
Internet Engineering Task Force Audio-Video Transport WG
INTERNET-DRAFT D. Singer
draft-singer-rtp-qtfile-01.txt Apple Computer, Inc.
 October 22 1999
 Expires : April 22 1999

Support for RTP in a stored QuickTime Movie File

Status of This Memo

 This document is an Internet-Draft and is NOT offered in accordance
 with Section 10 of RFC2026, and the author does not provide the IETF
 with any rights other than to publish as an Internet-Draft. In
 addition, a license may be required to implement some aspects of this
 format.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

Abstract

 This document documents structures within a QuickTime movie file
 which permit easy transmission of the media content over RTP. This
 specification is intended to assist those who wish to stream stored
 movies over RTP, those wishing to prepare movies for streaming, and
 for those who might wish to record into QuickTime while preserving
 RTP information. The bit-stream(s) of RTP packets are normally
 compliant with the RTP payload definitions for their content, and
 full inter-operability can be achieved. Each QuickTime media track
 within a movie is sent over a separate RTP session and synchronized
 using standard RTP techniques. This specification builds on the

D. Singer [Page 1]

https://datatracker.ietf.org/doc/html/draft-singer-rtp-qtfile-01.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet Draft draft-singer-rtp-qtfile-01 October 18 1999

 published QuickTime file format specification, and matches the hint
 track format used by the Darwin open-source streaming server.

1 Introduction

 This document outlines how a set of sessions using the Realtime
 Transport Protocol (RTP) [1] may be transmitted by a server program
 by reading a QuickTime movie. RTP is a generic protocol designed to
 carry realtime media data along with synchronization information over
 a datagram protocol (mostly UDP over IP).

 QuickTime files form the storage basis of the QuickTime media
 architecture; however, it is not necessary to use the QuickTime
 software to read, construct, or stream RTP from the files. The file
 format, without support for streaming or RTP, is fully described in
 the published specification [2].

 The file format is capable of referring to media data in other files;
 this enables re-use of content. These other files need not be
 structured as QuickTime movies, and a number of 'foreign' formats can
 thus be streamed over RTP under this specification, provided that
 they can also be described by the QuickTime movie (i.e. described by
 the movie meta-data), and that the streaming server is willing and
 able to follow the links to these other files.

2 QuickTime File Format Overview

 This section gives a brief overview of the file format. Readers
 wanting a detailed description are encouraged to refer to the
 published specification [2].

 A fundamental underlying concept in the QuickTime file format is that
 the physical structure of the media data (the mapping of the media
 onto physical storage records) is independent of the logical
 structure of the media file. A QuickTime media composition is
 described by a set of "movie" meta-data; this meta-data provides
 declarative, structural/compositional, and temporal information about
 the actual media data.

 The media data may be in the same file as the descriptive logical
 data (i.e., with the "movie" meta-data) or in separate files. A movie
 structured into one file is commonly called "flat" or "self-
 contained". Movies which are not self-contained may reference some or
 all of their media data in other files.

 This separation between logical organization and physical
 organization makes the QuickTime file format ideally suited to
 optimization in different ways for different scenarios. When editing

D. Singer [Page 2]

https://datatracker.ietf.org/doc/html/draft-singer-rtp-qtfile-01

Internet Draft draft-singer-rtp-qtfile-01 October 18 1999

 and compositing, this means that media data need not be copied or
 re-coded as edits are applied and media is re-ordered; the meta-data
 file may be extended and temporal mapping information adjusted. When
 editing is completed, the relevant media data and meta-data may be
 rewritten into a single, interleaved, optimized file for efficient
 local or network access. However, both the structured and the
 optimized files are valid QuickTime files, and both may be inspected,
 played, streamed, and reworked.

 The use of movies which are not self-contained enables the same basic
 media data to be used and re-used in any number of presentations.
 This same advantage applies when serving, as will be seen below.

 In both editing and streaming, this also permits any number of other
 files to be treated as part of a presentation without copying the
 media data which they contain. Editing can change and re-write just
 the meta-data in the movie file, which is much quicker than reading
 and re-writing all the media data..

 The QuickTime file is divided into a set of objects, called atoms.
 Each object starts with an atom header, which declares its size and
 type:

 class Atom {
 int(32) size;
 char type[4];
 int(8) contents[];
 }

 The size is a 32-bit integer, in bytes, including the size and type
 header fields. There is also provision for 64-bit size fields. The
 type field is four characters (usually printable), to permit easy
 documentation and identification. The data in an object after the
 type field may be fields, a sequence of contained objects, or both.
 All field data are stored in big-endian format.

