
Network Working Group M. Shore
Internet-Draft D. McGrew
Expires: March 11, 2007 Cisco Systems
 September 7, 2006

An Authorized IP Firewall Control Application
draft-shore-afwc-00.txt

Status of this Memo

 By submitting this Internet-Draft, each author represents that any
 applicable patent or other IPR claims of which he or she is aware
 have been or will be disclosed, and any of which he or she becomes
 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on March 11, 2007.

Copyright Notice

 Copyright (C) The Internet Society (2006).

Abstract

 The Authorized Firewall Control Protocol provides an interface that
 allows network entities to request firewall and NAT services and
 resources. It is an instance of a protocol that provides
 authorizations and other security servcies, and interworks with other
 such instances. AFWC uses its authorization facilities to provide
 network administrators more control over network border admissions
 decisions than is provided by other firewall pinholing protocols.

Shore & McGrew Expires March 11, 2007 [Page 1]

https://datatracker.ietf.org/doc/html/bcp79#section-6
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet-Draft AFWC September 2006

Table of Contents

1. Introduction . 3
2. Network scenarios . 4
3. Transport . 6
4. Pinholes . 8
4.1. Firewall pinholes . 8
4.2. NAT Table mappings . 8

5. Access Type . 9
6. Message Exchanges . 10
6.1. Open Pinhole Exchange 10
6.1.1. Start message . 10
6.1.2. Offer Message . 10
6.1.3. Request message 11
6.1.4. Response message 12

6.2. Close Pinhole Exchange 13
7. Data formats . 15
7.1. IPV4_SELECTOR . 15
7.2. IPV6_SELECTOR . 16
7.3. NAT_TUPLE . 16
7.4. INFO . 17
7.5. NAT_INFO . 18
7.6. ICMP_MESSAGE . 19
7.7. PINHOLE_ID . 20
7.8. APPLICATION_ID . 21

8. Traffic Flows . 23
9. Responder Discovery . 24
10. Authorizations . 25
11. NAT discussion . 27
11.1. Stand-alone NAT . 27
11.2. The NAT is co-resident with the firewall 27
11.3. There is a NAT between the controller and the firewall . . 28

12. NAT call flow examples . 29
12.1. Calling endpoint is NATted, controls firewall 29
12.2. Calling endpoint is NATted, CCS controls firewall 30
12.3. Called endpoint NATted 31

13. Failover . 33
14. Security Considerations 34
Appendix A. Acknowledgements 35

 Authors' Addresses . 36
 Intellectual Property and Copyright Statements 37

Shore & McGrew Expires March 11, 2007 [Page 2]

Internet-Draft AFWC September 2006

1. Introduction

 This specification defines a protocol for establishing and managing
 firewall pinholes, and a formal model for evaluating pinhole requests
 against a pre-established set of authorizations. The design relies
 on a lower layer in the system to provide cryptographic protections,
 and to provide the authorizations of the other endpoint.

 In this document we refer to a "firewall control application." The
 application actually supports requests to both firewalls and NATs,
 and while we do not consider NAT to be a type of firewall or to be a
 security device in general, we recognize that there are substantial
 semantic, topological, and protocol similarities between asking for a
 firewall pinhole and asking for a NAT table mapping. For the sake of
 convenience we will refer to a firewall control application
 throughout this document, acknowledging that in reality the
 application includes NAT, a non-firewall function.

Shore & McGrew Expires March 11, 2007 [Page 3]

Internet-Draft AFWC September 2006

2. Network scenarios

 Participants in an AFWC dialogue include an initiator, a responder,
 and an authenticationserver. In the firewall control application,
 the "initiator" is the entity requesting a firewall pinhole or
 service, or NAT table mapping. This might be, for example, an IP
 telephony call control server, or a network gaming endpoint. The
 "responder" is the firewall or NAT, and the authentication server is
 the server providing authentication and authorization services to the
 initiator and responder.

 In this document we will use "initiator" and "responder" to describe
 protocol participants.

 Firewall control is typically seen as between elements in the same
 network, allowing implicit authorization based on topological
 considerations such as sharing of address space. For example,

 ______________ _____________
 / \ / \
 / Local \ / Public \
 | network ------ internet |
 | _| FW | |
 | __--- ------ |
 \ CCS---- / \ /
 ______________/ _____________/

 In this figure, a VoIP call control server ("CCS") establishes a
 request connection to a firewall ("FW").

 However, it may be the case in some instances or for some
 applications that an external entity, outside of the local network or
 address space, may wish to request pinholes or other resources from
 the firewall.

 ______________ _____________
 / \ / \
 / Local \ / Public \
 | network ------ internet |
 | | FW |-_ |
 | ------ -__ |
 \ / \ -- CCS /
 ______________/ _____________/

Shore & McGrew Expires March 11, 2007 [Page 4]

Internet-Draft AFWC September 2006

 In this scenario the trust relationships will need to be made
 explicit, and there may be substantial changes to the security
 considerations.

Shore & McGrew Expires March 11, 2007 [Page 5]

Internet-Draft AFWC September 2006

3. Transport

 AFWC relies on a cryptographic layer for transport and to provide
 authorizations of the other endpoint. The following cryptographic
 services MUST be provided by the crypto layer:

 o entity authentication of the peer

 o confidentiality of all messages sent to and from the peer

 o message authentication on all messages sent to and from the peer

 o protection from replayed messages

 o protection from reflected messages.

 In addition, the lower layer MUST establish the authorizations of the
 peer in a secure and reliable manner and pass these authorizations to
 this protocol.

