
Workgroup: QUIC

Internet-Draft: draft-shi-quic-dtp-09

Published: 28 January 2024

Intended Status: Informational

Expires: 31 July 2024

Authors: Y. Cui

Tsinghua University

C. Ma

Tsinghua University

H. Shi

Huawei

K. Zheng

Huawei

W. Wang

Huawei

Deadline-aware Transport Protocol

Abstract

This document defines Deadline-aware Transport Protocol (DTP) to

provide block-based deliver-before-deadline transmission. The

intention of this memo is to describe a mechanism to fulfill

unreliable transmission based on QUIC as well as how to enhance

timeliness of data delivery.

About This Document

This note is to be removed before publishing as an RFC.

Status information for this document may be found at https://

datatracker.ietf.org/doc/draft-shi-quic-dtp/.

Source for this draft and an issue tracker can be found at https://

github.com/STAR-Tsinghua/DTP-draft.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 31 July 2024.

¶

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/doc/draft-shi-quic-dtp/
https://datatracker.ietf.org/doc/draft-shi-quic-dtp/
https://github.com/STAR-Tsinghua/DTP-draft
https://github.com/STAR-Tsinghua/DTP-draft
https://datatracker.ietf.org/drafts/current/

Copyright Notice

Copyright (c) 2024 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

1.1. Conventions and Definitions

2. Motivation

3. Design of DTP

3.1. Abstraction

3.2. Architecture of DTP

3.3. Deadline-aware Scheduler

3.3.1. Block dropping mechanism

3.4. Deadline-aware Redundancy

3.5. Loss Detection and Congestion Control

4. Extension of QUIC

4.1. New Frame: BLOCK_INFO Frame

4.2. New Frame: Timestamped ACK Frame

4.3. New Packet: Redundancy Packet

5. DTP Use Cases

5.1. Block Based Real Time Application

5.2. API of DTP

5.2.1. Data Transmission Functions

5.2.2. Feedback Functions

5.3. Collaborate with upper layer protocols

6. Design Considerations

6.1. Clock Synchronization

6.2. Block Dependency

6.3. Automatic Block Info

7. Security Considerations

8. IANA Considerations

9. Normative References

Acknowledgments

Authors' Addresses

¶

¶

https://trustee.ietf.org/license-info

1. Introduction

Many emerging applications have the deadline requirement for their

data transmission. However, current transport layer protocols like

TCP [RFC0793] and UDP [RFC0768] only provide primitive connection

establishment and data-sending service. This document proposes a new

transport protocol atop QUIC [QUIC] to deliver application data

before end-to-end deadline.

1.1. Conventions and Definitions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

2. Motivation

Many applications such as real-time media and online multiplayer

gaming have requirements for their data to arrive before a certain

time i.e., deadline. For example, the end-to-end delay of video

conferencing system should be below human perception (about 100ms)

to enable smooth interaction among participants. For Online

multiplayer gaming, the server aggregates each player's actions

every 60ms and distributes these information to other players so

that each player's state can be kept in sync. Data missing the

deadline is useless since it will be overwrote by the new data.

These real-time applications have following common features:

They tend to generate and process the data in block fashion. Each

block is a minimal data processing unit. Missing a single byte of

data will make the block useless. For example, video/audio

encoder produces the encoded streams as a series of block(I,B,P

frame or GOP). Decoder consumes the frame into the full image.

For online games, the player's commands and world state will be

bundled together as a message.

They will continuously generate new data. Different from web

browsing or file syncing, real-time applications like video

conferencing and online multiplayer gaming have uninterruptedly

interactions with users, and each interaction requires a bunch of

new data to be transmitted.

They prefer the timeliness of data instead of reliability since

data missing deadline are useless to application and will be

obsoleted by newer data. For example in multiplayer online games,

the gaming server will broadcast the latest player states to

every client, and the old information does not matter if it can

¶

¶

¶

¶

*

¶

*

¶

*

not be delivered in time. So the meaningful deadline of the

application is actually the block completion time i.e., the time

between when the block is generated at sender and when the block

is submitted to application at receiver.

However, current transport layer protocols lack support for block-

based deadline delivery. TCP guarantees reliability so it will waste

network resource to transmit stale data and cause fresh data to miss

its deadline. UDP is unreliable but it doesn't drop data according

to deadline, all data have the same chance to be dropped indeed.

