
INTERNET DRAFT Myung-Ki Shin (ed.)
Expires: April 2004 Yong-Guen Hong
 ETRI
 Jun-ichiro itojun Hagino
 IIJ
 Pekka Savola
 CSC/FUNET
 Eva M. Castro
 GSYC/URJC
 October 2003

Application Aspects of IPv6 Transition
<draft-shin-v6ops-application-transition-02.txt>

Status of this Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026.

 Internet Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and working groups. Note that other
 groups may also distribute working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or obsolete by other documents
 at anytime. It is inappropriate to use Internet Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

Abstract

 As IPv6 networks are deployed and the network transition discussed,
 one should also consider how to enable IPv6 support in applications
 running on IPv6 hosts, and what is the best strategy to develop IP
 protocol support in applications. This document specifies
 scenarios and aspects of application transition. It also proposes
 guidelines on how to develop IP version-independent applications
 during the transition period.

Table of Contents:

1. Introduction .. 2
2. Overview of IPv6 application transition 3
3. Problems with IPv6 application transition 4

https://datatracker.ietf.org/doc/html/draft-shin-v6ops-application-transition-02.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Shin et al. Expires April 2004 [Page 1]

INTERNET-DRAFT Application Aspects of IPv6 Transition October 2003

3.1 IPv6 support in the OS and applications are unrelated.... 4
 3.2 DNS does not indicate which the IP version will be used . 5

3.3 Supporting many versions of an application is difficult ..5
4. Description of transition scenarios and guidelines 6
4.1 IPv4 applications in a dual-stack node 6
4.2 IPv6 applications in a dual-stack node 7
4.3 IPv4/IPv6 applications in a dual stack node 9
4.4 IPv4/IPv6 applications in an IPv4-only node 9
5. Application porting considerations10
5.1 Presentation format for an IP address10
5.2 Transport layer API11
5.3 Name and address resolution12
5.4 Specific IP dependencies 12
5.4.1 IP address selection13
5.4.2 Application framing13
5.4.3 Storage of IP addresses14

6. Developing IP version-independent applications14
6.1 IP version-independent structures14
6.2 IP version-independent APIs15
6.2.1 Example of overly simplistic TCP server application ..16
6.2.2 Example of overly simplistic TCP client application ..17
6.2.3 Binary/Presentation format conversion17
6.3 Iterated jobs for finding the working address18
6.3.1 Example of TCP server application18
6.3.2 Example of TCP client application20

7. Transition mechanism considerations21
8. Security considerations21
9. References ..21

 Authors' Addresses ...23
Appendix A. Binary/Presentation Format Conversions23
A.1 Network Address to Presentation Format23
A.2 Presentation Format to Network Address24

1. Introduction

 As IPv6 is introduced in the IPv4-based Internet, several general
 issues when starting to use IPv6 in a world dominated by IPv4 are
 being discussed, such as routing, addressing, DNS, scenarios, etc.

 One important key to a successful IPv6 transition is the
 compatibility with the large installed base of IPv4 hosts and
 routers. This issue had been already been extensively studied, and
 the work is still in progress. In particular, [2893BIS] describes
 the basic transition mechanisms, dual-stack deployment and
 tunneling. In addition, various kinds of transition mechanisms
 have been developed to migrate to IPv6 network. However, these
 transition mechanisms take no stance on whether applications

 support IPv6 or not.

 This document specifies application aspects of IPv6 transition.
 That is, two inter-related topics are covered:

Shin et al. Expires April 2004 [Page 2]

INTERNET-DRAFT Application Aspects of IPv6 Transition October 2003

 1. How different network transition techniques affect
 applications, and what are the strategies for applications
 to support IPv6 and IPv4.

 2. How to develop IPv6-capable or protocol-independent
 applications ("application porting guidelines").

 Applications will need to be modified to support IPv6 (and IPv4),
 using one of a number of techniques described in sections 2-4.
 Some guidelines to develop such application are then presented in
 sections 5 and 6.

2. Overview of IPv6 application transition

 The transition of an application can be classifed using four
 different cases (excluding the first step when there is no IPv6
 support either in the application or the operating system), as
 follows:

 +-------------------+
 | appv4 | (appv4 - IPv4-only applications)
 +-------------------+
 | TCP / UDP | (transport protocols)
 +-------------------+
 | IPv4 | IPv6 | (IP protocols supported/enabled in the OS)
 +-------------------+

 Case 1. IPv4 applications in a dual-stack node

 +-------------------+ (appv4 - IPv4-only applications)
 | appv4 | appv6 | (appv6 - IPv6-only applications)
 +-------------------+
 | TCP / UDP | (transport protocols)
 +-------------------+
 | IPv4 | IPv6 | (IP protocols supported/enabled in the OS)
 +-------------------+

 Case 2. IPv4-only applications and IPv6-only applications
 in a dual-stack node

 +-------------------+
 | appv4/v6 | (appv4/v6 - applications supporting
 +-------------------+ both IPv4 and IPv6)
 | TCP / UDP | (transport protocols)
 +-------------------+
 | IPv4 | IPv6 | (IP protocols supported/enabled in the OS)
 +-------------------+

 Case 3. Applications supporting both IPv4 and IPv6
 in a dual-stack node

Shin et al. Expires April 2004 [Page 3]

INTERNET-DRAFT Application Aspects of IPv6 Transition October 2003

 +-------------------+
 | appv4/v6 | (appv4/v6 - applications supporting
 +-------------------+ both IPv4 and IPv6)
 | TCP / UDP | (transport protocols)
 +-------------------+
 | IPv4 | (IP protocols supported/enabled in the OS)
 +-------------------+

 Case 4. Applications supporting both IPv4 and IPv6
 in an IPv4-only node

 Figure 1. Overview of Application Transition

 Figure 1 shows the cases of application transition.

 Case 1 : IPv4-only applications in a dual-stack node.
 IPv6 protocol is introduced in a node, but
 applications are not yet ported to IPv6.

 Case 2 : IPv4-only applications and IPv6-only applications
 in a dual-stack node.
 Applications are ported for IPv6-only. Therefore,
 there are two same applications for different
 protocol versions (e.g., ping and ping6).

