
Workgroup: Network Working Group

Internet-Draft:

draft-siloniz-cdni-edge-control-metadata-00

Updates: 8006 (if approved)

Published: 13 March 2023

Intended Status: Standards Track

Expires: 14 September 2023

Authors: A. Siloniz

Telefonica

G. Goldstein

Lumen Technologies

CDNI Edge Control Metadata

Abstract

This specification defines MI configuration metadata objects to

extend RFC 8006 related to controlling edge access to resources via

CDNs and Open Caching systems. Configuring Cross-Origin Resource

Sharing (CORS) access rules and the dynamic generation of CORS

headers is a key feature of typical configurations, as are the

ability to define response body compression rules, client connection

timeouts, and traffic type hints for optimized caching.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 14 September 2023.

Copyright Notice

Copyright (c) 2023 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

¶

¶

¶

¶

¶

¶

https://www.rfc-editor.org/rfc/rfc8006
https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

2. Requirements

3. MI.CrossoriginPolicy

3.1. MI.AccessControlAllowOrigin

4. MI.AllowCompress

5. MI.ClientConnectionControl

6. MI.TrafficType

7. Conclusion

8. Security Considerations

9. IANA Considerations

9.1. CDNI Payload Types

10. Acknowledgements

11. References

11.1. Normative References

11.2. Informative References

Authors' Addresses

1. Introduction

CDNs typically require a set of configuration metadata to inform

processing of responses downstream (at the edge and in the user

agent). This section specifies GenericMetadata objects to meet those

requirements, defining edge processing rules such as CORS handling,

response compressions, and client connection failures.

2. Requirements

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

document are to be interpreted as described in [RFC2119].

3. MI.CrossoriginPolicy

Delegation of traffic between a CDN over an open caching node based

on HTTP redirection does change the domain name in the client

requests. This represents a cross-origin request that must be

managed appropriately using Cross-Origin Resource Sharing (CORS)

headers in the responses.

The dynamic generation of CORS headers is typical in modern HTTP

request processing and avoids CORS validation forwarded to the CDN

origin servers, particularly with the preflight OPTIONS requests.

The CDNI metadata model requires extensions to specify how a CDN or

open caching node should generate and evaluate these headers.

¶

¶

¶

¶

¶

Required capabilities:

Set a default value for CORS response headers independent of the

origin request header value.

Set a default value for CORS response headers independent of

the origin request header value.

Match the origin request header with a list of valid values,

including PatternMatch, to return or not return the CORS

response headers.

Set a list of custom headers that can be exposed to the client

(expose headers).

Support for preflight requests using the OPTIONS method,

including custom header validation, expose headers, and

methods.

Support for credentials validation within CORS.

Simple CORS requests are those where both HTTP method and headers in

the request are included in the safe list defined by the World Wide

Web Consortium [W3C]. The user agent (UA) request can include an

origin header set to the URL domain of the webpage that the player

runs. Depending on the metadata configuration, the logic to apply by

the open caching node (OCN) is:

Validation of the origin header - Metadata can include a list of

valid domains to validate the request origin header. If it does not

match, the CORS header must not be included in the response.

Validation of the origin header - Metadata can include a list

of valid domains to validate the request origin header. If it

does not match, the CORS header must not be included in the

response.

WIldcard usage - Depending on the configuration, the resultant

CORS header to include in the response will be the same as the

request origin header, or a wildcard.

If no validation of request is included in the origin header,

set a default value for CORS response headers independent of

the origin request header value.

When a UA makes a request that includes a method or headers that are

not included in the safe-list, the client will make a CORS preflight

request using the OPTIONS method to the resource including the

origin header. If CORS is enabled and the requests passes the origin

validation, the OCN SHOULD respond with the set of headers that

¶

¶

1.

¶

2.

¶

3.

¶

4.

¶

5. ¶

¶

¶

1.

¶

2.

¶

3.

¶

indicate what is permitted for that resource, including one or more

of the following:

Allowed methods

Allowed methods

Allowed credentials

Allowed request headers

Max age that the OPTIONS request is valid

Headers that can be exposed to the client

When an uCDN configures any of those advanced parameters it is

requesting the dCDN to generate synthetic responses to OPTIONS

requests. Thus, no conditional request is performed to the uCDN

origin. uCDN should configure these values taking that into account.