 The messages are framed using the following format. The REQUEST
 (Figure 3) and RESPONSE (Figure 4) elements convey arbitrary data in
 their Body fields. This data is meant to convey a request or a
 response. The Access Type Identifier (ATI) field (Section 5)
 indicates the type of access that is being requested. The Body field
 is interpreted according to the value of the ATI field. The Request
 Identifier field is used to match replies to requests. That field
 can be set to any value by the sender of a REQUEST; these values
 SHOULD be distinct. The receiver of a REQUEST element MUST set that
 field of the corresponding RESPONSE element to the same value.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |M|R| Typecode = REQUEST | Length |
 +-+
 | Request Identifier |
 +-+
 | Access Type Identifier |
 +-+
 | |
 ~ Body ~
 | |
 +-+

 Figure 3

Shore & McGrew Expires March 11, 2007 [Page 6]

Internet-Draft AFWC September 2006

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |M|R| Typecode = RESPONSE | Length |
 +-+
 | Request Identifier |
 +-+
 | Access Type Identifier |
 +-+
 | |
 ~ Body ~
 | |
 +-+

 Figure 4

Shore & McGrew Expires March 11, 2007 [Page 7]

Internet-Draft AFWC September 2006

4. Pinholes

4.1. Firewall pinholes

 In this specification, a pinhole is a traffic flow that the firewall
 permits, which can be very narrowly scoped. For example, a pinhole
 can be created that allows VoIP traffic to flow between a phone
 behind the firewall and a phone outside the firewall, but which does
 not allow traffic from any other hosts outside the firewall to reach
 the phone behind the firewall. The definition of a traffic flow used
 in this specification appears below.

 Each pinhole is associated with a PINHOLE_ID value, which can be used
 to uniquely identify the pinhole, and a timer value that indicates
 when the pinhole is to expire.

 A pinhole corresponds to a "permit" statement, in that it only allows
 traffic through the firewall, and cannot cause traffic to be blocked.
 There is no equivalent "deny" statement in this specification. This
 design decision makes the application simpler and should make
 implementations easier to manage. (n.b. this should not in any way be
 construed as suggesting that an application cannot request the
 closure of a pinhole it created -- see below)

 An initiator MAY request a pinhole for which the traffic flow is
 already allowed through the responder (firewall), either in part or
 in whole. In this case, if the responder rejects the request, it
 MUST NOT be construed to indicate that the flow has been blocked.

4.2. NAT Table mappings

 A NAT table mapping is the data structure in a NAT providing the
 mapping between an external {address, port, protocol} tuple and an
 internal, private {address, port, protocol} tuple. In some types of
 NAT there may be additional data associated with the mapping. For
 example, in a symmetric NAT each mapping is also associated with one
 external peer. Those additional data are opaque to the endpoint and
 are internal to the NAT.

 A NAT table mapping is represented by a PINHOLE_ID value, as well.

Shore & McGrew Expires March 11, 2007 [Page 8]

Internet-Draft AFWC September 2006

5. Access Type

 The IP Firewall Control application is identified by an Access Type
 Code of ACCESS_TYPE_FW_CTL. The cryptographic and authorization
 layers use this code in order to deliver the IP Firewall Control
 messages to the appropriate application on each participating device.
 The Access Type Code identifies an authorization application in the
 same way that a well-known TCP port identifies a service on a host.

Shore & McGrew Expires March 11, 2007 [Page 9]

Internet-Draft AFWC September 2006

6. Message Exchanges

 This section defines the IP Firewall application protocol. We use
 the notation that T* denotes zero or more instances of the term T, T+
 denotes one or more instances of the term T, and T? denotes zero or
 one instances of the term T. In this section, I is the initiator, a
 device that is making an access control request to the firewall, and
 R is the responder, which is the firewall itself. 'I' refers to the
 initiator (the entity requesting pinholes) and 'R' refers to the
 responder, which in this case is the firewall.

 The crypto layer and transport layer operate below the application
 layer, and provide the essential security services and reliable data
 transport. The application layer contains the "access control
 dialog". It contains four messages: Start, Offer, Request, and
 Response. These messages are described below along with the data
 formats and the semantics used in the IP Firewall Control
 application.

6.1. Open Pinhole Exchange

 An initiator begins an Open Pinhole exchange in order to cause a
 responder to allow a particular traffic flow. The flow is described
 by one or more IPV4_SELECTOR or IPV6_SELECTOR TLVs, and is associated
 with a particular PINHOLE_ID.

 +----------+--------+---+
 | Message | Flow | Format |
 +----------+--------+---+
Start	I -> R	<empty>		
Offer	R -> I	(PINHOLE_ID (IPV4_SELECTOR	IPV6_SELECTOR)*	
)	INFO	
Request	I -> R	PINHOLE_ID (IPV4_SELECTOR	IPV6_SELECTOR)?	
		NAT_TUPLE?	INFO	
Response	R -> I	PINHOLE_ID INFO?	NAT_INFO?	
 +----------+--------+---+

6.1.1. Start message

 The Start message is sent by the initiator to the responder to
 initiate the authorization exchange. The message body is empty.