 Case 3 : Applications supporting both IPv4 and IPv6 in a dual
 stack node.
 Applications are ported for both IPv4 and IPv6 support.
 Therefore, the existing IPv4 applications can be
 removed.

 Case 4 : Applications supporting both IPv4 and IPv6 in an
 IPv4-only node.
 Applications are ported for both IPv4 and IPv6 support,
 but the same applications may also have to work when
 IPv6 is not being used (e.g. disabled from the OS).

3. Problems with IPv6 application transition

 There are several reasons why the transition period between IPv4
 and IPv6 applications may not be straightforward. These issues are
 described in this section.

3.1 IPv6 support in the OS and applications are unrelated

 Considering the cases described in the previous section, IPv4 and
 IPv6 protocol stacks in a node is likely to co-exist for a long

 time.

 Similarly, most applications are expected to be able to handle both

Shin et al. Expires April 2004 [Page 4]

INTERNET-DRAFT Application Aspects of IPv6 Transition October 2003

 IPv4 and IPv6 during another, unrelated long time period. That is,
 operating system being dual stack does not mean having both IPv4
 and IPv6 applications. Therefore, application introduction may be
 independent of protocol stacks in a node.

 It is even probable that applications capable of both IPv4 and IPv6
 will have to work properly in IPv4-only nodes (whether IPv6
 protocol is completely disabled or there is no IPv6 connectivity at
 all).

3.2 DNS does not indicate which the IP version will be used

 The role of the DNS name resolver in a node is to get the list of
 destination addresses. DNS queries and responses are sent using
 either IPv4 or IPv6 to carry the queries, regardless of the
 protocol version of the data records [DNS].

 The issue of DNS name resolving related to application transition
 is that a client application can not be certain of the version of
 peer application by only doing a DNS name lookup. For example, if a
 server application does not support IPv6 yet, but runs on a dual-
 stack machine for other IPv6 services and this is listed with an
 AAAA record in the DNS, the client application will fail to connect
 to the server application, because there is a mis-match between the
 DNS query result (i.e. IPv6 addresses) and a server application
 version (i.e. IPv4).

 It is bad practise to add an AAAA record for node that does not
 support all the services using IPv6 (rather, an AAAA record for the
 specific service name and address should be used), but the
 application cannot depend on "good practise", and this must be
 handled.

 In consequence, the application has to try all the records returned
 from the DNS, in some order, until a working address is found. In
 particular, the application has to be able to handle all IP
 versions returned from the DNS.

3.3 Supporting many versions of an application is difficult

 During the application transition period, system administrators may
 have various versions of the same application (an IPv4-only
 application, an IPv6-only application, or an application supporting
 both IPv4 and IPv6).

 Typically one cannot know which IP versions must be supported prior
 to doing a DNS lookup *and* trying (see section 3.2) the addresses

 returned. Therefore, the users have a difficulty selecting the
 right application version supporting the exact IP version required
 if multiple versions of the same application are available.

Shin et al. Expires April 2004 [Page 5]

INTERNET-DRAFT Application Aspects of IPv6 Transition October 2003

 To avoid problems with one application not supporting the specified
 protocol version, it is desirable to have hybrid applications,
 supporting both the protocol versions.

 Alternative approach is to have a "wrapper application" which
 performs certain tasks (like figures out which protocol version
 will be used) and calls the IPv4/IPv6-only applications as
 necessary. However, as noted above, these wrapper applications
 will actually probably have to do more than just perform a DNS
 lookup or figure out the literal IP address given. Thus, they may
 get complex, and only work for certain kinds of, usually simple,
 applications.

 Nonetheless, there should be some reasonable logic on how to the
 users are able to just use the applications with any supported
 protocol version; the users should not have to select from various
 versions of applications, some supporting only IPv4, others only
 IPv6, and yet some both versions by themselves.

4. Description of transition scenarios and guidelines

 Once the IPv6 network is deployed, applications supporting IPv6 can
 use IPv6 network services and establish IPv6 connections. However,
 upgrading every node to IPv6 at the same time is not feasible and
 transition from IPv4 to IPv6 will be a gradual process.

 Dual-stack nodes are one of the ways to maintain IPv4 compatibility
 in unicast communications. In this section we will analyze
 different application transition scenarios (as introduced in

section 2) and guidelines to maintain interoperability between
 applications running in different types of nodes.

4.1 IPv4 applications in a dual-stack node

 This scenario happens if IPv6 protocol is added in a node but
 IPv6-capable applications aren't yet available or installed.
 Although the node implements the dual stack, IPv4 applications can
 only manage IPv4 communications. Then, IPv4 applications can only
 accept/establish connections from/to nodes which implement IPv4
 stack.

 In order to allow an application to communicate with other nodes
 using IPv6, the first priority is to port applications to IPv6.

 In some cases (e.g. no source code is available), existing IPv4
 applications can work if the [BIS] or [BIA] mechanism is installed
 in the node. However, these mechanisms should not be used when

 application source code is available to prevent the mis-use of
 them, for example, as an excuse not to port software.

Shin et al. Expires April 2004 [Page 6]

INTERNET-DRAFT Application Aspects of IPv6 Transition October 2003

 When [BIA] or [BIS] is used, the same previous problem --the IPv4
 client in a [BIS]/[BIA] node trying to connect to an IPv4 server in
 a dual stack system-- arises. However, one can rely on [BIA]/[BIS]
 mechanism, which should cycle through all the addresses instead of
 applications.

4.2 IPv6 applications in a dual-stack node

 As we have seen in the previous section, applications should be
 ported to IPv6. The easiest way to port an IPv4 application is to
 substitute the old IPv4 API references by the new IPv6, one-to-one
 API mapping. That way, the application would be IPv6-only. This
 IPv6-only source code can not work in IPv4- only nodes, so the old
 IPv4 application should be maintained in these nodes. Then, we will
 get two same applications working with different protocol versions,
 depending on the node they are running (e.g., telnet and telnet6).
 This case is undesirable since maintaining two versions of the same
 source code per application, could be a difficult task. In
 addition, this approach would cause problems for the users when
 having to select which version of the application to use, as
 described in section 3.3.