QUIC makes several improvements and introduces Stream Prioritization

[QUIC] to enhance application performance, but prioritization is not

enough for enhancing timeliness.

Insufficiency of existing transport layer forces applications to

design their own customized and complex mechanism to meet the

deadline requirement. For example, the video bitrate auto-adjustment

in most streaming applications. But this is a disruption to the

Layered Internet Architecture, forcing applications to worry about

network conditions.

This document proposes Deadline-aware Transport Protocol (DTP) to

provide deliver-before-deadline transmission. DTP is implemented as

an extension of QUIC (Refer to Section 4) because QUIC provides many

useful features including full encryption, user space deployment,

zero-RTT handshake and multiplexing without head-of-line blocking.

3. Design of DTP

The key insight of DTP is that these real-time applications usually

have multiple blocks (As shown in Figure 1 below) to be transferred

simultaneously and these blocks have diverse impact on user

experience(denoted as priority). For example, audio data is more

important than video stream in video conferencing. Central region is

more important than surrounding region in 360 degree video.

Foreground object rendering is more important than the background

scene in mobile VR offloading.

The priority difference among multiple blocks makes it possible to

drop low priority data to improve timeliness of high priority data

delivery, which can enhance the overall QoE if resources allocated

to blocks are correctly prioritized. In this section, we describe

the mechanism which enables DTP to leverage that insight.

3.1. Abstraction

DTP provides block-based data abstraction for application. A 'block'

is a piece of continuous data. A partial delivered block is useless

for applications, and each block can be independently processed.

¶

¶

¶

¶

¶

¶

Application MUST attach metadata along with the data block to

facilitate the scheduling decision, those metadata include:

Each block has a deadline requirement, meaning if the block

cannot arrive before the deadline, then the whole block may

become useless because it will be overwrote by newer blocks. The

application can mark the deadline timestamp indicating the

deadline of its completion time. In the API of DTP, the deadline

argument represents the desired block completion time in ms.

Each block has its own importance to the user experience. The

application can assign each block a priority to indicate the

importance of the block. The lower the priority value, the more

important the block. The priority argument also indicates the

reliability requirement of the block. The higher priority, the

less likely the block will be dropped by sender.

The sender can actively drop any block. DTP SHOULD transmit every

undropped block reliably.

3.2. Architecture of DTP

The sender side architecture is shown in Figure 1:

¶

*

¶

*

¶

¶

¶

Figure 1: The Architecture of DTP

 +-------------+

 | |

 | Application |

 | |

 +-------------+

 |

 |

 V

 +--+

 | Block 0 Block 1 Block n |

 | +--------+----------+ +--------+----------+ +--------+----------+ |

 | |Metadata|Data Block| |Metadata|Data Block| ... |Metadata|Data Block| |

 | +--------+----------+ +--------+----------+ +--------+----------+ |

 | |

 | (Metadata includes Deadline and Priority) |

 +--+

 |

 |

 v

 +-------------+

 | |

 | Scheduler |

 | |

 +-------------+

 |

 |

 v

 +-------------+

 | |

 | Redundancy |

 | |

 +-------------+

 |

 |

 v

 +-------------+

 | |

 | Congestion |

 | Control |

 +-------------+

 |

 v

3.3. Deadline-aware Scheduler

The scheduler will pick the blocks to send and drop stale blocks

when the buffer is limited. This section describes the algorithm of

DTP scheduler.

Scheduler of DTP takes into account many factors when picking blocks

in sender buffer to send. The goal of the scheduler is to deliver as

much as high priority data before the deadline and drop obsolete or

low-priority blocks. To achieve this, the scheduler utilizes both

bandwidth and RTT measurement provided by the congestion control

module and the metadata of blocks provided by the application to

estimate the block completion time. The scheduler will run each time

ACK is received or the application pushes the data.

A simple algorithm which only considers priority cannot get optimal

result in transmitting deadline-required data. Suppose the bandwidth

reduces and the scheduler chooses not to send the low priority

block. Then the bandwidth is restored. The data block with lower

priority is closer to the deadline than the high priority block. If

in this round the scheduler still chooses to send the high priority

block, then the low priority block may miss the deadline next round

and become useless. In some cases, the scheduler can choose to send

a low priority block because it is more urgent. But it should do so

without causing the high priority stream missing the deadline. This

example reveals a fundamental conflict between the application

specified priority and deadline implicated priority. DTP needs to

take both priorities into consideration when scheduling blocks.