6.1.2. Offer Message

 A responder constructs the Offer message as follows. First, it MUST

Shore & McGrew Expires March 11, 2007 [Page 10]

Internet-Draft AFWC September 2006

 check the authorizations of the initiator to make sure that it is
 authorized to act as a controller (see the section on
 Authorizations). If it is not, then the Offer message MUST contain
 an INFO element with Status Code ERROR and Info Code
 ACCESS_NOT_ALLOWED, and the session must be terminated. Otherwise,
 the responder encodes into the Offer a PINHOLE_ID that is not
 currently in use, which will be associated with the pinhole created
 by the session, if it completes successfully. The responder MAY send
 one or more IPV4_SELECTOR or IPV6_SELECTOR TLV element(s) describing
 the traffic that it is willing to allow. The use of these elements
 provides basic capability discovery and topology discovery . The
 responder indicates to the authorization system the maximum time,
 expressed as a number of seconds, that it is willing to allow a
 pinhole to remain open. This value is used by the authorization
 system, and is also conveyed to the initiator.

 A responder that also does NAT, or a stand-alone NAT, MUST include an
 INFO element that has a Status Code of CAPABILITIES with the NAT flag
 set.

 The responder MAY include INFO elements that indicate other
 conditions, though the controller MAY ignore them.

 An initiator processes an Offer message as follows. First, it MUST
 check the authorizations of the responder to make sure that it is
 authorized to act as a firewall or NAT (see the section on
 Authorizations). If it is not, then the Offer message MUST contain
 an INFO element with Status Code ERROR and Info Code
 ACCESS_NOT_ALLOWED, and the session must be terminated. If any
 IPV4_SELECTOR or IPV6_SELECTOR element(s) appear in the message, the
 initiator SHOULD use the information to guide the construction of the
 Request.

6.1.3. Request message

 The initiator builds the firewall request by including the PINHOLE_ID
 element sent in the Offer and zero or more IPV4_SELECTOR or
 IPV6_SELECTOR elements that describe the traffic that the initiator
 is requesting to be allowed to traverse the firewall. The initiator
 indicates to the authorization system the minimum time that it would
 like for the pinhole to remain open; this value MUST be no greater
 than the duration indicated with the Offer message. The initiator
 MAY include INFO elements that indicate other conditions, though the
 responder MAY ignore them.

 The initiator builds the NAT request by including the PINHOLE_ID
 element sent in the Offer and one or more NAT_TUPLE elements that
 describe the internal address for which the initiator is requesting a

Shore & McGrew Expires March 11, 2007 [Page 11]

Internet-Draft AFWC September 2006

 mapping. The presence of a NAT_TUPLE element implies that a NAT
 table mapping is being requested, and, by implication, that a
 firewall pinhole request is being requested. There may be cases in
 which there are no SELECTOR elements but one or more NAT_TUPLE
 elements; in that case the request will be treated as being for both
 a NAT table mapping and a firewall pinhole for each NAT_TUPLE
 element. Otherwise the construction of the request message is the
 same as it is for a firewall pinhole request.

 A responder processes a Request message as follows. First, it MUST
 check the authorizations of the initiator to make sure that it is
 authorized to open the pinhole that it has requested (see the section
 on Authorizations). If it is not, then the Offer message MUST
 contain an INFO element with Status Code ERROR and Info Code
 ACCESS_NOT_ALLOWED, and the session must be terminated. Otherwise,
 the responder constructs a Response message. This message serves as
 an acknowledgement.

 NAT processing of the Request message is the same as firewall
 processing of the Request message.

6.1.4. Response message

 The Response message contains the PINHOLE_ID that was included in the
 Offer and the Request. In the firewall case, if nothing goes wrong,
 then this message contains an INFO element with a Status Code of
 NOTIFY and an Info Code of OK. If there are any errors or warnings,
 then the INFO element must be set appropriately. If the duration
 requested by the initiator is greater than the maximum that the
 responder is willing to allow, then the responder SHOULD install the
 pinhole with the maximum duration to which it consents. In this
 case, the firewall SHOULD send an INFO element with Status Code
 WARNING and Info Code of DURATION_TOO_LONG. The responder MUST
 implement the pinhole before sending the Response. The number of
 seconds before the pinhole expires is provided to the authorization
 system, which forwards it to the controller.

 If the request was for a NAT table mapping, the Response message MUST
 also contain a NAT_INFO TLV. The NAT_INFO TLV is used to communicate
 the external address back to the controller.

 An initiator processes a Response as follows. It uses the PINHOLE_ID
 to associate the reply with the request that it made earlier. If an
 INFO element with Status Code NOTIFY and Info Code OK appears in the
 message, and no element with Status Code ERROR appears in the
 message, then the session has concluded successfully. Otherwise, the
 controller MUST NOT assume that the pinhole that it has requested has
 been implemented by the responder. If an INFO element containing

Shore & McGrew Expires March 11, 2007 [Page 12]

Internet-Draft AFWC September 2006

 DURATION_TOO_LONG appears, then the initiator SHOULD be prepared to
 make another Open Pinhole request before the pinhole times out and is
 removed by the responder. The duration conveyed by the authorization
 system indicates the number of seconds that the responder has
 committed to keep the pinhole open.

6.2. Close Pinhole Exchange

 An initiator initiates a Close Pinhole exchange to close a responder
 to a traffic flow that had been previously allowed via an Open
 Pinhole exchange. A Close Pinhole exchange causes the responder to
 reverse the firewall policy changes that were made in the previous
 exchange. The messages for this exchange are outlined in the
 following table.

 +----------+--------+---+
 | Message | Flow | Format |
 +----------+--------+---+
Start	I -> R	<empty>	
Offer	R -> I	(PINHOLE_ID (IPV4_SELECTOR	IPV6_SELECTOR)*
)	INFO
Request	I -> R	CLOSE_PINHOLE PINHOLE_ID+	
Response	R -> I	CLOSE_PINHOLE (PINHOLE_ID	INFO)+
 +----------+--------+---+

 The Start message is empty, as in the Open Pinhole exchange.