 Most implementations of dual stack allow IPv6-only applications
 interoperate with both IPv4 and IPv6 nodes. IPv4 packets going to
 IPv6 applications on a dual-stack node, reach their destination
 because their addresses are mapped to IPv6 ones using IPv4-mapped
 IPv6 addresses: the IPv6 address ::FFFF:x.y.z.w represents the IPv4
 address x.y.z.w.

 +--+
 | +--+ |
 | | | |
 | | IPv6-only applications | |
 | | | |
 | +--+ |
 | | |
 | +--+ |
 | | | |
 | | TCP/UDP | |
 | | | |
 | +--+ |
 | IPv4-mapped | | IPv6 |
 | IPv6 addresses | | addresses |
 | +--------------------+ +-------------------+ |
 | | IPv4 | | IPv6 | |
 | +--------------------+ +-------------------+ |
 | IPv4 | | |

 | adresses | | |
 +--------------|-----------------|-------------+
 | |
 IPv4 packets IPv6 packets

Shin et al. Expires April 2004 [Page 7]

INTERNET-DRAFT Application Aspects of IPv6 Transition October 2003

 When an IPv4 client application sends data to an IPv6-only server
 application, running on a dual-stack node using the wildcard (but
 without the IPV6_V6ONLY socket option) address, the IPv4 client
 address is interpreted as the IPv4-mapped IPv6 address in the
 dual-stack node to allow IPv6 application to manage this
 communication. The IPv6 server will use this mapped address as if
 it were a regular IPv6 address, and a usual IPv6 connection.
 However, IPv4 packets will be exchanged between the nodes. Kernels
 with dual stack properly interpret IPv4-mapped IPv6 addresses as
 IPv4 ones and vice versa.

 IPv6-only client application in a dual-stack node will not get
 IPv4-mapped addresses from the hostname resolution API functions
 unless a special hint, AI_V4MAPPED, is given. If given, the IPv6
 client will use the returned mapped address as if it were a regular
 IPv6 address, and a usual IPv6 connection. However, again IPv4
 packets will be exchanged between applications.

 The default behavior of IPv6 applications in these dual-stack nodes
 allows a limited amount of IPv4 communication using the IPv4-mapped
 IPv6 addresses. However, it is possible for IPv6 applications to
 allow connections only with IPv6 nodes (e.g. IPv6_V6ONLY socket
 option), so the interoperability with IPv4 nodes is broken. This
 option could be useful if applications use new IPv6 features, such
 as flowlabel.

 There are some implementations of dual-stack which do not allow
 IPv4-mapped IPv6 addresses to be used for interoperability between
 IPv4 and IPv6 applications. In that case, there are two ways to
 handle the problem:

 1. deploy two different versions of applications (possibly
 attached with '6' in the name), or

 2. deploy just one application supporting both protocol versions,
 as described in the next section.

 The first method is not recommended, because of significant amount
 of problems of problems associated with selecting the right
 applications, as described in sections 3.2 and 3.3.

 Therefore, there are actually two distinct cases to consider:

 1. whether the systems where the applications are used support
 IPv6 at all or not, and

 2. whether the application can (or should) support both IPv4
 and IPv6 through IPv4-mapped IPv6 addresses, or should the
 applications support both explicitly, as described in the

 next section.

Shin et al. Expires April 2004 [Page 8]

INTERNET-DRAFT Application Aspects of IPv6 Transition October 2003

4.3 IPv4/IPv6 applications in a dual stack node

 Applications should be ported to support both IPv4 and IPv6; such
 applications are sometimes called IP version-independent
 applications. After that, the existing IPv4-only applications
 could be removed. Since we have only one version of each
 application, the source code will be typically easy to maintain and
 to modify, and there are no problems managing which application to
 select for which purpose.

 This transition case is the most advisable. During IPv6 transition
 period, applications supporting both IPv4 and IPv6 should be able
 to communicate with other applications, irrespective of the
 versions of the protocol stack or the application in the node. Dual
 applications allow more interoperability between heterogeneous
 applications and nodes.

 If the source code is written in a protocol-independent way,
 without dependencies on either IPv4 or IPv6, applications will be
 able to communicate with any combination of applications and types
 of nodes.

 Implementations typically by-default prefer IPv6 if the remote node
 and application support it. However, if IPv6 connections fail,
 dual applications will automatically try IPv4 ones. The resolver
 returns a list of valid addresses for the remote node and
 applications can iterate through all, first trying IPv6 ones, until
 connection succeeds.

 Applications writers should be aware of this typical by-default
 ordering, but the applications themselves typically need not be
 aware of the the local protocol ordering [RFC 3484].

 A more detailed porting guideline is described in section 6.

4.4. IPv4/IPv6 applications in an IPv4-only node

 As the transition is likely to happen over a longer timeframe,
 applications that have already been ported to support both IPv4 and
 IPv6 may be run on IPv4-only nodes. This would typically be done to
 avoid having to support two application versions for older and
 newer operating systems, or to support the case that the user wants
 to disable IPv6 for some reason.

 Depending on how application/operating system support is done, some
 may want to ignore this case, but usually no assumptions can be
 made and applications should also work in this scenario.

https://datatracker.ietf.org/doc/html/rfc3484

 An example is an application that issues a socket() command, first
 trying AF_INET6 and then AF_INET. However, if the kernel does not
 have IPv6 support, the call will result in an EPROTONOSUPPORT or

Shin et al. Expires April 2004 [Page 9]

INTERNET-DRAFT Application Aspects of IPv6 Transition October 2003

 EAFNOSUPPORT error. Typically, encountering errors like these leads
 to exiting the socket loop, and AF_INET will not even be tried.
 The application will need to handle this case or build the loop in
 such a way that errors are ignored until the last address family.

 So, this case is just an extension of the IPv4/IPv6 support in the
 previous case, covering one relatively common but often ignored
 case.

