
Workgroup: QUIC

Internet-Draft: draft-shi-quic-dtp-05

Published: 25 January 2022

Intended Status: Informational

Expires: 29 July 2022

Authors: Y. Cui

Tsinghua University

Z. Liu

Tsinghua University

J. Zhang

Tsinghua University

H. Shi

Tsinghua University

K. Zheng

Huawei

W. Wang

Huawei

Deadline-aware Transport Protocol

Abstract

This document defines Deadline-aware Transport Protocol (DTP) to

provide block-based deliver-before-deadline transmission. The

intention of this memo is to describe a mechanism to fulfill

unreliable transmission based on QUIC as well as how to enhance

timeliness of data delivery.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 29 July 2022.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

1.1. Conventions

2. Motivation

3. Design of DTP

3.1. Abstraction

3.2. Architecture of DTP

3.3. Deadline-aware Scheduler

3.4. Deadline-aware Redundancy

3.5. Loss Detection and Congestion Control

4. Extension of QUIC

4.1. New Frame: BLOCK_INFO Frame

4.2. Adjusted QUIC Frame: Timestamped ACK Frame

4.3. Redundancy Packet

5. DTP Use Cases

5.1. Block Based Real Time Application

5.2. API of DTP

5.2.1. Data Transmission Functions

5.2.2. Feedback Functions

6. IANA Considerations

7. Security Considerations

8. Normative References

Authors' Addresses

1. Introduction

Many emerging applications have the deadline requirement for their

data transmission. However, current transport layer protocol like

TCP [RFC0793] and UDP [RFC0768] only provide primitive connection

establishment and data sending service. This document proposes a new

transport protocol atop QUIC [QUIC] to deliver application data

before end-to-end deadline.

1.1. Conventions

The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD,

SHOULD NOT, RECOMMENDED, NOT RECOMMENDED, MAY, and OPTIONAL, when

they appear in this document, are to be interpreted as described in

[RFC2119].

2. Motivation

Many applications such as real-time media and online multiplayer

gaming have requirements for their data to arrive before a certain

time i.e., deadline. For example, the end-to-end delay of video

¶

¶

¶

conferencing system should be below human perception (about 100ms)

to enable smooth interaction among participants. For Online

multiplayer gaming, the server aggregates each player's actions

every 60ms and distributes these information to other players so

that each player's state can be kept in sync. Data missing the

deadline is useless since it will be overwrote by the new data.

These real-time applications have following common features:

They tend to generate and process the data in block fashion. Each

block is a minimal data processing unit. Missing a single byte of

data will make the block useless. For example, video/audio

encoder produces the encoded streams as a series of block(I,B,P

frame or GOP). Decoder consumes the frame into the full image.

For online games, the player's commands and world state will be

bundled together as a message.

They will continuously generate new data. Different from web

browsing or file syncing, real-time applications like video

conferencing and online multiplayer gaming have uninterruptedly

interactions with users, and each interaction requires a bunch of

new data to be transmitted.

They prefer the timeliness of data instead of reliability since

data missing deadline are useless to application and will be

obsoleted by newer data. For example in multiplayer online games,

the gaming server will broadcast the latest player states to

every client, and the old information does not matter if it can

not be delivered in time. So the meaningful deadline of the

application is actually the block completion time i.e., the time

between when the block is generated at sender and when the block

is submitted to application at receiver.

However, current transport layer protocols lack support for block-

based deadline delivery. TCP guarantees reliability so it will waste

network resource to transmit stale data and cause fresh data to miss

its deadline. UDP is unreliable but it doesn't drop data according

to deadline, all data have the same chance to be dropped indeed.

QUIC makes several improvements and introduces Stream Prioritization

[QUIC] to enhance application performance, but prioritization is not

enough for enhancing timeliness.

Insufficiency of existing transport layer forces applications to

design their own customized and complex mechanism to meet the

deadline requirement. For example, the video bitrate auto-adjustment

in most streaming applications. But this is a disruption to the

Layered Internet Architecture, forcing applications to worry about

network conditions.