 The responder constructs the Offer exactly as done for the Open
 Pinhole exchange (as it must, since at this point in the protocol it
 has no idea whether or not the initiator will be requesting to open
 or close a pinhole).

 The initiator constructs the Request as follows. The PINHOLE_ID sent
 by the responder is ignored. The message MUST start with a
 CLOSE_PINHOLE TLV, which indicates that the initiator is requesting
 that one or more previously created pinholes are to be closed. The
 PINHOLE_ID element associated with the pinhole(s) that the initiator
 wishes to close are included in the message. At least one PINHOLE_ID
 element MUST appear in the message.

 The responder constructs the Reply as follows. The message MUST
 start with a CLOSE_PINHOLE TLV, which acknowledges that the exchange
 will close previously opened pinholes. For each PINHOLE_ID that
 appears in the Request, the responder includes a PINHOLE_ID in the
 Response, followed by a INFO TLV element. The INFO element contains

Shore & McGrew Expires March 11, 2007 [Page 13]

Internet-Draft AFWC September 2006

 a Status Code of NOTIFY and an Info Code of OK if the pinhole was
 closed successfully.

 The Close Pinhole Exchange is the same for NATs as it is for
 firewalls.

Shore & McGrew Expires March 11, 2007 [Page 14]

Internet-Draft AFWC September 2006

7. Data formats

 The IP Firewall application defines the following TLV types:

7.1. IPV4_SELECTOR

 IPV4_SELECTOR encodes a traffic selector, which defines a particular
 IP Version Four packet flow. The firewall uses these values as the
 basis for packet matches. The Value field of an IPV4_SELECTOR TLV
 element consists of the ipv4_selector_t structure shown below, in
 network byte order:

 typedef struct {
 uint32_t src_addr;
 uint32_t src_mask;
 uint32_t dst_addr;
 uint32_t dst_mask;
 uint16_t src_port_lo;
 uint16_t src_port_hi;
 uint16_t dst_port_lo;
 uint16_t dst_port_hi;
 uint16_t protocol;
 uint32_t spi;
 uint16_t reserved;
 } ipv4_selector_t;

 with the fields as follows:

 src_addr: source address in the IP header

 src_mask: a value to mask with the src_addr field

 dst_addr: destination address in the IP header

 dst_mask: a value to mask with the dst_addr field

 src_port_lo: ports may be specified as a range of values; this is
 the low value for the source port in the IP header

 src_port_hi: high value for the range of source ports in the IP
 header

 dst_port_lo: low value for the range of destination ports in the IP
 header

Shore & McGrew Expires March 11, 2007 [Page 15]

Internet-Draft AFWC September 2006

 dst_port_hi: high value for the range of destination ports in the IP
 header

 protocol: the protocol number carried in the IP header

 spi: IPSec SPI.

 The value 0x00 is used in the protocol field to denote a match to any
 protocol.

7.2. IPV6_SELECTOR

 IPV6_SELECTOR encodes a traffic selector, which defines a particular
 IP Version Six packet flow. The Value field of an IPV6_SELECTOR TLV
 element consists of the ipv6_selector_t structure shown below, in
 network byte order:

 typedef struct {
 uint128_t src_addr;
 uint128_t src_mask;
 uint128_t dst_addr;
 uint128_t dst_mask;
 uint32_t flow_label;
 uint16_t src_port_lo;
 uint16_t src_port_hi;
 uint16_t dst_port_lo;
 uint16_t dst_port_hi;
 uint16_t protocol;
 uint16_t reserved;
 } ipv6_selector_t;

 with the fields as described above.

7.3. NAT_TUPLE

 The NAT_TUPLE TLV contains the description of an {address, port,
 protocol} tuple for which a NAT table mapping is being requested. In
 other words, the NAT_TUPLE describes an internal address.

 typedef struct {
 uint32_t addr;
 uint16_t port;
 uint16_t protocol;
 uint32_t hint_addr;
 uint16_t hint_port;
 uint16_t hint_protocol;

Shore & McGrew Expires March 11, 2007 [Page 16]

Internet-Draft AFWC September 2006

 } nat_tuple_t;

 The addr field represents an IPv4 address. Because this is for NAT,
 we assume that we will not need to support NAT functions for IPv6,
 although this may be revisited if necessary.

 When the initiator is making the request on behalf of another party
 (for example, a call control server requesting a media pinhole for a
 VoIP endpoint) the hint_addr, hint_port, and hint_protocol fields
 SHOULD be used to assist a NAT device in resolving ambiguous
 requests. An example of ambiguity would be those cases when the
 NATted address spaces attached to two different interfaces on the
 same NAT use the same or overlapping addresses.

 An example of its use would be for, say, a VoIP call control server
 to use the hint fields to send the {address, port, protocol} tuple of
 the endpoint from which it received signaling to the NAT. The NAT
 would search its mapping tables on all interfaces for a match. If a
 match is found the interface with which the matching mapping is
 associated would be the interface to which the request is applied.

 If the hint fields are not used they MUST be null.

7.4. INFO

 typedef struct {
 uint32_t status_code;
 uint32_t info_code;
 } info_t;

 The Status Code describes the status state machine of the sender of
 the INFO element. If any condition occurred that will prevent the
 successful completion of the exchange, then this field will have the
 value ERROR. This value indicates to the recipient that it MUST NOT
 expect the sender to participate in the exchange any further.