5. Application porting considerations

 The minimum changes in IPv4 applications to work using IPv6 are
 basically based on the different size and format of IPv4 and IPv6
 addresses.

 Applications have been developed with the assumption they would use
 IPv4 as network protocol. This assumption results in many IP
 dependencies through source code.

 The following list summarizes the more common IP version
 dependencies in applications:

 a) Presentation format for an IP address: it is an ASCII string
 which represents the IP address, dotted-decimal string
 for IPv4 and hexadecimal string for IPv6.

 b) Transport layer API: functions to establish communications
 and to exchange information.

 c) Name and address resolution: conversion functions between
 hostnames and IP addresses, and vice versa.

 d) Specific IP dependencies: more specific IP version
 dependencies, such as: IP address selection,
 application framing, storage of IP addresses.

 Next, the problems with the aforementioned IP version dependencies
 are analyzed. Although application source code can be ported to
 IPv6 with minimum changes related to IP addresses, some
 recommendations are given to modify the source code in a protocol
 independent way, which will allow applications to work using both
 IPv4 and IPv6.

5.1 Presentation format for an IP address

 Many applications use IP addresses to identify network nodes and to
 establish connections to destination addresses. For instance, using

 the client/server model, clients usually need an IP address as an
 application parameter to connect to a server. This IP address is
 usually provided in the presentation format, as a string. There

Shin et al. Expires April 2004 [Page 10]

INTERNET-DRAFT Application Aspects of IPv6 Transition October 2003

 are two problems, when porting the presentation format for an IP
 address: the allocated memory and the management of the
 presentation format.

 Usually, the allocated memory to contain an IPv4 address
 representation as string is not enough to contain an IPv6 one.
 Applications should be modified to prevent from overflowing the
 buffer holding the presentation format for an IP address, now
 larger in IPv6.

 IPv4 and IPv6 do not use the same presentation format. IPv4 uses
 dot (.) to separate the four octets written in decimal notation and
 IPv6 uses colon (:) to separate each pair of octets written in
 hexadecimal notation. In order to support both, IPv4 and IPv6, the
 management functions of presentation format, such as IP address
 parsers, should be changed to be compliant with both the formats.

 A particular problem with IP address parsers comes when the input
 is actually a combination of IP address and port. With IPv4, these
 are often coupled with a semi-colon, like "192.0.2.1:80". However,
 such an approach would be ambiguous with IPv6, as semi-colons are
 already used to structure the address.

 Therefore, the IP address parsers which take the port number
 separated with a semi-colon should represent IPv6 addresses
 somehow. One way is to enclose the address in brackets, as is done
 with Uniform Resource Locators (URLs) [RFC 2732], like
 http://[2001:db8::1]:80.

 In some specific cases, it may be necessary to give a zone
 identifier as part of the address, like fe80::1%eth0. In general,
 applications should not need to parse these identifiers.

 The IP address parsers should support enclosing the IPv6 address in
 brackets even when it's not used in conjunction with a port number,
 but requiring that the user always gives a literal IP address
 enclosed in brackets is not recommended.

 Note that the use of address literals is strongly discouraged for
 general purpose direct input to the applications; host names and
 DNS should be used instead.

5.2 Transport layer API

 Communication applications often include a transport module that
 establishes communications. Usually, this module manages everything
 related to communications and uses a transport layer API, typically
 as a network library. When porting an application to IPv6 most

https://datatracker.ietf.org/doc/html/rfc2732

 changes should be made in this application transport module, in
 order to be adapted to the new IPv6 API.

Shin et al. Expires April 2004 [Page 11]

INTERNET-DRAFT Application Aspects of IPv6 Transition October 2003

 In the general case, porting an existing application to IPv6
 requires to examine the following issues related to the API:

 - Network information storage: IP address data structures.
 The new structures must contain 128-bit IP addresses. The use of
 generic address structures, which can store any address family,
 is recommended.
 Sometimes special addresses are hard-coded in the application
 source; developers should pay attention to them in order to use
 the new address format. Some of these special IP addresses are:
 wildcard local, loopback and broadcast. IPv6 does not have
 the broadcast addresses, so applications can use multicast
 instead.

 - Address conversion functions.
 The address conversion functions convert the binary address
 representation to the presentation format and vice versa. The
 new conversion functions are specified to the IPv6 address
 format.

 - Communication API functions.
 These functions manage communications. Their signatures are
 defined based on generic socket address structure. Then, the
 same functions are valid for IPv6. However, the IP address data
 structures used when calling these functions require the
 updates.

 - Network configuration options.
 They are used when configuring different communication models
 for Input/Output (I/O) operations (blocking/nonblocking, I/O
 multiplexing, etc) and should be translated to the IPv6 ones.

5.3 Name and address resolution

 From the application point of view, the name and address resolution
 is a system-independent process. An application calls functions in
 a system library, the resolver, which is linked into the
 application when this is built. However, these functions use IP
 address structures, which are protocol dependent, and must be
 reviewed to support the new IPv6 resolution calls.

 There are two basic resolution functions. The first function
 returns a list of all configured IP addresses for a hostname. These
 queries can be constrained to one protocol family, for instance
 only IPv4 or only IPv6 addresses. However, the recommendation is
 that all configured IP addresses should be got to allow
 applications to work to every kind of node. And the second function
 returns the hostname associated to an IP address.

5.4. Specific IP dependencies

Shin et al. Expires April 2004 [Page 12]

INTERNET-DRAFT Application Aspects of IPv6 Transition October 2003

 Applications usually call functions in a system library, known as
 the resolver, to realize the name and address resolution. Since
 these functions use IP address structures, which are protocol
 dependent, not only the functions but also the structures must be
 reviewed to support IPv6.

 There are new resolution functions that provide protocol
 independence for applications, since knowing the address family is
 not required to carry out the resolution.

 Resolution queries should not be constrained to one address family,
 IPv4 or IPv6 addresses. For intance, when getting IP addresses for
 a hostname, applications should ask for all configured IP addresses
 to allow applications to communicate to every kind of node.