DTP will combine all these factors to calculate real priority of

each block. Then the scheduler just picks the block with the highest

real priority. Scheduler of DTP will calculate the block remaining

transmission time and then compare it to the deadline. The closer to

the deadline, the higher real priority. And higher application

specified priority will also result in higher real priority. In this

way, the scheduler can take both approaching deadline and

application-specified priority into account. Blocks which are

severely overdue can be dropped accordingly.

3.3.1. Block dropping mechanism

DTP allows the sender side to cancel sending several blocks in the

transport layer, and this action is called 'drop'. By dropping some

stale blocks, DTP can enhance the timeliness of other sending blocks

and save bandwidth. DTP SHOULD implement some strategies on the

sender side to determine which 'block' should be dropped. On the

receiver side, DTP SHOULD be able to check which block is dropped

and MAY have functions to inform the application about the canceled

blocks.

¶

¶

¶

¶

¶

3.4. Deadline-aware Redundancy

After the scheduler pick the block to send, the packetizer will

break the block into packet streams. Those packet streams will go

through the redundancy module. When the link is lossy and deadline

is tight, retransmission will cause the block missing the deadline.

Redundancy module has the ability of sending redundancy (like FEC

Repair Symbols) along with the data that will help to recover the

data packets (like FEC Source Symbols), this can avoid

retransmission.

We use unencrypted DTP packets as input to Redundancy Module because

the loss of a DTP packet exactly corresponds to the loss of one

Redundancy Packet. And to perform the coding and decoding with

packets of different sizes, some packets may need to be padded with

PADDING Frame. The present design of Redundancy Module follows the

FEC Framework specified in [arXiv_1809.04822]. Figure 2 illustrates

this framework:

Figure 2: DTP Redundancy Module

¶

¶

 |

 |

 v

 +-------------+

 | |

 | DTP |

 | Scheduler |

 | |

 +------+------+

 |

 (1)|DTP Packets

+----------|---+

| v |

| +-------+------+ +------------+ |

| | | (2)DTP Payload | | | DTP

| | Redundancy |------------------> | Redundancy | | Redundancy

| | Packtizing &|<------------------ | Scheme | | Module

| | Grouping | (2)Redundancy Data | | |

| +-------+------+ +------------+ |

| | |

+----------|---+

 (3)|Redundancy

 |Packets

 |

 v

Figure 2 above shows the mechanism of how the Deadline-aware

Redundancy module works. (1) Redundancy Module first receives the

unencrypted DTP packets from scheduler. (2) The Redundancy Scheme

use DTP Payload (similar to FEC Repair Symbols) to generate

Redundancy Data (similar to FEC Source Symbols). (3) Redundancy-

protected DTP Packets and Redundancy Data will be packtized and

grouped. Redundancy Packtizing and Grouping Part will generate FEC

Payload INFO (Figure 6) and attach it to the DTP Packets and

Redundancy Data, generating Redundancy Packets (a Redundancy Packet

with the header shown in Figure 6). Once the protocol receives the

Repair Symbols, they are sent to the receiver through the FEC

Packets. At the receiver-side, the received Redundancy Packets can

be processed immediately. The Redundancy Data is reconstituted from

the Redundancy Packtizing and Grouping and passed to the underlying

Redundancy Scheme to recover the lost DTP Packets.

Although Redundancy Module allows recovering lost packets without

waiting for retransmissions, it consumes more bandwidth than a

regular, non-Redundancy-protected transmission. In order to avoid

spending additional bandwidth when it is not needed, design of

Redundancy MUST allow defining which DTP packets should be

considered as Redundancy Packets. Currently we use a F flag from DTP

Packet Header to indicate whether a packet is Redundancy-protected

or not. The format of header will be described in Section 4.3 later.

The Redundancy Data generated in Redundancy module MUST be

distinguished from application data payload. Redundancy Data should

not be transferred to the application upon reception, they are

indeed generated by and for the Redundancy Scheme used by the

transport protocol. We use Redundancy Packet to transmit Redundancy

Data Section 4.3.

There are multiple Redundancy Scheme candidates. During the

handshake process, a scheme will be negotiated for the DTP session,

just like encryption scheme negotiation. Currently DTP specifically

chooses Reed-Solomon FEC Scheme as described in [arXiv_1809.04822].