 A QuickTime file consists of a sequence of objects. The two highest-
 level objects are the media-data (mdat) and the meta-data (moov)
 atoms.

 The media-data object(s) contain the actual media (for example,
 sequences of sound samples or video frames). Their format is not
 constrained by the file format; they are not usually objects. Their
 format is described in the meta-data, not by any declarations
 physically contiguous with them. So, for example, in a movie
 consisting solely of motion-JPEG, JPEG frames are stored contiguously

D. Singer [Page 3]

https://datatracker.ietf.org/doc/html/draft-singer-rtp-qtfile-01

Internet Draft draft-singer-rtp-qtfile-01 October 18 1999

 in the media data with no required intervening extra headers. The
 media data within the media data objects is logically divided into
 chunks; however, there are no explicit chunk markers.

 When the QuickTime file references media data in other files, it is
 not required that these 'secondary' files be formatted to this
 specification, since these media data files are formatted as if they
 were the contents of a media object. Since the format here does not
 require any headers or other information physically contiguous with
 the media data, it is possible for the media data to be files which
 contain 'foreign' headers (e.g. UNIX ".au" files, or AVI files) and
 for the QuickTime meta-data to contain the appropriate declarative
 information and reference the media data in the 'foreign' file. In
 this way the file format can be used to update, without copying,
 existing bodies of material in disparate formats. Thus editing and
 serving may be done directly from these files, greatly extending
 their utility. The QuickTime file format is a true unifying concept;
 it is both an established format and is able to work with, include,
 and thereby bring forward, other established formats. (The full range
 of supported file types is large; consult the QuickTime web site
 <http://www.apple.com/quicktime> for more information.).

 Free space (e.g. deleted by an editing operation) can also be
 described by an object at this level. Any software reading the file
 should ignore free space objects, and objects at any level which it
 does not understand; this permits extension of the file at any level
 by introducing new objects. The primary meta-data is the movie
 object. A QuickTime file normally has exactly one movie object; it is
 typically at the beginning or end of the file, to permit its easy
 location (although this is not required).

 The movie header provides basic information about the overall
 presentation (its creation date, overall timescale, and so on). In
 the sequence of contained objects there would normally be at least
 one track, which describes temporally presented data. A track is a
 media stream.

 The track header provides basic information about the track (its ID,
 timescale, and so on). Information at the track level is independent
 of the media type contained in the track. Objects contained in the
 track might be references to other tracks (e.g. for complex
 compositing), or edit lists. In this sequence of contained objects
 there would normally be a media object, which describes the media
 which is presented when the track is played.

 The media object contains declarations of the exact presentation
 required by the track (e.g. that it is sampled audio, or MIDI, or
 orientation information for a 3D Scene). The type of track is

https://datatracker.ietf.org/doc/html/draft-singer-rtp-qtfile-01
http://www.apple.com/quicktime

D. Singer [Page 4]

Internet Draft draft-singer-rtp-qtfile-01 October 18 1999

 declared by its handler.

 Within the media information there is likewise a handler declaration
 for the data handler (which fetches media data), and a data
 information declaration. This defines which files contain the media
 data for this track; it is by using this declaration that movies may
 be built which span several files. At the lowest level, a sample
 table is used which relates the temporal aspect of the track to the
 data stored in the file:

 class sampletable {
 int(32) size;
 char type[4] = 'stbl';
 sampledescription sd;
 timetosample tts;
 syncsampletable syncs;
 sampletochunk stoc;
 samplesize ssize;
 chunkoffset coffset;
 }

 The sample description contains information about the media (e.g. the
 compression formats used in video). The time-to-sample table relates
 time in the track, to the sample (by index) which should be displayed
 at that time. The sync sample table declares which of these are sync
 (key) samples, not dependent on other samples.

 The sample-to-chunk object declares how to find the media data for a
 given sample, and its description given its index.

 The sample size table gives the size of each sample; and the chunk
 offset table gives the offset into the containing file of the start
 of each chunk. The chunk offset table can contain 32-bit or 64-bit
 file offsets for chunks, permitting the use of very large files.

 Walking this structure to find the appropriate data to display for a
 given time is straightforward, mostly involving indexing and adding.
 Using the sync table it is also possible then to back-up to the
 preceding sync sample, and roll forward 'silently' accumulating
 deltas to the desired starting point. Note that these tables which
 give sample timing, size, and position information, are constructed
 in such a way that they are naturally compact.