¶

¶

*

¶

*

¶

*

¶

¶

¶

This document proposes Deadline-aware Transport Protocol (DTP) to

provide deliver-before-deadline transmission. DTP is implemented as

an extension of QUIC (Refer to [Section 4]) because QUIC provides

many useful features including full encryption, user space

deployment, zero-RTT handshake and multiplexing without head-of-line

blocking.

3. Design of DTP

The key insight of DTP is that these real-time applications usually

have multiple blocks (As shown in Figure 1 below) to be transferred

simultaneously and these blocks have diverse impact on user

experience(denoted as priority). For example, audio data is more

important than video stream in video conferencing. Central region is

more important than surrounding region in 360 degree video.

Foreground object rendering is more important than the background

scene in mobile VR offloading.

The priority difference among multiple blocks makes it possible to

drop low priority data to improve timeliness of high priority data

delivery, which can enhance the overall QoE if resources allocated

to blocks are correctly prioritized. In this section, we describe

the mechanism which enables DTP to leverage that insight.

3.1. Abstraction

DTP provides block-based data abstraction for application.

Application MUST attach metadata along with the data block to

facilitate the scheduling decision, those metadata include:

Each block has a deadline requirement, meaning if the block

cannot arrive before the deadline, then the whole block may

become useless because it will be overwrote by newer blocks. The

application can mark the deadline timestamp indicating the

deadline of its completion time. In the API of DTP, the deadline

argument represents the desired block completion time in ms.

Each block has its own importance to the user experience. The

application can assign each block a priority to indicate the

importance of the block. The lower the priority value, the more

important the block. The priority argument also indicates the

reliability requirement of the block. The higher priority, the

less likely the block will be dropped by sender.

3.2. Architecture of DTP

The sender side architecture is shown in Figure 1:

¶

¶

¶

¶

*

¶

*

¶

¶

In receiver side, the transport layer will receive data and

reassemble the block. The process is symmetric with the sender side.

It first goes through packet parsing and redundancy processing

module. Transport layer also keeps track of the deadline of each

block. When receiver calls RECV function (Refer to [Section 5]), the

 +-------------+

 | |

 | Application |

 | |

 +-------------+

 |

 |

 V

 +--+

 | Block 0 Block 1 Block n |

 | +--------+----------+ +--------+----------+ +--------+----------+ |

 | |Metadata|Data Block| |Metadata|Data Block| ... |Metadata|Data Block| |

 | +--------+----------+ +--------+----------+ +--------+----------+ |

 | |

 | (Metadata includes Deadline and Priority) |

 +--+

 |

 |

 v

 +-------------+

 | |

 | Scheduler |

 | |

 +-------------+

 |

 |

 v

 +-------------+

 | |

 | Redundancy |

 | |

 +-------------+

 |

 |

 v

 +-------------+

 | |

 | Congestion |

 | Control |

 +-------------+

 |

 v

 Figure 1: The Architecture of DTP

¶

transport layer returns the received in-ordered data to the

application.

3.3. Deadline-aware Scheduler

The scheduler will pick the blocks to send and drop stale blocks

when the buffer is limited. This section describes the algorithm of

DTP scheduler.

Scheduler of DTP takes into account many factors when picking blocks

in sender buffer to send. The goal of the scheduler is to deliver as

much as high priority data before the deadline and drop obsolete or

low-priority blocks. To achieve this, the scheduler utilizes both

bandwidth and RTT measurement provided by the congestion control

module and the metadata of blocks provided by the application to

estimate the block completion time. The scheduler will run each time

ACK is received or the application pushes the data.

A simple algorithm which only considers priority cannot get optimal

result in transmitting deadline-required data. Suppose the bandwidth

reduces and the scheduler chooses not to send the low priority

block. Then the bandwidth is restored. The data block with lower

priority is closer to the deadline than the high priority block. If

in this round the scheduler still chooses to send the high priority

block, then the low priority block may miss the deadline next round

and become useless. In some cases, the scheduler can choose to send

a low priority block because it's more urgent. But it should do so

without causing the high priority stream missing the deadline. This

example reveals a fundamental conflict between the application

specified priority and deadline implicated priority. DTP needs to

take both priorities into consideration when scheduling blocks.

