character
 Set (UCS), which encompasses most of the world's writing
 systems."

 UCS-2 a two octet per character encoding that addresses the first
 2^16 characters of UCS. Currently there are no UCS
 characters beyond that range.

 UCS-4 a four octet per character encoding that permits the
 encoding of up to 2^31 characters.

Expires: August 1999 [Page 104]

Draft Protocol Specification NFS version 4 February 1999

 UTF UCS transformation format.

 UTF-1 Only historical interest; it has been removed from 10646-1

 UTF-7 Encodes the entire "repertoire" of UCS "characters using
 only octets with the higher order bit clear". [RFC2152]
 describes UTF-7. UTF-7 accomplishes this by reserving one
 of the 7bit US-ASCII characters as a "shift" character to
 indicate non-US-ASCII characters.

 UTF-8 Unlike UTF-7, uses all 8 bits of the octets. US-ASCII
 characters are encoded as before unchanged. Any octet with
 the high bit cleared can only mean a US-ASCII character.
 The high bit set means that a UCS character is being
 encoded.

 UTF-16 Encodes UCS-4 characters into UCS-2 characters using a
 reserved range in UCS-2.

 Unicode Unicode and UCS-2 are the same; [RFC2279] states:

 Up to the present time, changes in Unicode and amendments
 to ISO/IEC 10646 have tracked each other, so that the
 character repertoires and code point assignments have
 remained in sync. The relevant standardization committees
 have committed to maintain this very useful synchronism.

13.3. Difficulties with UCS-4, UCS-2, Unicode

 Adapting existing applications, and file systems to multi-octet
 schemes like UCS and Unicode can be difficult. A significant amount
 of code has been written to process streams of bytes. Also there are
 many existing stored objects described with 7 bit or 8 bit
 characters. Doubling or quadrupling the bandwidth and storage
 requirements seems like an expensive way to accomplish I18N.

 UCS-2 and Unicode are "only" 16 bits long. That might seem to be
 enough but, according to [Unicode1], 38,887 Unicode characters are
 already assigned. And according to [Unicode2] there are still more
 languages that need to be added.

https://datatracker.ietf.org/doc/html/rfc2152
https://datatracker.ietf.org/doc/html/rfc2279

Expires: August 1999 [Page 105]

Draft Protocol Specification NFS version 4 February 1999

13.4. UTF-8 and its solutions

 UTF-8 solves problems for NFS that exist with the use of UCS and
 Unicode. UTF-8 will encode 16 bit and 32 bit characters in a way
 that will be compact for most users. The encoding table from UCS-4 to
 UTF-8, as copied from [RFC2279]:

 UCS-4 range (hex.) UTF-8 octet sequence (binary)
 0000 0000-0000 007F 0xxxxxxx
 0000 0080-0000 07FF 110xxxxx 10xxxxxx
 0000 0800-0000 FFFF 1110xxxx 10xxxxxx 10xxxxxx

 0001 0000-001F FFFF 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
 0020 0000-03FF FFFF 111110xx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx
 0400 0000-7FFF FFFF 1111110x 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx
 10xxxxxx

 See [RFC2279] for precise encoding and decoding rules. Note because
 of UTF-16, the algorithm from Unicode/UCS-2 to UTF-8 needs to account
 for the reserved range between D800 and DFFF.

 Note that the 16 bit UCS or Unicode characters require no more than 3
 octets to encode into UTF-8

 Interestingly, UTF-8 has room to handle characters larger than 31
 bits, because the leading octet of form:

 1111111x

 is not defined. If needed, ISO could either use that octet to
 indicate a sequence of an encoded 8 octet character, or perhaps use
 11111110 to permit the next octet to indicate an even more expandable
 character set.

 So using UTF-8 to represent character encodings means never having to
 run out of room.

https://datatracker.ietf.org/doc/html/rfc2279
https://datatracker.ietf.org/doc/html/rfc2279

Expires: August 1999 [Page 106]

Draft Protocol Specification NFS version 4 February 1999

14. Security Considerations

 The major security feature to consider is the authentication of the
 user making the request of NFS service. Consideration should also be
 given to the integrity and privacy of this NFS request. These
 specific issues are discussed as part of the section on "RPC and
 Security Flavor".

 As this document progresses, other issues of denial of service and
 other typical security issues will be addressed here along with those
 issues specific to NFS service.