If some of the advanced parameters are empty, the dCDN would not

send the corresponding header into the UA OPTIONS request.

In case the uCDN only configures the MI.AccessControlAllowOrigin

subobject, the dCDN will not generate synthetic responses to OPTIONS

requests, thus it will validate we the uCDN every OPTIONS request to

obtain the response.

CrossoriginPolicy is a GenericMetadata object that allows for the

specification of dynamically generated CORS headers.

Property: allow-origin

Description: Validation of simple CORS requests.

Type: Object MI.AccessControlAllowOrigin

Mandatory-to-Specify: Yes

Property: expose-headers

Description: A list of values the OCN will include in the

Access-Control-Expose-Headers response header to a preflight

request.

Type: Array of strings

Mandatory-to-Specify: No

¶

¶

1. ¶

2. ¶

3. ¶

4. ¶

5. ¶

¶

¶

¶

¶

- ¶

- ¶

- ¶

¶

-

¶

- ¶

- ¶

Property: allow-methods

Description: A list of values the OCN will include in the

Access-Control-Allow-Methods response header to a preflight

request.

Type: Array of strings

Mandatory-to-Specify: No

Property: allow-headers

Description: A list of values the OCN will include in the

Access-Control-Allow-Headers response header to a preflight

request.

Type: Array of strings

Mandatory-to-Specify: No

Property: allow-credentials

Description: The value the OCN will include in the Access-

Control-Allow-Credentials response header to a preflight

request.

Type: Boolean

Mandatory-to-Specify: No

Property: max-age

Description: The value the OCN will include in the Access-

Control-Max-Age response header to a preflight request.

Type: Integer

Mandatory-to-Specify: No

Property: no-origin-response-headers

Description: In the case of a request that has no Origin

field, return this set of headers with the response.

Type: Array of MI.HTTPHeader

Mandatory-to-Specify: No

¶

-

¶

- ¶

- ¶

¶

-

¶

- ¶

- ¶

¶

-

¶

- ¶

- ¶

¶

-

¶

- ¶

- ¶

¶

-

¶

- ¶

- ¶

Property: apply-to-all-methods

Description: By default the CORS configuration refers to

OPTIONS requests. Setting this flag to true applies the entire

CORS configuration to the other methods as well

Type: Bollean

Default: false

Mandatory-to-Specify: No

3.1. MI.AccessControlAllowOrigin

The MI.AccessControlAllowOrigin object has the following properties:

Property: allow-list

Description: List of valid URLs that will be used to match the

request origin header. The Origin header is a HTTP extension.

Its value is a version of the Referer header in some specific

requests, and used for Cross Origin requests. . Permitted

values are schema://hostname[:port]

Type: Array of PatternMatch objects

Mandatory-to-Specify: Yes

Property: wildcard-return

Description: If "True", the OCN will include a wildcard (*) in

the Access-Control-Allow-Origin response header. If "False",

the OCN will reflect the request origin header in the Access-

Control-Allow-Origin response header.

Type: Boolean

Mandatory-to-Specify: Yes

The examples below demonstrate how to configure response headers

dynamically for CORS validation.

Example 1: A simple CORS validation configuration:

¶

-

¶

- ¶

- ¶

- ¶

¶

¶

-

¶

- ¶

- ¶

¶

-

¶

- ¶

- ¶

¶

¶

Example 2: Validation of a preflight request when some of the

headers included in the subsequent object request are not included

in the CORS specification safelist:

4. MI.AllowCompress

Downstream CDNs often have the ability to compress HTTP response

bodies in cases where the client has declared that it can accept

compressed responses (via an Accept-Encoding header), but the

source/origin has returned an uncompressed response.

The specific compression algorithm used by the dCDN is negotiated by

the client’s Accept-Encoding header according to [RFC9110]

(including q= preferences) and the compression capabilities

available on the dCDN.