DTP will combine all these factors to calculate real priority of

each block. Then the scheduler just picks the block with the highest

real priority. Scheduler of DTP will calculate the block remaining

transmission time and then compare it to the deadline. The closer to

the deadline, the higher real priority. And higher application

specified priority will also result in higher real priority. In this

way, the scheduler can take both approaching deadline and

application-specified priority into account. Blocks which are

severely overdue can be dropped accordingly.

3.4. Deadline-aware Redundancy

After the scheduler pick the block to send, the packetizer will

break the block into packet streams. Those packet streams will go

through the redundancy module. When the link is lossy and deadline

is tight, retransmission will cause the block missing the deadline.

Redundancy module has the ability of sending redundancy (like FEC

¶

¶

¶

¶

¶

Repair Symbols) along with the data that will help to recover the

data packets (like FEC Source Symbols), this can avoid

retransmission.

We use unencrypted DTP packets as input to Redundancy Module because

the loss of a DTP packet exactly corresponds to the loss of one

Redundancy Packet. And to perform the coding and decoding with

packets of different sizes, some packets may need to be padded with

PADDING Frame. The present design of Redundancy Module follows the

FEC Framework specified in [arXiv:1809.04822]. Figure 2 illustrates

this framework:

Figure 2 above shows the mechanism of how the Deadline-aware

Redundancy module works. (1) Redundancy Module first receives the

unencrypted DTP packets from scheduler. (2) The Redundancy Scheme

use DTP Payload (similar to FEC Repair Symbols) to generate

Redundancy Data (similar to FEC Source Symbols). (3) Redundancy-

protected DTP Packets and Redundancy Data will be packtized and

grouped. Redundancy Packtizing and Grouping Part will generate FEC

Payload INFO (Figure 5) and attach it to the DTP Packets and

Redundancy Data, generating Redundancy Packets (a Redundancy Packet

¶

¶

 |

 |

 v

 +-------------+

 | |

 | DTP |

 | Scheduler |

 | |

 +------+------+

 |

 (1)|DTP Packets

+----------|---+

| v |

| +-------+------+ +------------+ |

| | | (2)DTP Payload | | | DTP

| | Redundancy |------------------> | Redundancy | | Redundancy

| | Packtizing &|<------------------ | Scheme | | Module

| | Grouping | (2)Redundancy Data | | |

| +-------+------+ +------------+ |

| | |

+----------|---+

 (3)|Redundancy

 |Packets

 |

 v

 Figure 2: DTP Redundancy Module

¶

with the header shown in Figure 5). Once the protocol receives the

Repair Symbols, they are sent to the receiver through the FEC

Packets. At the receiver-side, the received Redundancy Packets can

be processed immediately. The Redundancy Data is reconstituted from

the Redundancy Packtizing and Grouping and passed to the underlying

Redundancy Scheme to recover the lost DTP Packets.

Although Redundancy Module allows recovering lost packets without

waiting for retransmissions, it consumes more bandwidth than a

regular, non-Redundancy-protected transmission. In order to avoid

spending additional bandwidth when it is not needed, design of

Redundancy MUST allow defining which DTP packets should be

considered as Redundancy Packets. Currently we use a F flag from DTP

Packet Header to indicate whether a packet is Redundancy-protected

or not. The format of header will be described in [Section 4.3]

later.

The Redundancy Data generated in Redundancy module MUST be

distinguished from application data payload. Redundancy Data should

not be transferred to the application upon reception, they are

indeed generated by and for the Redundancy Scheme used by the

transport protocol. We use Redundancy Packet to transmit Redundancy

Data [Section 4.3].

There are multiple Redundancy Scheme candidates. During the

handshake process, a scheme will be negotiated for the DTP session,

just like encryption scheme negotiation. Currently DTP specifically

chooses Reed-Solomon FEC Scheme as described in [arXiv:1809.04822].

3.5. Loss Detection and Congestion Control

This document reuses the congestion control module defined in QUIC

[QUIC]. Congestion control module is responsible to send packets,

collects ACK and do packet loss detection. Then it will put the lost

data back to the retransmission queue of each block. Congestion

control module is also responsible to monitor the network status and

report the network condition such as bandwidth and RTT to scheduler.