 The Status Codes are:

Shore & McGrew Expires March 11, 2007 [Page 17]

Internet-Draft AFWC September 2006

 +--------------+--+
 | Message | Meaning |
 +--------------+--+
 | OKAY | No error, no message |
 | | |
 | ERROR | An error was encountered |
 | | |
 | CAPABILITIES | This element contains a capabilities description |
 +--------------+--+

 The Info Code provides detailed information, but does not convey any
 information about the base authorization exchange.

 The Info Code values that can be used by the IP Firewall Control
 application are as follows:

 +------------------------+--+
 | Value | Meaning |
 +------------------------+--+
OK	No problems occurred
ACCESS_NOT_ALLOWED	Access is denied due to lack of
	authorization
DURATION_TOO_LONG	Duration requested is too long
BAD_PARAMETER	A bad parameter appeared in a request
TRY_AGAIN	Request cannot be completed, but try
	again
RESOURCE_NOT_AVAILABLE	A resource needed for the request is not
	available
NAT	This device provides NAT functions
 +------------------------+--+

7.5. NAT_INFO

 The NAT_INFO TLV carries the response to the NAT request (implicit in
 the inclusion of a NAT_TUPLE TLV in the Request message). It
 includes both the internal and external addresses.

Shore & McGrew Expires March 11, 2007 [Page 18]

Internet-Draft AFWC September 2006

 typedef struct {
 uint32_t i_addr;
 uint32_t e_addr;
 uint32_t i_port;
 uint32_t e_port;
 uint16_t protocol;
 } nat_info_t;

 where the fields are as follows:

 i_addr: Internal IPv4 address

 e_addr: External IPv4 address

 i_port: Internal port

 e_port: External port

 protocol Protocol (TCP, UDP, SCTP, etc.)

7.6. ICMP_MESSAGE

 typedef struct {
 u_char icmp_type;
 u_char icmp_code;
 } icmp_t;

 ICMP_MESSAGE carries a description of a filter rule for ICMP
 messages, based on ICMP message types and codes.

 The values are as follows:

Shore & McGrew Expires March 11, 2007 [Page 19]

Internet-Draft AFWC September 2006

 ICMP_ECHOREPLY 0
 ICMP_UNREACH 3
 ICMP_UNREACH_NET 0
 ICMP_UNREACH_HOST 1
 ICMP_UNREACH_PROTOCOL 2
 ICMP_UNREACH_PORT 3
 ICMP_UNREACH_NEEDFRAG 4
 ICMP_UNREACH_SRCFAIL 5
 ICMP_UNREACH_NET_UNKNOWN 6
 ICMP_UNREACH_HOST_UNKNOWN 7
 ICMP_UNREACH_ISOLATED 8
 ICMP_UNREACH_NET_PROHIB 9
 ICMP_UNREACH_HOST_PROHIB 10
 ICMP_UNREACH_TOSNET 11
 ICMP_UNREACH_TOSHOST 12
 ICMP_UNREACH_FILTER_PROHIB 13
 ICMP_UNREACH_HOST_PRECEDENCE 14
 ICMP_UNREACH_PRECEDENCE_CUTOFF 15
 ICMP_SOURCEQUENCH 4
 ICMP_REDIRECT 5
 ICMP_REDIRECT_NET 0
 ICMP_REDIRECT_HOST 1
 ICMP_REDIRECT_TOSNET 2
 ICMP_REDIRECT_TOSHOST 3
 ICMP_ECHO 8
 ICMP_ROUTERADVERT 9
 ICMP_ROUTERSOLICIT 10
 ICMP_TIMXCEED 11
 ICMP_TIMXCEED_INTRANS 0
 ICMP_TIMXCEED_REASS 1
 ICMP_PARAMPROB 12
 ICMP_PARAMPROB_ERRATPTR 0
 ICMP_PARAMPROB_OPTABSENT 1
 ICMP_PARAMPROB_LENGTH 2
 ICMP_TSTAMP 13
 ICMP_TSTAMPREPLY 14
 ICMP_IREQ 15
 ICMP_IREQREPLY 16
 ICMP_MASKREQ 17
 ICMP_MASKREPLY 18

7.7. PINHOLE_ID

 typedef struct {
 uint32_t id;
 uint32_t context;

Shore & McGrew Expires March 11, 2007 [Page 20]

Internet-Draft AFWC September 2006

 } pinhole_id_t;

 The PINHOLE_ID is an identifier generated by the responder and
 associated with a particular pinhole. The id field of a PINHOLE_ID
 TLV is 32 bits long, and MAY be treated as an unsigned integer in
 network byte order (e.g. for display to the user). The method by
 which the firewall generates these identifiers is intentionally left
 unspecified, in order to provide maximum flexibility for
 implementations. Of course, each PINHOLE_ID value associated with an
 existing pinhole MUST be unique. Each PINHOLE_ID offered to a
 controller in an Offer message SHOULD be unique, though it is
 acceptable for a controller to offer the same value twice as long as
 it detects this condition and does not attempt to install multiple
 pinholes with the same PINHOLE_ID values.

 The context field carries responder-specific information to
 distinguish context. Examples of contexts include interface
 identifiers and identifiers for virtualized firewalls or NATs.

7.8. APPLICATION_ID

 typedef struct {
 uint16_t id_no;
 char version[14];
 } application_id_t;

 The APPLICATION_ID is a mechanism for identifying the application for
 which the resources (firewall pinholes, NAT table mappings) are being
 requested. It is expected that the information will be used as input
 to a policy-based decision whether or not to grant the request.