{

 "generic-metadata-type": "MI.CrossoriginPolicy",

 "generic-metadata-value": {

 "allow-origin": {

 "allow-list": [

 {

 "pattern": "*"

 }

],

 "wildcard-return": true

 }

 }

}

¶

¶

{

 "generic-metadata-type": "MI.CrossoriginPolicy",

 "generic-metadata-value": {

 "allow-origin": {

 "allow-list": [

 {

 "pattern": "*://sourcepage.example.com"

 },

 "wildcard-return": false

 },

 "allow-methods": ["GET", "POST"],

 "allow-credentials": true,

 "allow-headers": ["X-PINGOTHER", "Content-Type"],

 "expose-headers": ["X-User", "Authorization"],

 "max-age": 3600

 }

 }

}

¶

¶

¶

In addition, HeaderTransform allows the uCDN to normalize, or

modify, the Accept-Encoding header to allow for fine-grain control

over the selection of the compression algorithm (e.g., gzip,

compress, deflate, br, etc.).

AllowCompress is a new GenericMetadata object that allows the dCDN

to compress content before sending to the client.

Property: allow-compress

Description: If set to "True", then the dCDN will try to

compress the response to the client based on the Accept-

Encoding request header.

Type: Boolean

Values: True or False

Mandatory-to-Specify: No. The default is "False".

The following examples illustrate the use of MI.AllowCompress in the

context of the Processing Stages model that allowed for metadata to

be applied conditionally based on evaluation of HTTP request

headers. See the Processing Stages Metadata Specification and

Metadata Model Expression Language (MEL) Specification.

Example 1: An MI.AllowCompress that allows manifests (*.m3u8) to be

compressed by the dCDN:

Example 2: An MI.AllowCompress that allows manifests (*.m3u8) to be

compressed by the dCDN but normalizing the client’s Accept-Encoding

header:

¶

¶

¶

-

¶

- ¶

- ¶

- ¶

¶

¶

{

 "match": {

 "expression": "req.h.uri *= '*.m3u8'"

 },

 "stage-metadata": {

 "generic-metadata": [

 {

 "generic-metadata-type": "MI.AllowCompress",

 "generic-metadata-value": {

 "allow-compress": "true"

 }

 }

]

 }

}

¶

¶

5. MI.ClientConnectionControl

Configuration metadata is required to define how connections against

a client are maintained by a dCDN. Since the clients are typically

owned/operated by a uCDN, giving this control to a uCDN allows it to

accommodate device specific constraints and performance

optimizations. A dCDN can also benefit from this configuration

metadata to meet its security and resource consumption requirements.

ClientConnectionControl is a new GenericMetadata object that

specifies how a dCDN manages its connections to clients/players.

Property: connection-keep-alive-time-ms

Description: Specifies the time in milliseconds to keep an

idle connection open.

Type: Integer

Mandatory-to-Specify: No. When not specified, a default value

selected by the dCDN will be used.

Following example shows how a connection setup and keep alive

timeout can be set for client connections against a dCDN:

{

 "match": {

 "expression": "req.h.accept-encoding *= '*gzip*'"

 },

 "stage-metadata": {

 "generic-metadata": [

 {

 "generic-metadata-type": "MI.AllowCompress",

 "generic-metadata-value": {

 "allow-compress": "true"

 }

 }

]

 }

}

¶

¶

¶

¶

-

¶

- ¶

-

¶

¶

 {

 "generic-metadata-type": "MI.ClientConnectionControl",

 "generic-metadata-value": {

 "connection-keep-alive-time-ms": 3

 }

 }

¶

6. MI.TrafficType

Content delivery networks often apply different infrastructure,

network routes, and internal metadata for different types of

traffic. Delivery of large static objects (such as software

downloads), may, for example, use different edge servers and network

routes than video stream delivery. In an HTTP adaptive bitrate video

service, every video title corresponds to a set of video files and

descriptors according to different video protocols, and this is

independent of the type of service (Video-on-Demand, Live, Catch-up,

etc.).

The way the video service is consumed by the user agents can vary.

For instance, a segment that belongs to a Video-on-Demand (VoD)

title can be requested for every moment the content is available for

the user agents to consume, while a segment of live content will be

only requested as long as the time-shift duration is configured for

that service. Knowing those differences, a CDN or OCN provider can

implement specific strategies that will maximize performance and

thereby provide more available capacity to the upstream provider. It

should be noted that the dCDNs handling of the traffic types is

implementation-specific and not prescribed here.