4. Extension of QUIC

DTP is implemented as an extension of QUIC by mapping QUIC stream to

DTP block one to one. In that way, DTP can reuse the QUIC stream

cancellation mechanism to drop the stale block during transmission.

And DTP can also utilize the max stream data size defined by QUIC to

negotiate its max block size. Besides, the block id of DTP can also

be mapped to QUIC stream id without breaking the QUIC stream id

semantic.

DTP endpoints communicate by exchanging packets. And the payload of

DTP packets, consists of a sequence of complete frames. As defined

¶

¶

¶

¶

¶

¶

in [QUIC], each frame begins with a Frame Type, indicating its type,

followed by additional type-dependent fields. Besides the many frame

types defined in Section 12.4 of [QUIC], DTP introduces BLOCK_INFO

Frame to support timeliness data transmission. And DTP also makes

adjustment on QUIC ACK Frame. Another extension is introducing FEC

packet to support FEC.

4.1. New Frame: BLOCK_INFO Frame

DTP adds a BLOCK_INFO frame (type=0x20) in the front of each block

to inform scheduler of Block Size, Block Priority and Block

Deadline. These parameters can be used to do block scheduling. The

BLOCK_INFO frame is as follows:

Stream ID: A variable-length integer indicating the stream ID of

the stream.

Block Size: A variable-length integer indicating the size of the

block.

Block Priority: A variable-length integer indicating the priority

of the block.

Block Deadline: A variable-length integer indicating the required

transimission deadline.

4.2. Adjusted QUIC Frame: Timestamped ACK Frame

DTP add a new Time Stamp Parameter to QUIC ACK Frame. Timestamped

ACK frames are sent by reveiver to inform senders of the time when

the packet the peer is acknowledging is received and processed. ACK

mechanism of DTP is almost the same with QUIC. The format of the

Timestamped ACK frames is similar to that of the standard ACK Frames

defined in section 19.3 of [QUIC]:

¶

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | Stream ID (i) ...

 +-+

 | Block Size (i) ...

 +-+

 | Block Priority (i) ...

 +-+

 | Block Deadline (i) ...

 +-+

 Figure 3: BLOCK_INFO Frame Format

¶

*

¶

*

¶

*

¶

*

¶

¶

Using this time stamp parameter we can calculate whether the prior

blocks transmitted missing deadline or not, and we can also

calculate the block completion rate before deadline.

4.3. Redundancy Packet

We use a F Flags in DTP Packet to distinguish which DTP packets is

Redundancy-protected or not. Figure 5 shows the Redundancy Packet

Format. If the flag is set, the Redundancy Group ID, m, n, index

field is appended to the header. They are used by the Redundancy

Scheme(Forward-Error-Correction) to identify the redundancy-

protected data and communicate information about the encoding and

decoding procedures to the receiver-side Redundancy Scheme.

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | Largest Acknowledged (i) ...

 +-+

 | Time Stamp (i) ...

 +-+

 | ACK Delay (i) ...

 +-+

 | ACK Range Count (i) ...

 +-+

 | First ACK Range (i) ...

 +-+

 | ACK Ranges (i) ...

 +-+

 | [ECN Counts] ...

 +-+

 Figure 4: Timestamped ACK Frame Format

¶

¶

¶

F: A flag indicating whether this DTP packets is FEC-protected or

not.

Redundancy Group ID: A variable-length integer indicating the id

of the redundancy group which the packet belongs to.

m: A variable-length integer indicating the number of original

packets of the redundancy group.

n: A variable-length integer indicating the number of redundancy

packets of the redundancy group.

index: A variable-length integer indicating the location of the

packet inside the redundancy group.

Payload: The payload of the Redundancy Packet, containing DTP

Payload or Redundancy Data.

5. DTP Use Cases

5.1. Block Based Real Time Application

DTP can provide deliver-before-deadline service for Block Based Real

Time Applications. Applications like real-time media and online

multiplayer gaming have deadline requirements for their data

transimission. These application also tend to generate and process

the data in block fashion, for example, video/audio encoder produces

the encoded streams as a series of block (I,B,P frame or GOP). And

these real-time applications usually have multiple blocks (As shown

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+-+-+-+-+-+-+-+

 |F| Flags(7) |

 +-+

 ...