 The id_no member represents the application itself. It MUST use the
 well-known port number, allocated by the IANA, for the application.
 In the case where there is no well- known port, such as a Cisco-
 proprietary protocol for which no well-known port has been requested,
 a number outside the IANA registered port range MUST be allocated.

 There are cases in which a protocol uses a dynamically allocated port
 number -- for example, non-tunneled H.245 or RTP. In those cases the
 application_id SHOULD be that of the parent protocol (say, H.225 in
 the case of H.245 or SIP or RTSP in the case of RTP).

 The version field carries a null-terminated ASCII representation of
 the version number. If the version string is 14 octets long no null
 termination is necessary; if the version string is more than 14

Shore & McGrew Expires March 11, 2007 [Page 21]

Internet-Draft AFWC September 2006

 octets in length it MUST be truncated to 14 octets. For example,
 version "6" would appear:

 1 2 3 4
 +-------------+-------------+-------------+-------------+
 0 | 0x36 | 0x00 | | |
 +-------------+-------------+-------------+-------------+
 1 | | | | |
 +-------------+-------------+-------------+-------------+
 2 | | | | |
 +-------------+-------------+-------------+-------------+
 | | | | |
 +-------------+-------------+-------------+-------------+

 while version "3rev1 beta" would be represented as:

 1 2 3 4
 +-------------+-------------+-------------+-------------+
 0 | 0x33 | 0x72 | 0x65 | 0x76 |
 +-------------+-------------+-------------+-------------+
 1 | 0x31 | 0x20 | 0x62 | 0x65 |
 +-------------+-------------+-------------+-------------+
 2 | 0x74 | 0x61 | 0x00 | |
 +-------------+-------------+-------------+-------------+
 | | | | |
 +-------------+-------------+-------------+-------------+

Shore & McGrew Expires March 11, 2007 [Page 22]

Internet-Draft AFWC September 2006

8. Traffic Flows

 A flow is defined as a set of IP packets passing through a particular
 point in the network that match one or more IPV4_SELECTOR or
 IPV6_SELECTOR elements. A selector A matches a packet P when the
 following seven conditions hold:

 1. (A.src_addr AND A.src_mask) equals (P.src_addr AND A.src_mask)

 2. (A.dst_addr AND A.dst_mask) equals (P.dst_addr AND A.dst_mask)

 3. A.src_port_lo <= P.src_port

 4. A.src_port_hi >= P.src_port

 5. A.dst_port_lo <= P.dst_port

 6. A.dst_port_hi >= P.dst_port

 7. A.protocol equals P.protocol, or A.protocol equals zero.

 When the src_addr or dst_addr of a selector is zero, the selector
 will match any source address or destination address, respectively.
 Similarly, a selector with a protocol value of zero will match any
 protocol. In the future, additional selector TLVs may be defined in
 order to express additional information (such as TCP or IP options or
 MPLS labels) or to express a particular sort of flow more compactly
 (such as the UDP port pairs often used in RTP). However, any
 additional selector TLVs will describe what the traffic flow of
 interest is, and will not describe what should be done with it. If,
 for example, a controller needs to express that a particular flow
 should have QoS applied to it, or should be rate-limited, or should
 be monitored or audited, then the specification of the responder
 behavior with respect to the traffic flow MUST be expressed using TLV
 elements that are separate from the selector elements.

Shore & McGrew Expires March 11, 2007 [Page 23]

Internet-Draft AFWC September 2006

9. Responder Discovery

 In some cases, the initiator may need to open a pinhole, but not know
 the responder to which the Open Pinhole exchange should be addressed.
 The authorization interception feature can be used to find the
 appropriate firewall, in some cases.

 A network device that implements the authorization system has the
 capability of intercepting packets that it is forwarding, and acting
 on those packets if appropriate, and forwarding them otherwise. A
 firewall implementing the Authorized IP Firewall Control application
 MAY intercept Start messages for that application. An initiator MAY
 send an Authorized IP Firewall Control message addressed to an end
 host behind a responder onto which a pinhole should be installed.

 Note that in order to discovery multiple nested firewalls, a firewall
 implementing Start message interception SHOULD forward the Start
 message on towards its destination.

 This firewall discovery method will work only when the responder is
 on both the path from the initiator to the end host and the path(s)
 from the end host to the other devices to which it intends to
 communicate over the pinhole. When a network is multi-homed, this
 may not be the case.

Shore & McGrew Expires March 11, 2007 [Page 24]

Internet-Draft AFWC September 2006

10. Authorizations

 We define the following TLV formats, for native authorization:

 The FW_CTL TLV format has a zero-length Value field. It grants
 permission to its holder to control responders to allow the flow of
 traffic described by the TLV elements that follow it. If there are
 no flow-description elements that follow it, then a FW_CTL element
 does not actually convey any authorizations. For example, the
 statement

 FW_CTL IPV4_SELECTOR1 IPV4_SELECTOR2

 grants permission to control any responder to permit the flow of
 traffic described by the two selector elements that follow it.

 The FW TLV format has a zero-length Value field. It grants
 permission to its holder to act as a responder for the traffic
 described by the TLV elements that follow it. If there are no flow-
 description elements that follow a FW element, then the element
 conveys no authorizations. For example, the statement

 FW IPV4_SELECTOR1 IPV4_SELECTOR2 IPV4_SELECTOR3

 grants permission to act as a responder and control the flow of
 traffic described by the three selector elements that follow it.

 A single authorization element MAY contain both a FW_CTL element and
 a FW element. Formally, the authorizations have the format

 ((FW IPV4_SELECTOR+)|(FW_CTL IPV4_SELECTOR+))+

 using the notation described above.