Expires: August 1999 [Page 107]

Draft Protocol Specification NFS version 4 February 1999

15. NFS Version 4 RPC definition file

 /*
 * nfs_prot.x
 *
 */

 %#pragma ident "@(#)nfs_prot.x 1.28 99/02/26"

 /*
 * Sizes
 */
 const NFS4_FHSIZE = 128;
 const NFS4_CREATEVERFSIZE = 8;

 /*
 * Timeval
 */
 struct nfstime4 {
 int64_t seconds;
 uint32_t nseconds;
 };

 struct specdata4 {
 uint32_t specdata1;
 uint32_t specdata2;
 };

 /*
 * Basic data types
 */
 typedef opaque utf8string<>;
 typedef uint64_t offset4;
 typedef uint32_t count4;
 typedef uint32_t length4;
 typedef uint64_t clientid4;
 typedef uint64_t stateid4;
 typedef uint32_t seqid4;
 typedef uint32_t writeverf4;
 typedef opaque createverf4[NFS4_CREATEVERFSIZE];
 typedef utf8string filename4;
 typedef uint64_t nfs_lockid4;
 typedef uint32_t nfs_lease4;
 typedef uint32_t nfs_lockstate4;
 typedef uint64_t nfs_cookie4;
 typedef utf8string linktext4;
 typedef opaque sec_oid4<>;
 typedef uint32_t qop4;

Expires: August 1999 [Page 108]

Draft Protocol Specification NFS version 4 February 1999

 typedef uint32_t fattr4_type;
 typedef uint32_t fattr4_mode;
 typedef uint32_t fattr4_accessbits;
 typedef uint32_t fattr4_nlink;
 typedef utf8string fattr4_uid;
 typedef utf8string fattr4_gid;
 typedef uint64_t fattr4_size;
 typedef uint64_t fattr4_used;
 typedef specdata4 fattr4_rdev;
 typedef uint64_t fattr4_fsid;
 typedef uint64_t fattr4_fileid;
 typedef nfstime4 fattr4_atime;
 typedef nfstime4 fattr4_mtime;
 typedef nfstime4 fattr4_ctime;
 typedef uint32_t fattr4_rtmax;
 typedef uint32_t fattr4_rtpref;
 typedef uint32_t fattr4_rtmult;
 typedef uint32_t fattr4_wtmax;
 typedef uint32_t fattr4_wtpref;
 typedef uint32_t fattr4_wtmult;
 typedef uint32_t fattr4_dtpref;
 typedef uint64_t fattr4_maxfilesize;
 typedef uint64_t fattr4_change;
 typedef nfstime4 fattr4_time_delta;
 typedef uint32_t fattr4_properties;
 typedef uint32_t fattr4_linkmax;
 typedef uint32_t fattr4_name_max;

 /*
 * Error status
 */
 enum nfsstat4 {
 NFS4_OK = 0,
 NFS4ERR_PERM = 1,
 NFS4ERR_NOENT = 2,
 NFS4ERR_IO = 5,
 NFS4ERR_NXIO = 6,
 NFS4ERR_ACCES = 13,
 NFS4ERR_EXIST = 17,
 NFS4ERR_XDEV = 18,
 NFS4ERR_NODEV = 19,
 NFS4ERR_NOTDIR = 20,
 NFS4ERR_ISDIR = 21,
 NFS4ERR_INVAL = 22,
 NFS4ERR_FBIG = 27,
 NFS4ERR_NOSPC = 28,
 NFS4ERR_ROFS = 30,
 NFS4ERR_MLINK = 31,

Expires: August 1999 [Page 109]

Draft Protocol Specification NFS version 4 February 1999

 NFS4ERR_NAMETOOLONG = 63,
 NFS4ERR_NOTEMPTY = 66,
 NFS4ERR_DQUOT = 69,
 NFS4ERR_STALE = 70,
 NFS4ERR_BADHANDLE = 10001,
 NFS4ERR_NOT_SYNC = 10002,
 NFS4ERR_BAD_COOKIE = 10003,
 NFS4ERR_NOTSUPP = 10004,
 NFS4ERR_TOOSMALL = 10005,
 NFS4ERR_SERVERFAULT = 10006,
 NFS4ERR_BADTYPE = 10007,
 NFS4ERR_JUKEBOX = 10008,
 NFS4ERR_SAME = 10009,
 NFS4ERR_DENIED = 10010,/* lock unavailable */
 NFS4ERR_EXPIRED = 10011,/* lock lease expired */
 NFS4ERR_LOCKED = 10012,/* I/O failed due to lock */
 NFS4ERR_GRACE = 10013,/* in grace period */
 NFS4ERR_FHEXPIRED = 10014 /* file handle expired */
 };

 enum rpc_flavor4 {
 AUTH_NONE = 0,
 AUTH_SYS = 1,
 AUTH_DH = 2,
 AUTH_KRB4 = 3,
 AUTH_RPCSEC_GSS = 4
 };

 /*
 * From RFC 2203
 */
 enum rpc_gss_svc_t {
 RPC_GSS_SVC_NONE = 1,
 RPC_GSS_SVC_INTEGRITY = 2,
 RPC_GSS_SVC_PRIVACY = 3
 };

 /*
 * File access handle
 */
 struct nfs_fh4 {
 opaque data<NFS4_FHSIZE>;
 };

 /*
 * File types
 */
 enum ftype4 {

https://datatracker.ietf.org/doc/html/rfc2203

Expires: August 1999 [Page 110]