5.4.1 IP address selection

 IPv6 promotes the configuration from multiple IP addresses per
 node, which is a different model of IPv4; however applications only
 use a destination/source pair for a communication. Choosing the
 right IP source and destination addresses is a key factor that may
 determine the route of IP datagrams.

 Typically nodes, not applications, automatically solve the source
 address selection. A node will choose the source address for a
 communication following some rules of best choice, [RFC 3484], but
 also allowing applications to make changes in the ordering rules.

 When selecting the destination address, applications usually ask a
 resolver for the destination IP address. The resolver returns a set
 of valid IP addresses from a hostname. Unless applications have a
 specific reason to select any particular destination address, they
 should just try each element in the list until the communication
 succeeds.

5.4.2 Application framing

 The Application Level Framing (ALF) architecture controls
 mechanisms that traditionally fall within the transport layer.
 Applications implementing ALF are often responsible for packetizing
 data into Application Data Units (ADUs). The application problem
 when using ALF is the ADU size selection to obtain better
 performance.

 Application framing is typically needed by applications using
 connectionless protocols (such as UDP). The application will have
 to know, or be able to detect, what are the packet sizes which can

https://datatracker.ietf.org/doc/html/rfc3484

 be sent and received, end-to-end, on the network.

 Applications can use 1280 octets as data length. [RFC 2460]

Shin et al. Expires April 2004 [Page 13]

https://datatracker.ietf.org/doc/html/rfc2460

INTERNET-DRAFT Application Aspects of IPv6 Transition October 2003

 specifies IPv6 requires that every link in the Internet have an
 Maximum Transmission Unit (MTU) of 1280 octets or greater. However,
 in order to get better performance ADU size should be calculated
 based on the length of transmission unit of underlying protocols.

 FIXME: Application framing has relations e.g. with Path MTU
 Discovery and application design which need to be analyzed better.

5.4.3 Storage of IP addresses

 Some applications store IP addresses as information of remote
 peers. For instance, one of the most popular ways to register
 remote nodes in collaborative applications is based on using IP
 addresses as registry keys.

 Although the source code that stores IP addresses can be modified
 to IPv6 following the previous basic porting recommendations, there
 are some reasons why applications should not store IP addresses:

 - IP addresses can change throughout the time, for instance
 after a renumbering process.

 - The same node can reach a destination host using different
 IP addresses.

 Instead of using IP addresses, applications should use FQDNs.
 Hence, applications delegate the resolution of the IP addresses to
 the name resolution system, which will return the associated IP
 address at the moment of the query.

6. Developing IP version-independent applications

 As we have seen before, dual applications working with both IPv4
 and IPv6 are recommended. These applications should avoid IP
 dependencies in the source code. However if IP dependencies are
 required, one of the best solutions is based on building a
 communication library which provides an IP version independent API
 to applications and hides all dependencies.

 In order to develop IP version independent applications, the
 following guidelines should be considered.

6.1 IP version-independent structures

 All of the memory structures and APIs should be IP version-
 independent. In that sense, one should avoid structs in_addr,

 in6_addr, sockaddr_in and sockaddr_in6.

 Suppose you pass a network address to some function, foo(). If you

Shin et al. Expires April 2004 [Page 14]

INTERNET-DRAFT Application Aspects of IPv6 Transition October 2003

 use struct in_addr or struct in6_addr, you will end up with extra
 parameter to indicate address family, as below:

 struct in_addr in4addr;
 struct in6_addr in6addr;
 /* IPv4 case */
 foo(&in4addr, AF_INET);
 /* IPv6 case */
 foo(&in6addr, AF_INET6);

 However, this leads to duplicated code and having to consider each
 scenario from both perspectives independently; this is difficult to
 maintain. So, we should use struct sockaddr_storage like below.

 struct sockaddr_storage ss;
 int sslen;
 /* AF independent! - use sockaddr when passing a pointer */
 /* note: it's typically necessary to also pass the length
 explicitly */
 foo((struct sockaddr *)&ss, sslen);

6.2 IP version-independent APIs

 getaddrinfo() and getnameinfo() are new address independent
 variants that hide the gory details of name-to-address and
 address-to-name translations. They implement functionalities of
 the following functions:

 gethostbyname()
 gethostbyaddr()
 getservbyname()
 getservbyport()

 They also obsolete the functionality of gethostbyname2(), defined
 in [RFC2133].

 These can perform hostname/address and service name/port lookups,
 though the features can be turned off if desirable. getaddrinfo()
 can return multiple addresses, as below:

 localhost. IN A 127.0.0.1
 IN A 127.0.0.2
 IN AAAA ::1

 In this example, if IPv6 is preferred, getaddrinfo returns first
 ::1, and then both 127.0.0.1 and 127.0.0.2 is in a random order.

 Getaddrinfo() and getnameinfo() can query hostname as well as

https://datatracker.ietf.org/doc/html/rfc2133

 service name/port at once.

 As well, it is not preferred to hardcode AF-dependent knowledge

Shin et al. Expires April 2004 [Page 15]

INTERNET-DRAFT Application Aspects of IPv6 Transition October 2003

 into the program. The construct like below should be avoided:

 /* BAD EXAMPLE */
 switch (sa->sa_family) {
 case AF_INET:
 salen = sizeof(struct sockaddr_in);
 break;
 }

 Instead, we should use the ai_addrlen member of the addrinfo
 structure, as returned by getaddrinfo().

 The gethostbyname(), gethostbyaddr(), getservbyname(), and
 getservbyport() are mainly used to get server and client sockets.
 Following, we will see simple examples to create these sockets
 using the new IPv6 resolution functions.