3.5. Loss Detection and Congestion Control

This document reuses the congestion control module defined in QUIC

[QUIC]. Congestion control module is responsible to send packets,

collects ACK and do packet loss detection. Then it will put the lost

data back to the retransmission queue of each block. Congestion

control module is also responsible to monitor the network status and

report the network condition such as bandwidth and RTT to scheduler.

¶

¶

¶

¶

¶

4. Extension of QUIC

DTP is implemented as an extension of QUIC by mapping QUIC stream to

DTP block one to one. In that way, DTP can reuse the QUIC stream

cancellation mechanism to drop the stale block during transmission.

And DTP can also utilize the max stream data size defined by QUIC to

negotiate its max block size. Besides, the block id of DTP can also

be mapped to QUIC stream id without breaking the QUIC stream id

semantic.

DTP implements its block dropping mechanism by leveraging QUIC's

stream cancellation function. DTP only defines the drop action on

the sender side to cancel stale blocks. DTP leaves the decisions to

the application layer on the receiver side to determine whether to

accept an overdue block. However, because QUIC allows to cancel

streams on both sides and DTP is an extension of QUIC, DTP MAY

cancel the block from the receiver side. It requires mechanisms to

measure each receiving block's importance and drop it.

DTP endpoints communicate by exchanging packets. And the payload of

DTP packets, consists of a sequence of complete frames. As defined

in [QUIC], each frame begins with a Frame Type, indicating its type,

followed by additional type-dependent fields. Besides the many frame

types defined in Section 12.4 of [QUIC], DTP introduces BLOCK_INFO

Frame to support timeliness data transmission. And DTP also makes

adjustment on QUIC ACK Frame. Another extension is introducing FEC

packet to support FEC.

4.1. New Frame: BLOCK_INFO Frame

DTP adds two kinds of BLOCK_INFO frames (type=0x20, 0x21). Either of

these frames SHOULD be attached in the front of each block to inform

the scheduler of Block Size, Block Priority, and Block Deadline.

These parameters can be used to do block scheduling. The BLOCK_INFO

frame is as follows:

¶

¶

¶

¶

Figure 3: BLOCK_INFO Frame Format

Stream ID: A variable-length integer indicating the stream ID of

the stream.

Block Size: A variable-length integer indicating the size of the

block.

Block Priority: A variable-length integer indicating the priority

of the block.

Block Deadline: A variable-length integer indicating the required

transimission deadline. Dealine should be a duration in

microseconds.

Start timestamp: An optional parameter to inform the receiver

about the starting time of this block. This parameter may be

helpful when the receiver wants to use the deadline information.

The timestamp parameter SHOULD be the same format as Unix

timestamp. The sender and receiver SHOULD do clock

synchronization if they use this parameter.

4.2. New Frame: Timestamped ACK Frame

DTP adds a new Timestamped ACK Frame, containing a timestamp to

carry the timeliness information. The receiver sends Timestamped ACK

Frame to inform the sender when a packet is received and processed.

ACK mechanism of DTP is almost the same as QUIC. The format of

Timestamped ACK frames is similar to the standard ACK Frames defined

in section 19.3 of [QUIC] (As shown in Figure 4):

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | Type (i) = 0x20..0x21 ...

 +-+

 | Stream ID (i) ...

 +-+

 | Block Size (i) ...

 +-+

 | Block Priority (i) ...

 +-+

 | Block Deadline (i) ...

 +-+

 | [Start timestamp (i)] ...

 +-+

*

¶

*

¶

*

¶

*

¶

*

¶

¶

https://en.wikipedia.org/wiki/Unix_time
https://en.wikipedia.org/wiki/Unix_time

Figure 4: Standard QUIC ACK Frame Format

DTP appends a timestamp parameter after the original QUIC ACK Frame

Format and defines the type of this new frame 0x22..0x23 (As shown

in Figure 5). The timestamp parameter can be regarded as an optional

parameter of the QUIC ACK Frame while using an extension frame type.

Figure 5: Timestamped ACK Frame Format

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | Type (i) = 0x02..0x03 ...

 +-+

 | Largest Acknowledged (i) ...

 +-+

 | ACK Delay (i) ...

 +-+

 | ACK Range Count (i) ...