Draft Protocol Specification NFS version 4 February 1999

 NF4REG = 1,
 NF4DIR = 2,
 NF4BLK = 3,
 NF4CHR = 4,
 NF4LNK = 5,
 NF4SOCK = 6,
 NF4FIFO = 7
 };

 const FATTR4_TYPE = 1;
 const FATTR4_MODE = 2;
 const FATTR4_ACCESSBITS = 3;
 const FATTR4_NLINK = 4;
 const FATTR4_UID = 5;
 const FATTR4_GID = 6;
 const FATTR4_SIZE = 7;
 const FATTR4_USED = 8;
 const FATTR4_RDEV = 9;
 const FATTR4_FSID = 10;
 const FATTR4_FILEID = 11;
 const FATTR4_ATIME = 12;
 const FATTR4_MTIME = 13;
 const FATTR4_CTIME = 14;
 const FATTR4_RTMAX = 15;
 const FATTR4_RTPREF = 16;
 const FATTR4_RTMULT = 17;
 const FATTR4_WTMAX = 18;
 const FATTR4_WTPREF = 19;
 const FATTR4_WTMULT = 20;
 const FATTR4_DTPREF = 21;
 const FATTR4_MAXFILESIZE = 22;
 const FATTR4_TIME_DELTA = 23;
 const FATTR4_PROPERTIES = 24;
 const FATTR4_LINKMAX = 25;
 const FATTR4_NAME_MAX = 26;
 const FATTR4_NO_TRUNC = 27;
 const FATTR4_CHOWN_RESTRICTED = 28;
 const FATTR4_CASE_INSENSITIVE = 29;
 const FATTR4_CASE_PRESERVING = 30;

 /*
 * fattr4_properties bits
 */
 const FSF_LINK = 0x00000001;
 const FSF_SYMLINK = 0x00000002;
 const FSF_HOMOGENEOUS = 0x00000004;
 const FSF_CANSETTIME = 0x00000008;
 const FSF_NOTRUNC = 0x00000010;

Expires: August 1999 [Page 111]

Draft Protocol Specification NFS version 4 February 1999

 const FSF_CHOWN_RESTRICTED = 0x00000020;
 const FSF_CASE_INSENSITIVE = 0x00000040;
 const FSF_CASE_PRESERVING = 0x00000080;

 struct bitmap4 {
 uint32_t bits<>;
 };

 struct attrlist {
 opaque attrs<>;
 };

 struct fattr4 {
 bitmap4 attrmask;
 attrlist attr_vals;
 };

 struct cid {
 opaque verifier<4>;
 opaque id<>;
 };

 union nfs_client_id switch (clientid4 clientid) {
 case 0:
 cid ident;
 default:
 void;
 };

 struct lockown {
 clientid4 clientid;
 opaque owner<>;
 };

 union nfs_lockowner switch (stateid4 stateid) {
 case 0:
 lockown ident;
 default:
 void;
 };

 enum lock_type {
 READ = 1,
 WRITE = 2,
 READW = 3, /* blocking read */
 WRITEW = 4 /* blocking write */
 };

Expires: August 1999 [Page 112]

Draft Protocol Specification NFS version 4 February 1999

 /*
 * ACCESS: Check access permission
 */
 const ACCESS4_READ = 0x0001;
 const ACCESS4_LOOKUP = 0x0002;
 const ACCESS4_MODIFY = 0x0004;
 const ACCESS4_EXTEND = 0x0008;
 const ACCESS4_DELETE = 0x0010;
 const ACCESS4_EXECUTE = 0x0020;

 struct ACCESS4args {
 uint32_t access;
 };

 struct ACCESS4resok {
 uint32_t access;
 };

 union ACCESS4res switch (nfsstat4 status) {
 case NFS4_OK:
 ACCESS4resok resok;
 default:
 void;
 };

 /*
 * COMMIT: Commit cached data on server to stable storage
 */
 struct COMMIT4args {
 offset4 offset;
 count4 count;
 };

 struct COMMIT4resok {
 writeverf4 verf;
 };

 union COMMIT4res switch (nfsstat4 status) {
 case NFS4_OK:
 COMMIT4resok resok;
 default:
 void;
 };

 /*
 * CREATE: Create a file
 */

Expires: August 1999 [Page 113]

Draft Protocol Specification NFS version 4 February 1999

 enum createmode4 {
 UNCHECKED = 0,
 GUARDED = 1,
 EXCLUSIVE = 2
 };

 union createhow4 switch (createmode4 mode) {
 case UNCHECKED:
 case GUARDED:
 fattr4 createattrs;
 case EXCLUSIVE:
 createverf4 verf;
 };

 const ACCESS4_READ = 0x0001;
 const ACCESS4_MODIFY = 0x0002;
 const ACCESS4_LOOKUP = 0x0004;
 const ACCESS4_EXTEND = 0x0008;
 const ACCESS4_DELETE = 0x0010;
 const ACCESS4_EXECUTE = 0x0020;

 const DENY4_NONE = 0x0000;
 const DENY4_READ = 0x0001;
 const DENY4_WRITE = 0x0002;

 union openflag switch (uint32_t flag) {
 case CREATE:
 createhow4 how;
 default:
 void;
 };