6.2.1 Example of overly simplistic TCP server application

 A simple TCP server socket at service name (or port number string)
 SERVICE:

 /*
 * BAD EXAMPLE: does not implement the getaddrinfo loop as
 * specified in 6.3. This may result in one of the following:
 * - an IPv6 server, listening at the wildcard address,
 * allowing IPv4 addresses through IPv4-mapped IPv6 addresses.
 * - an IPv4 server, if IPv6 is not enabled,
 * - an IPv6-only server, if IPv6 is enabled but IPv4-mapped IPv6
 * addresses are not used by default, or
 * - no server at all, if getaddrinfo supports IPv6, but the
 * system doesn't, and socket(AF_INET6, ...) exists with an
 * error.
 */
 struct addrinfo hints, *res;
 int error, sockfd;

 memset(&hints, 0, sizeof(hints));
 hints.ai_flags = AI_PASSIVE;
 hints.ai_family = AF_UNSPEC;
 hints.ai_socktype = SOCK_STREAM;

 error = getaddrinfo(NULL, SERVICE, &hints, &res);
 if (error != 0) {
 /* handle getaddrinfo error */
 }

 sockfd = socket(res->family, res->ai_socktype, res->ai_protocol);

 if (sockfd < 0) {
 /* handle socket error */
 }

Shin et al. Expires April 2004 [Page 16]

INTERNET-DRAFT Application Aspects of IPv6 Transition October 2003

 if (bind(sockfd, res->ai_addr, res->ai_addrlen) < 0) {
 /* handle bind error */
 }

 /* ... */

 freeaddrinfo(res);

6.2.2 Example of overly simplistic TCP client application

 A simple TCP client socket connecting to a server which is running
 at node name (or IP address presentation format) SERVER_NODE and
 service name (or port number string) SERVICE:

 /*
 * BAD EXAMPLE: does not implement the getaddrinfo loop as
 * specified in 6.3. This may result in one of the following:
 * - an IPv4 connection to the IPv4 destination,
 * - an IPv6 connection to an IPv6 destination,
 * - an attempt to try to reach an IPv6 destination (if AAAA
 * record found), but failing -- without fallbacks -- because:
 * o getaddrinfo supports IPv6 but the system does not
 * o IPv6 routing doesn't exist, so falling back to e.g. TCP
 * timeouts
 * o IPv6 server reached, but service not IPv6-enabled or
 * firewalled away
 * - if the first destination is not reached, there is no
 * fallback to the next records
 */
 struct addrinfo hints, *res;
 int error, sockfd;

 memset(&hints, 0, sizeof(hints));
 hints.ai_family = AF_UNSPEC;
 hints.ai_socktype = SOCK_STREAM;

 error = getaddrinfo(SERVER_NODE, SERVICE, &hints, &res);
 if (error != 0) {
 /* handle getaddrinfo error */
 }

 sockfd = socket(res->family, res->ai_socktype, res->ai_protocol);
 if (sockfd < 0) {
 /* handle socket error */
 }

 if (connect(sockfd, res->ai_addr, res->ai_addrlen) < 0) {
 /* handle connect error */

 }

 /* ... */

Shin et al. Expires April 2004 [Page 17]

INTERNET-DRAFT Application Aspects of IPv6 Transition October 2003

 freeaddrinfo(res);

6.2.3 Binary/Presentation format conversion

 In addition, we should consider the binary and presentation address
 format conversion APIs. The following functions convert network
 address structure in its presentation address format and vice
 versa:

 inet_ntop()
 inet_pton()

 Both are from the basic socket extensions for IPv6. Since these
 functions are not protocol independent, we should write code for
 the different address families.

 A more detailed examples are described in appendix A.

 Note that inet_ntop()/inet_pton() lose the scope identifier (if
 used e.g. with link-local addresses) in the conversions, contrary
 to the getaddrinfo()/getnameinfo() functions.

6.3 Iterated jobs for finding the working address

 In a client code, when multiple addresses are returned from
 getaddrinfo(), we should try all of them until connection succeds.
 When a failure occurs with socket(), connect(), bind(), or some
 other function, go on to try the next address.

 In addition, if something is wrong with the socket call because the
 address family is not supported (i.e., in case of section 4.4),
 applications should try the next address structure.

 Note: in the following examples, the socket() return value error
 handling could be simplied by substituting special checking of
 specific error numbers by always continuing on with the socket
 loop. Whether this is a better idea should be considered in more
 detail.

 6.3.1 Example of TCP server application

 The previous example TCP server example should be written:

 #define MAXSOCK 2
 struct addrinfo hints, *res;

 int error, sockfd[MAXSOCK], nsock=0;

 memset(&hints, 0, sizeof(hints));

Shin et al. Expires April 2004 [Page 18]

INTERNET-DRAFT Application Aspects of IPv6 Transition October 2003

 hints.ai_flags = AI_PASSIVE;
 hints.ai_family = AF_UNSPEC;
 hints.ai_socktype = SOCK_STREAM;

 error = getaddrinfo(NULL, SERVICE, &hints, &res);
 if (error != 0) {
 /* handle getaddrinfo error */
 }

 for (aip=res; aip && nsock < MAXSOCK; aip=aip->ai_next) {
 sockfd[nsock] = socket(aip->ai_family,
 aip->ai_socktype,
 aip->ai_protocol);

 if (sockfd[nsock] < 0) {
 switch errno {
 case EAFNOSUPPORT:
 case EPROTONOSUPPORT:
 /*
 * e.g., skip the errors until
 * the last address family,
 * see section 4.4.
 */
 if (aip->ai_next)
 continue;
 else {
 /* handle unknown protocol errors */
 break;
 }
 default:
 /* handle other socket errors */
 ;
 }

 } else {
 int on = 1;
 /* optional: works better if dual-binding to wildcard
 address */
 if (aip->ai_family == AF_INET6) {
 setsockopt(sockfd[nsock], IPPROTO_IPV6, IPV6_V6ONLY,
 (char *)&on, sizeof(on));
 /* errors are ignored */
 }
 if (bind(sockfd[nsock], aip->ai_addr,
 aip->ai_addrlen) < 0) {
 /* handle bind error */
 close(sockfd[nsock]);
 continue;

 }
 if (listen(sockfd[nsock], SOMAXCONN) < 0) {
 /* handle listen errors */
 close(sockfd[nsock]);

Shin et al. Expires April 2004 [Page 19]

INTERNET-DRAFT Application Aspects of IPv6 Transition October 2003

 continue;
 }
 }
 nsock++;
 }
 freeaddrinfo(res);