MI.TrafficType metadata defines a set of descriptors that

characterize either the type or usage of the traffic, enabling CDNs

and OCNs to apply any internal configuration rules without exposing

an unnecessary number of internal details. Note that the

interpretation of these traffic types and application of rules such

as rate limiting or delivery pacing are implementation specific.

Property: traffic-type

Description: A literal that defines the traffic type. uCDN

will use the literal that is most representative of the

traffic being delegated.

Type: Enumeration [vod, live, object-download] encoded as

lowercase string

Mandatory-to-Specify: Yes

Property: hints

Description: Other traffic characteristics that the uCDN can

indicate to the dCDN as suggestions for service optimization.

Accepts free-form unconstrained values.

Type: Array of strings

Mandatory-to-Specify: No

¶

¶

¶

¶

-

¶

-

¶

- ¶

¶

-

¶

- ¶

- ¶

A TrafficType definition example for HostMetadata:

7. Conclusion

The specification has extended the basic CDNI configuration metadata

objects defined in [RFC8006], and can be extended in the future with

additional Edge Control Metadata object definitions.

8. Security Considerations

The FCI and MI objects defined in the present document are

transferred via the interfaces defined in CDNI [RFC8006]. [RFC8006]

describes how to secure these interfaces, protecting the integrity,

confidentiality and ensuring the authenticity of the dCDN and uCDN.

The security provide by [RFC8006] should therefore address the above

security concerns.

9. IANA Considerations

9.1. CDNI Payload Types

TBD.

10. Acknowledgements

The authors would like to express their gratitude to the members of

the Streaming Video Technology Alliance [SVTA] Open Caching Working

Group for their guidance / contribution / reviews ...)

Particulary the following people contribute in one or other way to

the content of this draft:

Guillaume Bichot - Broadpeak

Christoph Neumann - Broadpeak

Pankaj Chaudhari - Disney Streaming Services

Rajeev RK - picoNETS

Yoav Gressel - Qwilt

¶

{

 "generic-metadata-type": "MI.TrafficType",

 "generic-metadata-value": {

 "traffic-type": "vod",

 "hints": ["low-latency", "catch-up"]

 }

}

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

[RFC9110]

[RFC8006]

[RFC2119]

[W3C]

[SVTA]

Arnon Warshavsky - QWilt

Shmuel Asafi . Qwilt

Nir Sopher - Qwilt

Arnon Warshavsky - Qwilt

Ben Rosenblum - Vecima

11. References

11.1. Normative References

Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke,

Ed., "HTTP Semantics", STD 97, RFC 9110, DOI 10.17487/

RFC9110, June 2022, <https://www.rfc-editor.org/info/

rfc9110>.

Niven-Jenkins, B., Murray, R., Caulfield, M., and K. Ma,

"Content Delivery Network Interconnection (CDNI)

Metadata", RFC 8006, DOI 10.17487/RFC8006, December 2016,

<https://www.rfc-editor.org/info/rfc8006>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

11.2. Informative References

"Cross-Origin Resource Sharing", <https://www.w3.org/TR/

2020/SPSD-cors-20200602/>.

"Streaming Video Technology Alliance Home Page",

<https://www.svta.org>.

Authors' Addresses

Alfonso Siloniz

Telefonica

Spain

Email: alfonsosiloniz@gmail.com

Glenn Goldstein

Lumen Technologies

United States of America

Email: glenng1215@gmail.com

¶

¶

¶

¶

¶

https://www.rfc-editor.org/info/rfc9110
https://www.rfc-editor.org/info/rfc9110
https://www.rfc-editor.org/info/rfc8006
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.w3.org/TR/2020/SPSD-cors-20200602/
https://www.w3.org/TR/2020/SPSD-cors-20200602/
https://www.svta.org
mailto:alfonsosiloniz@gmail.com
mailto:glenng1215@gmail.com

	CDNI Edge Control Metadata
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Requirements
	3. MI.CrossoriginPolicy
	3.1. MI.AccessControlAllowOrigin

	4. MI.AllowCompress
	5. MI.ClientConnectionControl
	6. MI.TrafficType
	7. Conclusion
	8. Security Considerations
	9. IANA Considerations
	9.1. CDNI Payload Types

	10. Acknowledgements
	11. References
	11.1. Normative References
	11.2. Informative References

	Authors' Addresses