 /*
 * LOCK/LOCKT/LOCKU: Record lock management
 */
 struct LOCK4args {
 lock_type type;
 seqid4 seqid;
 bool reclaim;
 nfs_lockowner owner;
 offset4 offset;
 length4 length;
 };

 struct lockres {
 stateid4 stateid;
 int32_t access;
 };

Expires: August 1999 [Page 114]

Draft Protocol Specification NFS version 4 February 1999

 union LOCK4res switch (nfsstat4 status) {
 case NFS4_OK:
 lockres result;
 default:
 void;
 };

 union LOCKT4res switch (nfsstat4 status) {
 case NFS4ERR_DENIED:
 nfs_lockowner owner;
 case NFS4_OK:
 void;
 default:
 void;
 };

 union LOCKU4res switch (nfsstat4 status) {
 case NFS4_OK:
 stateid4 stateid;
 default:
 stateid4 stateid;
 };

 /*
 * SETCLIENTID
 */
 struct SETCLIENTID4args {
 seqid4 seqid;
 nfs_client_id client;
 };

 union SETCLIENTID4res switch (nfsstat4 status) {
 case NFS4_OK:
 clientid4 clientid;
 default:
 void;
 };

 /*
 * OPEN: Open a file, potentially with a share lock
 */
 struct OPEN4args {
 filename4 filenames<>;
 openflag flag;
 nfs_lockowner owner;
 seqid4 seqid;
 bool reclaim;
 int32_t access;

Expires: August 1999 [Page 115]

Draft Protocol Specification NFS version 4 February 1999

 int32_t deny;
 };

 union OPEN4res switch (nfsstat4 status) {
 case NFS4_OK:
 LOCK4resok resok;
 default:
 void;
 };

 /*
 * CLOSE: Close a file and release share locks
 */
 struct CLOSE4args {
 stateid4 stateid;
 };

 union CLOSE4res switch (nfsstat4 status) {
 case NFS4_OK:
 stateid4 stateid;
 default:
 void;
 };

 /*
 * GETATTR: Get file attributes
 */
 struct GETATTR4args {
 bitmap4 attr_request;
 };

 struct GETATTR4resok {
 fattr4 obj_attributes;
 };

 union GETATTR4res switch (nfsstat4 status) {
 case NFS4_OK:
 GETATTR4resok resok;
 default:
 void;
 };

 /*
 * GETFH: Get current filehandle
 */
 struct GETFH4resok {
 nfs_fh4 object;
 };

Expires: August 1999 [Page 116]

Draft Protocol Specification NFS version 4 February 1999

 union GETFH4res switch (nfsstat4 status) {
 case NFS4_OK:
 GETFH4resok resok;
 default:
 void;
 };

 /*
 * LINK: Create link to an object
 */
 struct LINK4args {
 nfs_fh4 dir;
 filename4 newname;
 };

 union LINK4res switch (nfsstat4 status) {
 case NFS4_OK:
 void;
 default:
 void;
 };

 /*
 * LOOKUP: Lookup filename
 */
 struct LOOKUP4args {
 filename4 filenames<>;
 };

 union LOOKUP4res switch (nfsstat4 status) {
 case NFS4_OK:
 void;
 default:
 void;
 };

 /*
 * LOOKUPP: Lookup parent directory
 */
 union LOOKUPP4res switch (nfsstat4 status) {
 case NFS4_OK:
 void;
 default:
 void;
 };

 /*
 * NVERIFY: Verify attributes different

Expires: August 1999 [Page 117]

Draft Protocol Specification NFS version 4 February 1999

 */
 struct NVERIFY4args {
 bitmap4 attr_request;
 fattr4 obj_attributes;
 };

 union NVERIFY4res switch (nfsstat4 status) {
 case NFS4_OK:
 void;
 default:
 void;
 };

 /*
 * RESTOREFH: Restore saved filehandle
 */

 union RESTOREFH4res switch (nfsstat4 status) {
 case NFS4_OK:
 void;
 default:
 void;
 };

 /*
 * SAVEFH: Save current filehandle
 */
 union SAVEFH4res switch (nfsstat4 status) {
 case NFS4_OK:
 void;
 default:
 void;
 };

 /*
 * PUTFH: Set current filehandle
 */
 struct PUTFH4args {
 nfs_fh4 object;
 };

 union PUTFH4res switch (nfsstat4 status) {
 case NFS4_OK:
 void;
 default:
 void;
 };

Expires: August 1999 [Page 118]

Draft Protocol Specification NFS version 4 February 1999

 /*
 * PUTROOTFH: Set root filehandle
 */
 union PUTROOTFH4res switch (nfsstat4 status) {
 case NFS4_OK:
 void;
 default:
 void;
 };

 /*
 * READ: Read from file
 */
 struct READ4args {
 stateid4 stateid;
 offset4 offset;
 count4 count;
 };

 struct READ4resok {
 bool eof;
 opaque data<>;
 };

 union READ4res switch (nfsstat4 status) {
 case NFS4_OK:
 READ4resok resok;
 default:
 void;
 };