 /* check that we were able to obtain the sockets */

6.3.2 Example of TCP client application

 The previous TCP client example should be written:

 struct addrinfo hints, *res, *aip;
 int sockfd, error, afNotSupp;

 memset(&hints, 0, sizeof(hints));
 hints.ai_family = AF_UNSPEC;
 hints.ai_socktype = SOCK_STREAM;

 error = getaddrinfo(SERVER_NODE, SERVICE, &hints, &res);
 if (error != 0) {
 /* handle getaddrinfo error */
 }

 for (aip=res; aip; aip=aip->ai_next) {

 sockfd = socket(aip->ai_family,
 aip->ai_socktype,
 aip->ai_protocol);

 if (sockfd < 0) {
 switch errno {
 case EAFNOSUPPORT:
 case EPROTONOSUPPORT:
 /*
 * e.g., skip the errors until
 * the last address family,
 * see section 4.4.
 */
 if (aip->ai_next)
 continue;
 else {
 /* handle unknown protocol errors */
 break;
 }

 default:

 /* handle other socket errors */
 ;
 }

Shin et al. Expires April 2004 [Page 20]

INTERNET-DRAFT Application Aspects of IPv6 Transition October 2003

 } else {
 if (connect(sockfd, aip->ai_addr, aip->ai_addrlen) == 0)
 break;

 /* handle connect errors */
 close(sockfd);
 sockfd=-1;
 }
 }

 if (sockfd > 0) {
 /* socket connected to server address */

 /* ... */
 }

 freeaddrinfo(res);

7. Transition mechanism considerations

 A mechanism, [NAT-PT], introduces a special set of addresses,
 formed of NAT-PT prefix and an IPv4 address; this refers to IPv4
 addresses, translated by NAT-PT DNS-ALG. In some cases, one might
 be tempted to handle these differently.

 However, IPv6 applications must not be required to distinguish
 "normal" and "NAT-PT translated" addresses (or any other kind of
 special addresses, including the IPv6-mapped IPv4-addresses): that
 would be completely unscalable, and if such distinction must be
 made, it must be done elsewhere (e.g. kernel, system libraries).

8. Security considerations

 TBD.

 One particular point about application transition is how IPv4-
 mapped IPv6-addresses are handled. The use in the API can be seen
 as both a merit (easier application transition) and as a burden
 (difficulty in ensuring whether the use was legimate) [V6MAPPED].
 This may have to be considered in more detail.

9. References

 Normative References

 [RFC 3493] R. Gilligan, S. Thomson, J. Bound, W. Stevens, "Basic

 Socket Interface Extensions for IPv6," RFC 3493, February
 2003.

Shin et al. Expires April 2004 [Page 21]

https://datatracker.ietf.org/doc/html/rfc3493

INTERNET-DRAFT Application Aspects of IPv6 Transition October 2003

 [RFC 3542] W. Stevens, M. Thomas, E. Nordmark, T. Jinmei, "Advanced
 Sockets Application Program Interface (API) for IPv6,"

RFC 3542, May 2003.

 [BIS] K. Tsuchiya, H. Higuchi, Y. Atarashi, "Dual Stack Hosts
 using the "Bump-In-the-Stack" Technique (BIS)," RFC 2767,
 February 2000.

 [BIA] S. Lee, M-K. Shin, Y-J. Kim, E. Nordmark, A. Durand,
 "Dual Stack Hosts using "Bump-in-the-API" (BIA)," RFC

3338, October 2002.

 [2893BIS] E. Nordmark, "Transition Mechanisms for IPv6 Hosts and
 Routers," <draft-ietf-v6ops-mech-v2-02.txt>, February 2003,
 Work-in-progress.

 [RFC 2460] S. Deering, R. Hinden, "Internet Protocol, Version 6
 (IPv6) Specification,", RFC 2460, December 1998.

 [RFC 3484] R. Draves, "Default Address Selection for IPv6,"
RFC 3484, February 2003.

 Informative References

 [RFC 2732] R. Hinden, B. Carpenter, L. Masinter, "Format for Literal
 IPv6 Addresses in URL's," RFC 2732, December 1999.

 [NAT-PT] G. Tsirtsis, P. Srisuresh, "Network Address Translation
 - Protocol Translation (NAT-PT)," RFC 2766, February 2000.

 [DNS] A. Durand, J. Ihren, "DNS IPv6 transport operational
 guidelines," <draft-ietf-dnsop-ipv6-transport-guidelines-

00.txt>, June 2003, Work in Progress.

 [AF-APP] Jun-ichiro itojun Hagino, "Implementing AF-independent
 application", http://www.kame.net/newsletter/19980604/,
 2001.

 [V6MAPPED] Jun-ichiro itojun Hagino, "IPv4 mapped address
 considered harmful", <draft-itojun-v6ops-v4mapped-

harmful-00.txt>, work-in-progress, Apr 2002.

Authors' Addresses
 Myung-Ki Shin
 ETRI PEC
 161 Kajong-Dong, Yusong-Gu, Taejon 305-350, Korea
 Tel : +82 42 860 4847

https://datatracker.ietf.org/doc/html/rfc3542
https://datatracker.ietf.org/doc/html/rfc2767
https://datatracker.ietf.org/doc/html/rfc3338
https://datatracker.ietf.org/doc/html/rfc3338
https://datatracker.ietf.org/doc/html/draft-ietf-v6ops-mech-v2-02.txt
https://datatracker.ietf.org/doc/html/rfc2460
https://datatracker.ietf.org/doc/html/rfc3484
https://datatracker.ietf.org/doc/html/rfc2732
https://datatracker.ietf.org/doc/html/rfc2766
https://datatracker.ietf.org/doc/html/draft-ietf-dnsop-ipv6-transport-guidelines-00.txt
https://datatracker.ietf.org/doc/html/draft-ietf-dnsop-ipv6-transport-guidelines-00.txt
http://www.kame.net/newsletter/19980604/
https://datatracker.ietf.org/doc/html/draft-itojun-v6ops-v4mapped-harmful-00.txt
https://datatracker.ietf.org/doc/html/draft-itojun-v6ops-v4mapped-harmful-00.txt