 We say that selector A contains selector B, or B is contained by A,
 whenever every packet that matches selector B also matches selector
 A. This situation occurs if and only if all of the following
 conditions hold:

 1. (A.src_addr AND A.src_mask) equals (B.src_addr AND A.src_mask)

 2. (A.dst_addr AND A.dst_mask) equals (B.dst_addr AND A.dst_mask)

 3. A.src_port_lo <= B.src_port_lo

 4. A.src_port_hi >= B.src_port_hi

Shore & McGrew Expires March 11, 2007 [Page 25]

Internet-Draft AFWC September 2006

 5. A.dst_port_lo <= B.dst_port_lo

 6. A.dst_port_hi >= B.dst_port_hi

 7. A.protocol equals B.protocol, or A.protocol equals zero.

 Note that if A contains B, it is not necessarily true that B contains
 A. However, if A contains B and B contains C, then it follows that A
 contains C.

 When checking authorizations against requests, a responder MUST

 o verify that the selector describing the authorizations granted by
 the server to the initiator (I_AUTHS) are contained in the
 server's authorizations.

 o verify that the selector describing the initiator's request is
 contained in the selector describing the authorizations granted by
 the server to the initiator.

 A future version of this specification may contain other
 authorization elements.

Shore & McGrew Expires March 11, 2007 [Page 26]

Internet-Draft AFWC September 2006

11. NAT discussion

 It may be the case that the firewall being controlled is co-resident
 with a NAT or that there is a NAT between the controller and the
 firewall. It may also be the case that we are controlling a stand-
 alone NAT. This raises some issues, some of which are addressed in
 this document and some of which are for future study.

11.1. Stand-alone NAT

 This is straightforward -- we send requests to the NAT and the NAT
 returns the external address, allowing us to use the external address
 in protocols that make use of embedded addresses, such as VoIP
 protocols or streaming media protocols.

 The behavior of the Authorized IP firewall control protocol is the
 same whether it is being used to control NATs or firewalls, with the
 difference lying in the data elements.

11.2. The NAT is co-resident with the firewall

 In this scenario the firewall should be treated as a stand-alone NAT.
 That is to say, the data elements will include the NAT_TUPLE in the
 Request and the NAT_INFO in the Response. The reason for this is
 that it is assumed that an application would not want an external
 address if it did not also want a firewall pinhole, and it would want
 both resources to have the same lifetime.

 When the Request arrives at the NAT/firewall device, the device MUST
 process the NAT request first, and the results of the NAT processing
 (that is to say, the NAT table mapping) passed to the firewall
 function as part of the pinhole descriptor. If the NAT table mapping
 is not acquired first and used in the filter description, the filter
 rule that will be installed not be correct for processing inbound
 (external->internal) traffic.

 The firewall pinhole for outbound traffic will contain:

 Source address: untranslated internal address

 Source port: untranslated internal port

 Destination address: untranslated peer address

 Destination port: untranslated peer port

 The firewall pinhole for inbound traffic will contain:

Shore & McGrew Expires March 11, 2007 [Page 27]

Internet-Draft AFWC September 2006

 Source address: untranslated peer address

 Source port: untranslated peer port:

 Destination address: translated (external) address

 Destination port: translated (external) port

11.3. There is a NAT between the controller and the firewall

 The issue here is that NAT is transparent to the endpoint. In the
 typical case an endpoint does not know whether or not there is a NAT
 along the path between it and its peer. Even if communication fails
 the endpoint cannot know whether the failure was caused by a NAT
 interaction or some other network failure. When a NAT is present an
 endpoint will not know the external address, which is the correct
 one, to send in a pinhole request. A pinhole descriptor will contain
 the endpoint's local address and port (the address on the network
 interface card and the port number assigned by the local TCP or UDP
 stack). In the case where a NAT is present between an endpoint and
 the firewall on which it's requesting a pinhole, the address and port
 local to the endpoint are not the address and port visible outside
 the NAT, and the pinhole descriptor will not reflect that. The
 pinhole will be for the "wrong" internal address.

Shore & McGrew Expires March 11, 2007 [Page 28]

Internet-Draft AFWC September 2006

12. NAT call flow examples

 Below we show some sample SIP call flows, using the Authorized IP FW
 Control application to acquire NAT table mappings (and open pinholes
 if appropriate) to provide traversal capabilities. In all cases the
 SIP messages are shown in black and the AFWC messages are shown in
 red. These call flows assume the use of a 4-message exchange, which
 may be reduced to two messages in future versions of this document.
 In these examples, the endpoints or their call control servers always
 function as initiators and the NATs always function as responders.

 Because SIP (and, for that matter, H.323, RTSP, and other session-
 oriented protocols) embed addresses in signaling messages it is
 necessary to acquire NAT table mappings before sending an INVITE
 (calling party) or a 200 OK (called party). In firewall-only
 applications the request may be made before or after the signaling
 message is sent, however that entails risking that the application
 signaling progresses even if firewall resources are not available.

 In these examples and in actual use, the endpoint (or its agent, such
 as a call control server) will generally request NAT table entries
 only for the address/port tuples on which it will be listening for
 incoming media. The case in which requests must be made for mappings
 for outbound media is that in which the NAT does not automatically
 allocate mappings for new outbound data streams [ETH] i.e. the NAT is
 entirely controlled and only creates mappings on explicit request.

 In the exceptional case that the NAT is symmetric, both internal and
 external addresses will need to be installed to describe a mapping.