 /*
 * READDIR: Read directory
 */
 struct READDIR4args {
 nfs_cookie4 cookie;
 count4 dircount;
 count4 maxcount;
 bitmap4 attr_request;

 };

 struct entry4 {
 cookie4 cookie;
 filename4 name;
 fattr4 attrs;
 entry4 *nextentry;
 };

Expires: August 1999 [Page 119]

Draft Protocol Specification NFS version 4 February 1999

 struct dirlist4 {
 entry4 *entries;
 bool eof;
 };

 struct READDIR4resok {
 dirlist4 reply;
 };

 union READDIR4res switch (nfsstat4 status) {
 case NFS4_OK:
 READDIR4resok resok;
 default:
 void;
 };

 /*
 * READLINK: Read symbolic link
 */
 struct READLINK4resok {
 linktext4 link;
 };

 union READLINK4res switch (nfsstat4 status) {
 case NFS4_OK:
 READLINK4resok resok;
 default:
 void;
 };

 /*
 * REMOVE: Remove filesystem object
 */
 struct REMOVE4args {
 filename4 target;
 };

 union REMOVE4res switch (nfsstat4 status) {
 case NFS4_OK:
 void;
 default:
 void;
 };

 /*
 * RENAME: Rename directory entry

Expires: August 1999 [Page 120]

Draft Protocol Specification NFS version 4 February 1999

 */
 struct RENAME4args {
 filename4 oldname;
 nfs_fh4 newdir;
 filename4 newname;
 };

 union RENAME4res switch (nfsstat4 status) {
 case NFS4_OK:
 void;
 default:
 void;
 };

 struct RENEW4args {
 stateid4 stateid;
 };

 union RENEW4res switch (nfsstat4 status) {
 case NFS4_OK:
 void;
 default:
 void;
 };

 /*
 * SETATTR: Set attributes
 */
 struct SETATTR4args {
 fattr4 obj_attributes;
 };

 union SETATTR4res switch (nfsstat4 status) {
 case NFS4_OK:
 void;
 default:
 void;
 };

 /*
 * VERIFY: Verify attributes same
 */
 struct VERIFY4args {
 bitmap4 attr_request;
 fattr4 obj_attributes;
 };

 union VERIFY4res switch (nfsstat4 status) {

Expires: August 1999 [Page 121]

Draft Protocol Specification NFS version 4 February 1999

 case NFS4_OK:
 void;
 default:
 void;
 };

 /*
 * WRITE: Write to file
 */
 enum stable_how4 {
 UNSTABLE = 0,
 DATA_SYNC = 1,
 FILE_SYNC = 2
 };

 struct WRITE4args {
 stateid4 stateid;
 offset4 offset;
 count4 count;
 stable_how4 stable;
 opaque data<>;
 };

 struct WRITE4resok {
 count4 count;
 stable_how4 committed;
 writeverf4 verf;
 };

 union WRITE4res switch (nfsstat4 status) {
 case NFS4_OK:
 WRITE4resok resok;
 default:
 void;
 };

 /*
 * SECINFO: Obtain Available Security Mechanisms
 */
 struct SECINFO4args {
 filename4 name;
 };

 struct rpc_flavor_info {
 secoid4 oid;
 qop4 qop;
 rpc_gss_svc_t service;
 };

Expires: August 1999 [Page 122]

Draft Protocol Specification NFS version 4 February 1999

 struct secinfo4 {
 rpc_flavor4 flavor;
 rpc_flavor_info *flavor_info;
 secinfo4 *nextentry;
 };

 struct SECINFO4resok {
 secinfo4 reply;
 };

 union SECINFO4res switch (nfsstat4 status) {
 case NFS4_OK:
 SECINFO4resok resok;
 default:
 void;
 };

 enum opcode {
 OP_NULL = 0,
 OP_ACCESS = 1,
 OP_CLOSE = 2,
 OP_COMMIT = 3,
 OP_GETATTR = 4,
 OP_GETFH = 5,
 OP_LINK = 6,
 OP_LOCK = 7,
 OP_LOCKT = 8,
 OP_LOCKU = 9,
 OP_LOOKUP = 10,
 OP_LOOKUPP = 11,
 OP_NVERIFY = 12,
 OP_OPEN = 13,
 OP_PUTFH = 14,
 OP_PUTROOTFH = 15,
 OP_READ = 16,
 OP_READDIR = 17,
 OP_READLINK = 18,
 OP_REMOVE = 19,
 OP_RENAME = 20,
 OP_RENEW = 21,
 OP_RESTOREFH = 22,
 OP_SAVEFH = 23,
 OP_SECINFO = 24,
 OP_SETATTR = 25,
 OP_SETCLIENTID = 26,
 OP_VERIFY = 27,
 OP_WRITE = 28

Expires: August 1999 [Page 123]