 Fax : +82 42 861 5404
 E-mail : mkshin@pec.etri.re.kr

Shin et al. Expires April 2004 [Page 22]

INTERNET-DRAFT Application Aspects of IPv6 Transition October 2003

 Yong-Guen Hong
 ETRI PEC
 161 Kajong-Dong, Yusong-Gu, Taejon 305-350, Korea
 Tel : +82 42 860 6447
 Fax : +82 42 861 5404
 E-mail : yghong@pec.etri.re.kr

 Jun-ichiro itojun HAGINO
 Research Laboratory, Internet Initiative Japan Inc.
 Takebashi Yasuda Bldg.,
 3-13 Kanda Nishiki-cho,
 Chiyoda-ku,Tokyo 101-0054, JAPAN
 Tel: +81-3-5259-6350
 Fax: +81-3-5259-6351
 E-mail: itojun@iijlab.net

 Pekka Savola
 CSC/FUNET
 Espoo, Finland
 E-mail: psavola@funet.fi

 Eva M. Castro
 Rey Juan Carlos University (URJC)
 E-mail : eva@gsyc.escet.urjc.es

Appendix A. Binary/Presentation format conversions

 The following functions convert network address structure in its
 presentation address format and vice versa:

 inet_ntop()
 inet_pton()

 Both are from the basic socket extensions for IPv6. Since these
 functions are not protocol independent, we should write code for
 the different address families.

 A more detailed examples are follows.

A.1 Network address to presentation format

 Conversions from network address structure to presentation format
 can be written:

 struct sockaddr_storage ss;

 char addrStr[INET6_ADDRSTRLEN];

 /* fill ss structure */

Shin et al. Expires April 2004 [Page 23]

INTERNET-DRAFT Application Aspects of IPv6 Transition October 2003

 switch (ss.ss_family) {

 case AF_INET:
 inet_ntop(ss.ss_family,
 &((struct sockaddr_in *)&ss)->sin_addr,
 addrStr,
 sizeof(addrStr));
 break;

 case AF_INET6:
 inet_ntop(ss.ss_family,
 &((struct sockaddr_in6 *)&ss)->sin6_addr,
 addrStr,
 sizeof(addrStr));

 break;

 default:
 /* handle unknown family */
 }

 Note, the destination buffer addrStr should be long enough to
 contain the presentation address format: INET_ADDRSTRLEN for IPv4
 and INET6_ADDRSTRLEN for IPv6. Then, INET_ADDR_STRLEN should be at
 least the maximum between them.

 However, this conversion is protocol dependent. We can write the
 same conversion using getnameinfo() in a protocol independent way.

 struct sockaddr_storage ss;
 char addrStr[INET6_ADDRSTRLEN];
 char servStr[NI_MAXSERV];
 int error;

 /* fill ss structure */

 error = getnameinfo((struct sockaddr *)&ss, sizeof(ss),
 addrStr, sizeof(addrStr),
 servStr, sizeof(servStr),
 NI_NUMERICHOST);

A.2 presentation format to network address

 Conversions from presentation format to network address structure
 can be written as follows:

 struct sockaddr_storage ss;
 struct sockaddr_in *sin;

 struct sockaddr_in6 *sin6;
 char addrStr[INET6_ADDRSTRLEN];

Shin et al. Expires April 2004 [Page 24]

INTERNET-DRAFT Application Aspects of IPv6 Transition October 2003

 /* fill addrStr buffer and ss.ss_family */

 switch (ss.ss_family) {
 case AF_INET:
 sin = (struct sockaddr_in *)&ss;
 inet_pton(ss.ss_family,
 addrStr,
 (sockaddr *)&sin->sin_addr));
 break;

 case AF_INET6:
 sin6 = (struct sockaddr_in6 *)&ss;
 inet_pton(ss.ss_family,
 addrStr,
 (sockaddr *)&sin6->sin6_addr);
 break;

 default:
 /* handle unknown family */
 }

 Note, the address family of the presentation format must be known.

 This conversion may be also written in a protocol independent way
 using getaddrinfo().

 struct addrinfo hints, *res;
 char addrStr[INET6_ADDRSTRLEN];
 int error;

 /* fill addrStr buffer */

 memset(&hints, 0, sizeof(hints));
 hints.ai_family = AF_UNSPEC;

 error = getaddrinfo(addrStr, NULL, &hints, &res);
 if (error != 0) {
 /* handle getaddrinfo error */
 }

 /* res->ai_addr contains the network address structure */
 /* ... */

 freeaddrinfo(res);

Intellectual Property Statement

 The IETF takes no position regarding the validity or scope of any

 intellectual property or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights

Shin et al. Expires April 2004 [Page 25]

INTERNET-DRAFT Application Aspects of IPv6 Transition October 2003

 might or might not be available; neither does it represent that it
 has made any effort to identify any such rights. Information on the
 IETF's procedures with respect to rights in standards-track and
 standards-related documentation can be found in BCP-11. Copies of
 claims of rights made available for publication and any assurances
 of licenses to be made available, or the result of an attempt made
 to obtain a general license or permission for the use of such
 proprietary rights by implementors or users of this specification
 can be obtained from the IETF Secretariat.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights which may cover technology that may be required to practice
 this standard. Please address the information to the IETF Executive
 Director.

Full Copyright Statement

 Copyright (C) The Internet Society (2003). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain
 it or assist in its implementation may be prepared, copied,
 published and distributed, in whole or in part, without restriction
 of any kind, provided that the above copyright notice and this
 paragraph are included on all such copies and derivative works.
 However, this document itself may not be modified in any way, such
 as by removing the copyright notice or references to the Internet
 Society or other Internet organizations, except as needed for the
 purpose of developing Internet standards in which case the
 procedures for copyrights defined in the Internet Standards process
 must be followed, or as required to translate it into languages
 other than English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assignees.

 This document and the information contained herein is provided on
 an "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR
 IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
 THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the

https://datatracker.ietf.org/doc/html/bcp11

 Internet Society.

Shin et al. Expires April 2004 [Page 26]