 +-+

 | Redundancy Group ID (i)(if F set) ...

 +-+

 | m (i)(if F set) ...

 +-+

 | n (i)(if F set) ...

 +-+

 | index (i)(if F set) ...

 +-+

 | Payload (i) ...

 +-+

 Figure 5: Redundancy Packet Format

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

in Figure 1) to be transferred simultaneously. DTP can optimize the

data transmission of these applications by scheduling which block to

be sent first. And Redundancy Module of DTP can reduce

retransmission delay.

5.2. API of DTP

DTP extends the send socket API to let application attach metadata

along with the data block, and the API of DTP is structured as

follows:

5.2.1. Data Transmission Functions

Send

Format: SEND(connection id, buffer address, byte count, block id,

block deadline, block priority) -> byte count

The return value of SEND is the continuous bytes count which is

successfully written. If the transport layer buffer is limited or

the flow control limit of the block is reached, application needs

to call SEND again.

Mandatory attributes:

connection id - local connection name of an indicated

connection.

buffer address - the location where the block to be

transmitted is stored.

byte count - the size of the block data in number of bytes.

block id - the identity of the block.

block deadline - deadline of the block.

block priority - priority of the block.

Update

Format: UPDATE(connection id, block id, block deadline, block

priority) -> result

The UPDATE function is used to update the metadata of the block.

The return value of UPDATE function indicates the success of the

action. It will return success code if succeeds, and error code

if fails.

¶

¶

¶

¶

¶

¶

-

¶

-

¶

- ¶

- ¶

- ¶

- ¶

¶

¶

¶

Mandatory attributes:

connection id - local connection name of an indicated

connection.

block id - the identity of the block.

block deadline - new deadline of the block.

block priority - new priority of the block.

Retreat

Format: RETREAT(connection id, block id) -> result

The RETREAT function is used to cancel the block. The return

value of RETREAT function indicates the success of the action. It

will return success code if succeeds, and error code if fails.

Mandatory attributes:

connection id - local connection name of an indicated

connection.

block id - the identity of the block.

Receive

Format: RECV(connection id, buffer address, byte count, [,block

id]) -> byte count, fin flag, [,block id]

The RECV function shall read the first block in-queue into the

buffer specified, if there is one available. The return value of

RECV is the number of continuous bytes which is successfully

read, and fin flag to indicate the ending of the block. If the

block is cancelled, the RECV function will return error code

BLOCK_CANCELLED. It will also returns the block id on which it

receives if application does not specify it.

If the block size specified in the RECV function is smaller than

the size of the receiving block, then the block will be partial

copied(indicated by the fin flag). Next time RECV function is

called, the remaining block will be copied, and the id will be

the same. This fragmentation will give extra burden to

applications. To avoid the fragmentation, sender and receiver can

negotiate a max block size when handshaking.

¶

-

¶

- ¶

- ¶

- ¶

¶

¶

¶

¶

-

¶

- ¶

¶

¶

¶

¶

Mandatory attributes:

connection id - local connection name of an indicated

connection.

buffer address - the location where the block received is

stored.

byte count - the size of the block data in number of bytes.

Optional attributes:

block id - to indicate which block to receive the data on.

5.2.2. Feedback Functions

on_dropped

Format: ON_DROPPED(connection id) -> block id, deadline,

priority, goodbytes

The ON_DROPPED function is called when a block is dropped. The

metadata of the dropped block such as block id, deadline,

priority is attached. The number of bytes delivered before its

deadline(goodbytes) is returned.

Mandatory attributes:

connection id - local connection name of an indicated

connection.

on_delivered

Format: ON_DELIVERED(connection id) -> block id, deadline,

priority, delta, goodbytes

The ON_DELIVERED function is called when a block is delivered.

The metadata of the delivered block such as block id, deadline,

priority is attached. The number of bytes delivered before its

deadline (goodbytes) and the difference between the block

completion time and the deadline (delta) are returned.