Draft Protocol Specification NFS version 4 February 1999

 };

 union opunion switch (unsigned opcode) {
 case OP_NULL: void;
 case OP_ACCESS: ACCESS4args opaccess;
 case OP_CLOSE: CLOSE4args opclose;
 case OP_COMMIT: COMMIT4args opcommit;
 case OP_GETATTR: GETATTR4args opgettattr;
 case OP_GETFH: void;
 case OP_LINK: LINK4args oplink;
 case OP_LOCK: LOCK4args oplock;
 case OP_LOCKT: LOCK4args oplockt;
 case OP_LOCKU: LOCK4args oplocku;
 case OP_LOOKUP: LOOKUP4args oplookup;
 case OP_LOOKUPP: void;
 case OP_NVERIFY: NVERIFY4args opnverify;
 case OP_OPEN: OPEN4args opopen;
 case OP_PUTFH: PUTFH4args opputfh;
 case OP_PUTROOTFH: void;
 case OP_READ: READ4args opread;
 case OP_READDIR: READDIR4args opreaddir;
 case OP_READLINK: void;
 case OP_REMOVE: REMOVE4args opremove;
 case OP_RENAME: RENAME4args oprename;
 case OP_RENEW: RENEW4args oprenew;
 case OP_RESTOREFH: void;
 case OP_SAVEFH: void;
 case OP_SECINFO: SECINFO4args opsecinfo;
 case OP_SETATTR: SETATTR4args opsetattr;
 case OP_SETCLIENTID: SETCLIENTID4args opsetclientid;
 case OP_VERIFY: VERIFY4args opverify;
 case OP_WRITE: WRITE4args opwrite;
 };

 struct op {
 opunion ops;
 };

 union resultdata switch (unsigned resop){
 case OP_NULL: void;
 case OP_ACCESS: ACCESS4res op;
 case OP_CLOSE: CLOSE4res opclose;
 case OP_COMMIT: COMMIT4res opcommit;
 case OP_GETATTR: GETATTR4res opgetattr;
 case OP_GETFH: GETFH4res opgetfh;
 case OP_LINK: LINK4res oplink;
 case OP_LOCK: LOCK4res oplock;
 case OP_LOCKT: LOCKT4res oplockt;

Expires: August 1999 [Page 124]

Draft Protocol Specification NFS version 4 February 1999

 case OP_LOCKU: LOCKU4res oplocku;
 case OP_LOOKUP: LOOKUP4res oplookup;
 case OP_LOOKUPP: LOOKUPP4res oplookupp;
 case OP_NVERIFY: NVERIFY4res opnverify;
 case OP_OPEN: OPEN4res opopen;
 case OP_PUTFH: PUTFH4res opputfh;
 case OP_PUTROOTFH: PUTROOTFH4res opputrootfh;
 case OP_READ: READ4res opread;
 case OP_READDIR: READDIR4res opreaddir;
 case OP_READLINK: READLINK4res opreadlink;
 case OP_REMOVE: REMOVE4res opremove;
 case OP_RENAME: RENAME4res oprename;
 case OP_RENEW: RENEW4res oprenew;
 case OP_RESTOREFH: RESTOREFH4res oprestorefh;
 case OP_SAVEFH: SAVEFH4res opsavefh;
 case OP_SECINFO: SECINFO4res opsecinfo;
 case OP_SETATTR: SETATTR4res opsetattr;
 case OP_SETCLIENTID: SETCLIENTID4res opsetclientid;
 case OP_VERIFY: VERIFY4res opverify;
 case OP_WRITE: WRITE4res opwrite;
 };

 struct COMPOUND4args {
 utf8string tag;
 op oplist<>;
 };

 struct COMPOUND4resok {
 utf8string tag;
 resultdata data<>;
 };

 union COMPOUND4res switch (nfsstat4 status){
 case NFS4_OK:
 COMPOUND4resok resok;
 default:
 void;
 };

 /*
 * Remote file service routines
 */
 program NFS4_PROGRAM {
 version NFS_V4 {
 void
 NFSPROC4_NULL(void) = 0;

Expires: August 1999 [Page 125]

Draft Protocol Specification NFS version 4 February 1999

 COMPOUND4res
 NFSPROC4_COMPOUND(COMPOUND4args) = 1;

 } = 4;
 } = 100003;

Expires: August 1999 [Page 126]

Draft Protocol Specification NFS version 4 February 1999

16. Bibliography

 [Gray]
 C. Gray, D. Cheriton, "Leases: An Efficient Fault-Tolerant Mechanism
 for Distributed File Cache Consistency," Proceedings of the Twelfth
 Symposium on Operating Systems Principles, p. 202-210, December 1989.

 [Juszczak]
 Juszczak, Chet, "Improving the Performance and Correctness of an NFS
 Server," USENIX Conference Proceedings, USENIX Association, Berkeley,
 CA, June 1990, pages 53-63. Describes reply cache implementation
 that avoids work in the server by handling duplicate requests. More
 important, though listed as a side-effect, the reply cache aids in
 the avoidance of destructive non-idempotent operation re-application
 -- improving correctness.