12.1. Calling endpoint is NATted, controls firewall

 In this example the calling party is NATted but is routing signaling
 through a call control server. It is sending AFWC messages to the
 firewall itself. For the sake of simplicity the call flow shows the
 signaling being sent directly to the called party, however in actual
 use it is likely that the signaling would be sent to the called
 party's call control server.

Shore & McGrew Expires March 11, 2007 [Page 29]

Internet-Draft AFWC September 2006

 Calling Caller's Caller's Called
 endpoint NAT CCS Party

 | start | | |
 |------------->| | |
 | | | |
 | offer | | |
 |<-------------| | |
 | | | |
 | request | | |
 |------------->| | |
 | | | |
 | response | | |
 |<-------------| | |
 | | | |
 | INVITE | | |
 |=============> INVITE | |
 | |==============>| INVITE |
 | | |===========>|
 | | | |
 | | | |
 | | | 200 OKAY |
 | | |<===========|
 | 200 OKAY | |
 |<=============================| |
 | | | |
 | | | |

12.2. Calling endpoint is NATted, CCS controls firewall

 In this example the calling endpoint is NATted, as well, however the
 call control server is sending AFWC requests to the firewall/NAT.
 Note that in this example the call control server is topologically
 "outside" the firewall, which has implications for assumptions about
 trust relationships and suggests that the notion of a "trusted
 interface" cannot be relied upon in this case.

Shore & McGrew Expires March 11, 2007 [Page 30]

Internet-Draft AFWC September 2006

 Calling Caller's Caller's Called
 endpoint NAT CCS Party

 | INVITE | | |
 |=============================>| |
 | | | |
 | | start | |
 | |<--------------| |
 | | | |
 | | offer | |
 | |-------------->| |
 | | | |
 | | request | |
 | |<--------------| |
 | | | |
 | | response | |
 | |-------------->| |
 | | | |
 | | | INVITE |
 | | |===========>|
 | | | |
 | | | 200 OKAY |
 | | |<===========|
 | 200 OKAY | |
 |<=============================| |
 | | | |
 | | | |

12.3. Called endpoint NATted

 In this case the called party is NATted but its call control server
 is accessible. The INVITE is sent to the called party's call control
 server, which forwards it to the called party. Note that the call
 control server cannot use AFWC to acquire a NAT table mapping until
 it has received the 200 response from the called endpoint; this is
 because it needs to send the address/port tuple on which the endpoint
 expects to receive media as part of the AFWC request.

Shore & McGrew Expires March 11, 2007 [Page 31]

Internet-Draft AFWC September 2006

 Calling Called party's Called Party's Called
 endpoint CCS NAT Party

 | INVITE | | |
 |=============> | |
 | | INVITE |
 | |===========================>|
 | | | |
 | | 200 OKAY |
 | |<===========================|
 | | | |
 | | start | |
 | |-------------->| |
 | | | |
 | | offer | |
 | |<--------------| |
 | | | |
 | | request | |
 | |-------------->| |
 | | | |
 | | response | |
 | |<--------------| |
 | | | |
 | | | |
 | 200 OKAY | | |
 |<=============| | |
 | | | |
 | | | |

Shore & McGrew Expires March 11, 2007 [Page 32]

Internet-Draft AFWC September 2006

13. Failover

 This application does not define its own failover system, and instead
 recommends that firewalls use the failover mechanisms that they have
 in place. A firewall may not be able to retain pinholes across
 reboots. However, if the firewall implements a checkpointing or
 standby feature, the pinholes SHOULD be included in the state that is
 checkpointed or duplicated on the standby system. The AFWC protocol
 allows for a hot-standby system by allowing one device to respond on
 behalf of another (assuming that the standby device is properly
 authenticated and authorized). This feature should allow existing
 standby systems to implement the AFWC without any additional changes.

 It may be desirable to introduce a secure mechanism by which a
 controller can discover if a firewall has reloaded. One way to do
 this would be to use a 128-bit EPOCH value, which the firewall
 selects randomly at boot time. By including an EPOCH element in the
 Offer, the firewall could securely convey the current epoch to the
 controller. By retaining and comparing epoch values, a controller
 can detect if a firewall has reloaded.

Shore & McGrew Expires March 11, 2007 [Page 33]

Internet-Draft AFWC September 2006

14. Security Considerations

Shore & McGrew Expires March 11, 2007 [Page 34]

Internet-Draft AFWC September 2006

Appendix A. Acknowledgements

 The authors would like to thank Raghu Gyambavantha, Eric Wang, and
 Jan Vilhuber for their comments and suggestions.

Shore & McGrew Expires March 11, 2007 [Page 35]

Internet-Draft AFWC September 2006

Authors' Addresses

 Melinda Shore
 Cisco Systems
 809 Hayts Road
 Ithaca, New York 14850
 USA

 Email: mshore@cisco.com

 David A. McGrew
 Cisco Systems
 510 McCarthy Blvd
 Milpitas, California 95035
 USA

 Email: mcgrew@cisco.com

Shore & McGrew Expires March 11, 2007 [Page 36]

Internet-Draft AFWC September 2006

Intellectual Property Statement

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at

http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Disclaimer of Validity

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Copyright Statement

 Copyright (C) The Internet Society (2006). This document is subject
 to the rights, licenses and restrictions contained in BCP 78, and
 except as set forth therein, the authors retain all their rights.

Acknowledgment

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr
https://datatracker.ietf.org/doc/html/bcp78

Shore & McGrew Expires March 11, 2007 [Page 37]