Mandatory attributes:

connection id - local connection name of an indicated

connection.

All these functions mentioned above are running in asynchronous

mode. An application can use various event driven framework to call

those functions.

¶

-

¶

-

¶

- ¶

¶

- ¶

¶

¶

¶

¶

-

¶

¶

¶

¶

¶

-

¶

¶

[arXiv_1809.04822]

[QUIC]

[QUIC-TLS]

[RFC0768]

[RFC0793]

[RFC2119]

6. IANA Considerations

This document has no actions for IANA.

7. Security Considerations

See the security considerations in [QUIC] and [QUIC-TLS]; the block-

based data of DTP shares the same security properties as the data

transmitted within a QUIC connection

8. Normative References

Michel, F., Coninck, Q., and O. Bonaventure,

"Adding Forward Erasure Correction to QUIC", 13 September

2018, <https://arxiv.xilesou.top/pdf/1809.04822.pdf>.

Iyengar, J., Ed. and M. Thomson, Ed., "QUIC: A UDP-Based

Multiplexed and Secure Transport", RFC 9000, DOI

10.17487/RFC9000, May 2021, <https://www.rfc-editor.org/

info/rfc9000>.

Thomson, M., Ed. and S. Turner, Ed., "Using TLS to Secure

QUIC", RFC 9001, DOI 10.17487/RFC9001, May 2021,

<https://www.rfc-editor.org/info/rfc9001>.

Postel, J., "User Datagram Protocol", STD 6, RFC 768, DOI

10.17487/RFC0768, August 1980, <https://www.rfc-

editor.org/info/rfc768>.

Postel, J., "Transmission Control Protocol", STD 7, RFC

793, DOI 10.17487/RFC0793, September 1981, <https://

www.rfc-editor.org/info/rfc793>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Authors' Addresses

Yong Cui

Tsinghua University

30 Shuangqing Rd

Beijing

China

Email: cuiyong@tsinghua.edu.cn

Zhiwen Liu

Tsinghua University

¶

¶

https://arxiv.xilesou.top/pdf/1809.04822.pdf
https://www.rfc-editor.org/info/rfc9000
https://www.rfc-editor.org/info/rfc9000
https://www.rfc-editor.org/info/rfc9001
https://www.rfc-editor.org/info/rfc768
https://www.rfc-editor.org/info/rfc768
https://www.rfc-editor.org/info/rfc793
https://www.rfc-editor.org/info/rfc793
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
mailto:cuiyong@tsinghua.edu.cn

30 Shuangqing Rd

Beijing

China

Email: liu-zw20@mails.tsinghua.edu.cn

Jie Zhang

Tsinghua University

30 Shuangqing Rd

Beijing

China

Email: zhangjie19@mails.tsinghua.edu.cn

Hang Shi

Tsinghua University

30 Shuangqing Rd

Beijing

China

Email: shi-h15@mails.tsinghua.edu.cn

Kai Zheng

Huawei

Email: kai.zheng@huawei.com

Wei Wang

Huawei

Email: wangwei375@huawei.com

mailto:liu-zw20@mails.tsinghua.edu.cn
mailto:zhangjie19@mails.tsinghua.edu.cn
mailto:shi-h15@mails.tsinghua.edu.cn
mailto:kai.zheng@huawei.com
mailto:wangwei375@huawei.com

	Deadline-aware Transport Protocol
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Conventions

	2. Motivation
	3. Design of DTP
	3.1. Abstraction
	3.2. Architecture of DTP
	3.3. Deadline-aware Scheduler
	3.4. Deadline-aware Redundancy
	3.5. Loss Detection and Congestion Control

	4. Extension of QUIC
	4.1. New Frame: BLOCK_INFO Frame
	4.2. Adjusted QUIC Frame: Timestamped ACK Frame
	4.3. Redundancy Packet

	5. DTP Use Cases
	5.1. Block Based Real Time Application
	5.2. API of DTP
	5.2.1. Data Transmission Functions
	5.2.2. Feedback Functions

	6. IANA Considerations
	7. Security Considerations
	8. Normative References
	Authors' Addresses