 [Kazar]
 Kazar, Michael Leon, "Synchronization and Caching Issues in the
 Andrew File System," USENIX Conference Proceedings, USENIX
 Association, Berkeley, CA, Dallas Winter 1988, pages 27-36. A
 description of the cache consistency scheme in AFS. Contrasted with
 other distributed file systems.

 [Macklem]
 Macklem, Rick, "Lessons Learned Tuning the 4.3BSD Reno Implementation
 of the NFS Protocol," Winter USENIX Conference Proceedings, USENIX
 Association, Berkeley, CA, January 1991. Describes performance work
 in tuning the 4.3BSD Reno NFS implementation. Describes performance
 improvement (reduced CPU loading) through elimination of data copies.

 [Mogul]
 Mogul, Jeffrey C., "A Recovery Protocol for Spritely NFS," USENIX
 File System Workshop Proceedings, Ann Arbor, MI, USENIX Association,
 Berkeley, CA, May 1992. Second paper on Spritely NFS proposes a
 lease-based scheme for recovering state of consistency protocol.

 [Nowicki]
 Nowicki, Bill, "Transport Issues in the Network File System," ACM
 SIGCOMM newsletter Computer Communication Review, April 1989. A
 brief description of the basis for the dynamic retransmission work.

Expires: August 1999 [Page 127]

Draft Protocol Specification NFS version 4 February 1999

 [Pawlowski]
 Pawlowski, Brian, Ron Hixon, Mark Stein, Joseph Tumminaro, "Network
 Computing in the UNIX and IBM Mainframe Environment," Uniforum `89
 Conf. Proc., (1989) Description of an NFS server implementation for
 IBM's MVS operating system.

 [RFC1094]
 Sun Microsystems, Inc., "NFS: Network File System Protocol
 Specification", RFC1094, March 1989.

http://www.ietf.org/rfc/rfc1094.txt

 [RFC1345]
 Simonsen, K., "Character Mnemonics & Character Sets", RFC1345,
 Rationel Almen Planlaegning, June 1992.

http://www.ietf.org/rfc/rfc1345.txt

 [RFC1813]
 Callaghan, B., Pawlowski, B., Staubach, P., "NFS Version 3 Protocol
 Specification", RFC1813, Sun Microsystems, Inc., June 1995.

http://www.ietf.org/rfc/rfc1813.txt

 [RFC1831]
 Srinivasan, R., "RPC: Remote Procedure Call Protocol Specification
 Version 2", RFC1831, Sun Microsystems, Inc., August 1995.

http://www.ietf.org/rfc/rfc1831.txt

 [RFC1832]
 Srinivasan, R., "XDR: External Data Representation Standard",

RFC1832, Sun Microsystems, Inc., August 1995.

http://www.ietf.org/rfc/rfc1832.txt

 [RFC1833]
 Srinivasan, R., "Binding Protocols for ONC RPC Version 2", RFC1833,
 Sun Microsystems, Inc., August 1995.

http://www.ietf.org/rfc/rfc1833.txt

https://datatracker.ietf.org/doc/html/rfc1094
http://www.ietf.org/rfc/rfc1094.txt
https://datatracker.ietf.org/doc/html/rfc1345
http://www.ietf.org/rfc/rfc1345.txt
https://datatracker.ietf.org/doc/html/rfc1813
http://www.ietf.org/rfc/rfc1813.txt
https://datatracker.ietf.org/doc/html/rfc1831
http://www.ietf.org/rfc/rfc1831.txt
https://datatracker.ietf.org/doc/html/rfc1832
http://www.ietf.org/rfc/rfc1832.txt
https://datatracker.ietf.org/doc/html/rfc1833
http://www.ietf.org/rfc/rfc1833.txt

Expires: August 1999 [Page 128]

Draft Protocol Specification NFS version 4 February 1999

 [RFC2054]
 Callaghan, B., "WebNFS Client Specification", RFC2054, Sun
 Microsystems, Inc., October 1996

http://www.ietf.org/rfc/rfc2054.txt

 [RFC2055]
 Callaghan, B., "WebNFS Server Specification", RFC2054, Sun
 Microsystems, Inc., October 1996

http://www.ietf.org/rfc/rfc2055.txt

 [RFC2078]
 Linn, J., "Generic Security Service Application Program Interface,
 Version 2", RFC2078, OpenVision Technologies, January 1997.

http://www.ietf.org/rfc/rfc2078.txt

 [RFC2152]
 Goldsmith, D., "UTF-7 A Mail-Safe Transformation Format of Unicode",

RFC2152, Apple Computer, Inc., May 1997

http://www.ietf.org/rfc/rfc2152.txt

 [RFC2203]
 Eisler, M., Chiu, A., Ling, L., "RPCSEC_GSS Protocol Specification",

RFC2203, Sun Microsystems, Inc., August 1995.

http://www.ietf.org/rfc/rfc2203.txt

 [RFC2279]
 Yergeau, F., "UTF-8, a transformation format of ISO 10646", RFC2279,
 Alis Technologies, January 1998.