 +-+

 | First ACK Range (i) ...

 +-+

 | ACK Ranges (i) ...

 +-+

 | [ECN Counts] ...

 +-+

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | Type (i) = 0x22..0x23 ...

 +-+

 | Largest Acknowledged (i) ...

 +-+

 | ACK Delay (i) ...

 +-+

 | ACK Range Count (i) ...

 +-+

 | First ACK Range (i) ...

 +-+

 | ACK Ranges (i) ...

 +-+

 | [ECN Counts] ...

 +-+

 | Timestamp (i) ...

 +-+

Using this timestamp parameter, we can calculate whether the prior

blocks transmitted misses the deadline or not, and we can also

calculate the block completion rate before the deadline. The

timestamp parameter SHOULD be in the same format as Unix timestamp.

The Timestamped ACK is adequate to inform the sender about the

timeliness information from the receiver side. To fully use the

deadline information in the block, the sender and the receiver

SHOULD do clock synchronization.

4.3. New Packet: Redundancy Packet

We use a F Flags in DTP Packet to distinguish which DTP packets is

Redundancy-protected or not. Figure 6 shows the Redundancy Packet

Format. If the flag is set, the Redundancy Group ID, m, n, index

field is appended to the header. They are used by the Redundancy

Scheme(Forward-Error-Correction) to identify the redundancy-

protected data and communicate information about the encoding and

decoding procedures to the receiver-side Redundancy Scheme.

Figure 6: Redundancy Packet Format

F: A flag indicating whether this DTP packets is FEC-protected or

not.

Redundancy Group ID: A variable-length integer indicating the id

of the redundancy group which the packet belongs to.

m: A variable-length integer indicating the number of original

packets of the redundancy group.

¶

¶

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+-+-+-+-+-+-+-+

 |F| Flags(7) |

 +-+

 ...

 +-+

 | Redundancy Group ID (i)(if F set) ...

 +-+

 | m (i)(if F set) ...

 +-+

 | n (i)(if F set) ...

 +-+

 | index (i)(if F set) ...

 +-+

 | Payload (i) ...

 +-+

*

¶

*

¶

*

¶

https://en.wikipedia.org/wiki/Unix_time

n: A variable-length integer indicating the number of redundancy

packets of the redundancy group.

index: A variable-length integer indicating the location of the

packet inside the redundancy group.

Payload: The payload of the Redundancy Packet, containing DTP

Payload or Redundancy Data.

5. DTP Use Cases

5.1. Block Based Real Time Application

DTP can provide deliver-before-deadline service for Block Based Real

Time Applications. Applications like real-time media and online

multiplayer gaming have deadline requirements for their data

transimission. These application also tend to generate and process

the data in block fashion, for example, video/audio encoder produces

the encoded streams as a series of block (I,B,P frame or GOP). And

these real-time applications usually have multiple blocks (As shown

in Figure 1) to be transferred simultaneously. DTP can optimize the

data transmission of these applications by scheduling which block to

be sent first. And Redundancy Module of DTP can reduce

retransmission delay.

5.2. API of DTP

5.2.1. Data Transmission Functions

5.2.1.1. Send

Format: SEND(connection id, buffer address, byte count, block id,

block deadline, block priority) -> byte count

The return value of SEND is the continuous bytes count which is

successfully written. If the transport layer buffer is limited or

the flow control limit of the block is reached, application needs to

call SEND again.

Mandatory attributes:

connection id - local connection name of an indicated connection.

buffer address - the location where the block to be transmitted

is stored.

byte count - the size of the block data in number of bytes.

block id - the identity of the block.

*

¶

*

¶

*

¶

¶

¶

¶

¶

* ¶

*

¶

* ¶

* ¶

block deadline - deadline of the block.

block priority - priority of the block.

5.2.1.2. Update

Format: UPDATE(connection id, block id, block deadline, block

priority) -> result

The UPDATE function is used to update the metadata of the block. The

return value of UPDATE function indicates the success of the action.

It will return success code if succeeds, and error code if fails.

Mandatory attributes:

connection id - local connection name of an indicated connection.

block id - the identity of the block.

block deadline - new deadline of the block.

block priority - new priority of the block.

5.2.1.3. Retreat

Format: RETREAT(connection id, block id) -> result

The RETREAT function is used to cancel the block. The return value

of RETREAT function indicates the success of the action. It will

return success code if succeeds, and error code if fails.

Mandatory attributes:

connection id - local connection name of an indicated connection.

block id - the identity of the block.

5.2.1.4. Receive

Format: RECV(connection id, buffer address, byte count, [,block id])

-> byte count, fin flag, [,block id]

The RECV function shall read the first block in-queue into the

buffer specified, if there is one available. The return value of

RECV is the number of continuous bytes which is successfully read,

and fin flag to indicate the ending of the block. If the block is

cancelled, the RECV function will return error code BLOCK_CANCELLED.

It will also returns the block id on which it receives if

application does not specify it.

* ¶

* ¶

¶

¶

¶

* ¶

* ¶

* ¶

* ¶

¶

¶

¶

* ¶

* ¶

¶

¶

If the block size specified in the RECV function is smaller than the

size of the receiving block, then the block will be partial

copied(indicated by the fin flag). Next time RECV function is

called, the remaining block will be copied, and the id will be the

same. This fragmentation will give extra burden to applications. To

avoid the fragmentation, sender and receiver can negotiate a max

block size when handshaking.

Mandatory attributes:

connection id - local connection name of an indicated connection.

buffer address - the location where the block received is stored.

byte count - the size of the block data in number of bytes.

Optional attributes:

block id - to indicate which block to receive the data on.

5.2.2. Feedback Functions

5.2.2.1. on_dropped

Format: ON_DROPPED(connection id) -> block id, deadline, priority,

goodbytes

The ON_DROPPED function is called when a block is dropped. The

metadata of the dropped block such as block id, deadline, priority

is attached. The number of bytes delivered before its

deadline(goodbytes) is returned.

Mandatory attributes:

connection id - local connection name of an indicated connection.

5.2.2.2. on_delivered

Format: ON_DELIVERED(connection id) -> block id, deadline, priority,

delta, goodbytes

The ON_DELIVERED function is called when a block is delivered. The

metadata of the delivered block such as block id, deadline, priority

is attached. The number of bytes delivered before its deadline

(goodbytes) and the difference between the block completion time and

the deadline (delta) are returned.

Mandatory attributes:

connection id - local connection name of an indicated connection.

¶

¶

* ¶

* ¶

* ¶

¶

* ¶

¶

¶

¶

* ¶

¶

¶

¶

* ¶

All these functions mentioned above are running in asynchronous

mode. An application can use various event driven framework to call

those functions.

5.3. Collaborate with upper layer protocols

Application protocol on top of DTP may benefit from the block info

and detail metric of the transport layer. DTP MAY expose the block

information to the receiver side application and the status of the

congestion control and buffer status to both sender side and

receiver side application. This information will enable multiple DTP

relay node working together to improve the deadline-delivery

performance end-to-end.

6. Design Considerations

6.1. Clock Synchronization

The fundamental design of DTP relies on precise clock

synchronization. The block scheduler requires high clock precision

to accurately perform block canceling functions and efficient

scheduling. Timestamped ACKs also necessitate high clock precision

to enable the server and client to utilize deadline information

effectively. However, achieving high precision clock synchronization

across the web poses challenges. Further discussions are required to

explore how to best utilize the deadline information in such

circumstances.

6.2. Block Dependency

Video streams often exhibit decoding dependencies among their

frames. To address this, it would be beneficial to include block

dependencies as critical metadata in the block info. Our basic

design involves adding an integer field to the block info frame,

indicating the stream id on which the current block depends. This

enhancement may facilitate efficient block processing and playback,

ensuring that frames are correctly ordered and decoded based on

their dependencies.

6.3. Automatic Block Info

DTP receives block priorities and block deadlines from the send and

update API. However, determining appropriate values for these

parameters can be challenging for applications. Even in cases where

applications, such as RTC publishers, aim for transport delays below

100ms, they may not get the ideal transport result by setting the

block deadline parameter to 100ms. To address this, it might be

necessary to devise an automatic method that can recognize the

application's requirements and assign rational parameter values

accordingly. Implementing such an automatic mechanism can streamline

¶

¶

¶

¶

[arXiv_1809.04822]

[QUIC]

[QUIC-TLS]

[RFC0768]

[RFC0793]

[RFC2119]

[RFC8174]

the configuration process for applications, freeing developers from

the burden of manually fine-tuning parameters and ensuring optimal

data transmission with minimal human intervention.