http://www.ietf.org/rfc/rfc2279.txt

 [Sandberg]
 Sandberg, R., D. Goldberg, S. Kleiman, D. Walsh, B. Lyon, "Design
 and Implementation of the Sun Network Filesystem," USENIX Conference
 Proceedings, USENIX Association, Berkeley, CA, Summer 1985. The
 basic paper describing the SunOS implementation of the NFS version 2
 protocol, and discusses the goals, protocol specification and trade-

https://datatracker.ietf.org/doc/html/rfc2054
http://www.ietf.org/rfc/rfc2054.txt
https://datatracker.ietf.org/doc/html/rfc2054
http://www.ietf.org/rfc/rfc2055.txt
https://datatracker.ietf.org/doc/html/rfc2078
http://www.ietf.org/rfc/rfc2078.txt
https://datatracker.ietf.org/doc/html/rfc2152
http://www.ietf.org/rfc/rfc2152.txt
https://datatracker.ietf.org/doc/html/rfc2203
http://www.ietf.org/rfc/rfc2203.txt
https://datatracker.ietf.org/doc/html/rfc2279
http://www.ietf.org/rfc/rfc2279.txt

Expires: August 1999 [Page 129]

Draft Protocol Specification NFS version 4 February 1999

 offs.

 [SPNEGO]
 Baize, E., Pinkas, D., "The Simple and Protected GSS-API Negotiation
 Mechanism", draft-ietf-cat-snego-09.txt, Bull, April 1998.

ftp://ftp.isi.edu/internet-drafts/draft-ietf-cat-snego-09.txt

 [Srinivasan]
 Srinivasan, V., Jeffrey C. Mogul, "Spritely NFS: Implementation and
 Performance of Cache Consistency Protocols", WRL Research Report
 89/5, Digital Equipment Corporation Western Research Laboratory, 100
 Hamilton Ave., Palo Alto, CA, 94301, May 1989. This paper analyzes
 the effect of applying a Sprite-like consistency protocol applied to
 standard NFS. The issues of recovery in a stateful environment are
 covered in [Mogul].

 [Unicode1]
 "Unicode Technical Report #8 - The Unicode Standard, Version 2.1",
 Unicode, Inc., The Unicode Consortium, P.O. Box 700519, San Jose, CA
 95710-0519 USA, September 1998

http://www.unicode.org/unicode/reports/tr8.html

 [Unicode2]
 "Unsupported Scripts" Unicode, Inc., The Unicode Consortium, P.O. Box
 700519, San Jose, CA 95710-0519 USA, October 1998

http://www.unicode.org/unicode/standard/unsupported.html

 [XNFS]
 The Open Group, Protocols for Interworking: XNFS, Version 3W, The
 Open Group, 1010 El Camino Real Suite 380, Menlo Park, CA 94025, ISBN
 1-85912-184-5, February 1998.

 HTML version available: http://www.opengroup.org

https://datatracker.ietf.org/doc/html/draft-ietf-cat-snego-09.txt
ftp://ftp.isi.edu/internet-drafts/draft-ietf-cat-snego-09.txt
http://www.unicode.org/unicode/reports/tr8.html
http://www.unicode.org/unicode/standard/unsupported.html
http://www.opengroup.org

Expires: August 1999 [Page 130]

Draft Protocol Specification NFS version 4 February 1999

17. Authors and Contributors

 General feedback related to this document should be directed to:

 nfsv4-wg@sunroof.eng.sun.com

 or the editor.

17.1. Contributors

 The following individuals have contributed to the document:

 Carl Beame, beame@bws.com, of Hummingbird Communications Ltd.

17.2. Editor's Address

 Spencer Shepler
 Sun Microsystems, Inc.
 7808 Moonflower Drive
 Austin, Texas 78750

 Phone: +1 512-349-9376
 E-mail: shepler@eng.sun.com

17.3. Authors' Addresses

 Brent Callaghan
 Sun Microsystems, Inc.
 901 San Antonio Road
 Palo Alto, CA 94303

 Phone: +1 650-786-5067
 E-mail: brent.callaghan@eng.sun.com

 Mike Eisler
 Sun Microsystems, Inc.
 5565 Wilson Road
 Colorado Springs, CO 80919

 Phone: +1 719-599-9026
 E-mail: mre@eng.sun.com

 David Robinson
 Sun Microsystems, Inc.
 901 San Antonio Road
 Palo Alto, CA 94303

Expires: August 1999 [Page 131]

Draft Protocol Specification NFS version 4 February 1999

 Phone: +1 650-786-5088
 E-mail: david.robinson@eng.sun.com

 Robert Thurlow
 Sun Microsystems, Inc.
 901 San Antonio Road
 Palo Alto, CA 94303

 Phone: +1 650-786-5096
 E-mail: robert.thurlow@eng.sun.com

Expires: August 1999 [Page 132]

Draft Protocol Specification NFS version 4 February 1999

18. Full Copyright Statement

 "Copyright (C) The Internet Society (1999). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implmentation may be prepared, copied, published and
 distributed, in whole or in part, without restriction of any kind,
 provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE."

Expires: August 1999 [Page 133]