7. Security Considerations

See the security considerations in [QUIC] and [QUIC-TLS]; the block-

based data of DTP shares the same security properties as the data

transmitted within a QUIC connection.

8. IANA Considerations

This document has no IANA actions.

9. Normative References

Michel, F., Coninck, Q., and O. Bonaventure,

"Adding Forward Erasure Correction to QUIC", September

2018, <https://arxiv.xilesou.top/pdf/1809.04822.pdf>.

Iyengar, J., Ed. and M. Thomson, Ed., "QUIC: A UDP-Based

Multiplexed and Secure Transport", RFC 9000, DOI

10.17487/RFC9000, May 2021, <https://www.rfc-editor.org/

rfc/rfc9000>.

Thomson, M., Ed. and S. Turner, Ed., "Using TLS to Secure

QUIC", RFC 9001, DOI 10.17487/RFC9001, May 2021,

<https://www.rfc-editor.org/rfc/rfc9001>.

Postel, J., "User Datagram Protocol", STD 6, RFC 768, DOI

10.17487/RFC0768, August 1980, <https://www.rfc-

editor.org/rfc/rfc768>.

Postel, J., "Transmission Control Protocol", RFC 793, DOI

10.17487/RFC0793, September 1981, <https://www.rfc-

editor.org/rfc/rfc793>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/rfc/

rfc2119>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

Acknowledgments

We sincerely thank Z. Liu and J. Zhang for contributing to the DTP

project. They provided a lot of advice and revisions to the draft

¶

¶

¶

https://arxiv.xilesou.top/pdf/1809.04822.pdf
https://www.rfc-editor.org/rfc/rfc9000
https://www.rfc-editor.org/rfc/rfc9000
https://www.rfc-editor.org/rfc/rfc9001
https://www.rfc-editor.org/rfc/rfc768
https://www.rfc-editor.org/rfc/rfc768
https://www.rfc-editor.org/rfc/rfc793
https://www.rfc-editor.org/rfc/rfc793
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc8174
https://datatracker.ietf.org/liu-zw20@mails.tsinghua.edu.cn
https://datatracker.ietf.org/zhangjie19@mails.tsinghua.edu.cn

and actively helped advance the relevant progress of DTP

standardization.

Authors' Addresses

Yong Cui

Tsinghua University

30 Shuangqing Rd

Beijing

China

Email: cuiyong@tsinghua.edu.cn

Chuan Ma

Tsinghua University

30 Shuangqing Rd

Beijing

China

Email: mc21@mails.tsinghua.edu.cn

Hang Shi

Huawei

Email: shihang9@huawei.com

Kai Zheng

Huawei

Email: kai.zheng@huawei.com

Wei Wang

Huawei

Email: wangwei375@huawei.com

¶

mailto:cuiyong@tsinghua.edu.cn
mailto:mc21@mails.tsinghua.edu.cn
mailto:shihang9@huawei.com
mailto:kai.zheng@huawei.com
mailto:wangwei375@huawei.com

	Deadline-aware Transport Protocol
	Abstract
	About This Document
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Conventions and Definitions

	2. Motivation
	3. Design of DTP
	3.1. Abstraction
	3.2. Architecture of DTP
	3.3. Deadline-aware Scheduler
	3.3.1. Block dropping mechanism

	3.4. Deadline-aware Redundancy
	3.5. Loss Detection and Congestion Control

	4. Extension of QUIC
	4.1. New Frame: BLOCK_INFO Frame
	4.2. New Frame: Timestamped ACK Frame
	4.3. New Packet: Redundancy Packet

	5. DTP Use Cases
	5.1. Block Based Real Time Application
	5.2. API of DTP
	5.2.1. Data Transmission Functions
	5.2.1.1. Send
	5.2.1.2. Update
	5.2.1.3. Retreat
	5.2.1.4. Receive

	5.2.2. Feedback Functions
	5.2.2.1. on_dropped
	5.2.2.2. on_delivered

	5.3. Collaborate with upper layer protocols

	6. Design Considerations
	6.1. Clock Synchronization
	6.2. Block Dependency
	6.3. Automatic Block Info

	7. Security Considerations
	8. IANA Considerations
	9. Normative References
	Acknowledgments
	Authors' Addresses