3 Support for streaming protocols

D. Singer [Page 5]

https://datatracker.ietf.org/doc/html/draft-singer-rtp-qtfile-01

Internet Draft draft-singer-rtp-qtfile-01 October 18 1999

 The QuickTime file format supports streaming of media data over a
 network as well as local playback. The process of sending protocol
 data units is time-based, just like the display of time-based data,
 and is therefore suitably described by a time-based format. A
 QuickTime file or 'movie' which supports streaming includes
 information about the data units to stream. This information is
 included in additional tracks of the movie called "hint" tracks.

 Hint tracks contain instructions for a streaming server which assist
 in the formation of packets. These instructions may contain
 immediate data for the server to send (e.g. header information) or
 reference segments of the media data. These instructions are encoded
 in the QuickTime file in the same way that editing or presentation
 information is encoded in a QuickTime file for local playback.
 Instead of editing or presentation information, information is
 provided which allows a server to packetize the media data in a
 manner suitable for streaming using a specific network transport.

 The same media data is used in a QuickTime file which contains hints,
 whether it is for local playback, or streaming over a number of
 different transport types. Separate 'hint' tracks for different
 transport types may be included within the same file and the media
 will play over all such transport types without making any additional
 copies of the media itself. In addition, existing media can be
 easily made streamable by the addition of appropriate hint tracks for
 specific transports. The media data itself need not be recast or
 reformatted in any way.

 This approach to streaming is more space efficient than an approach
 that requires that the media information be partitioned into the
 actual data units which will be transmitted for a given transport and
 media format. Under such an approach, local playback requires either
 re-assembling the media from the packets, or having two copies of the
 media-one for local playback and one for streaming. Similarly,
 streaming such media over multiple transports using this approach
 requires multiple copies of the media data for each transport. This
 is much less space efficient than hint tracks, unless the media data
 must be heavily transformed to be streamed (e.g., by the application
 of error-correcting coding techniques, or by encryption).

 Support for streaming in the QuickTime file format is based upon the
 following three design parameters:

 (1) The media data is represented as a set of network-independent
 standard QuickTime tracks, which may be played, edited, and so on, as
 normal;

 (2) There is a common declaration and base structure for server hint

https://datatracker.ietf.org/doc/html/draft-singer-rtp-qtfile-01

D. Singer [Page 6]

Internet Draft draft-singer-rtp-qtfile-01 October 18 1999

 tracks; this common format is protocol independent, but contains the
 declarations of which protocol(s) are described in the server
 track(s);

 (3) There is a specific design of the server hint tracks for each
 protocol which may be transmitted; all these designs use the same
 basic structure. For example, there may be designs for RTP (for the
 Internet) and MPEG-2 transport (for broadcast), or for new standard
 or vendor-specific protocols.

 The resulting streams, sent by the servers under the direction of the
 hint tracks, need contain no trace of QuickTime information. This
 design does not require that QuickTime, or its structures or
 declaration style, be used either in the data on the wire or in the
 decoding station. For example, a QuickTime file using H.261 video and
 DVI audio, streamed under RTP, results in a packet stream which is
 fully compliant with the IETF specifications for packing those
 codings into RTP.

 The hint tracks are built and flagged so that when the presentation
 is viewed directly (not streamed), they are ignored.

3.1 RTP Hint Tracks

 The RTP specification recommends sending each media stream as a
 separate RTP stream; multiplexing is achieved by using IP's port-
 level multiplexing, not by interleaving the data from multiple
 streams into a single RTP session. However, MPEG specifications do
 define methods to multiplex several media tracks into one RTP track,
 and this may be necessary in some applications. Each hint track is
 therefore tied, not to one, but a set of media tracks by track
 references. The set of references form a table, which is indexed by
 the samples (see below) when selecting data from the media tracks.
 This makes either multiplexing scheme possible.

 This design decides the packet size at the time the hint track is
 created; therefore, in the sample description for the hint track (a
 data structure which can contain fields specific to the 'coding' -
 which in this case is a protocol), we indicate the chosen packet
 size. Note that it is valid for there to be several RTP hint tracks
 for each media track, with different packet size choices. Other
 protocols can be parameterized in a similar way. Similarly the time-
 scale for the RTP clock is provided in the sample description.

3.1.1 Sample Description Format

 In the file format, each track has a description of its contents; for
 hint tracks, this description defines and parameterizes the protocol.

D. Singer [Page 7]

https://datatracker.ietf.org/doc/html/draft-singer-rtp-qtfile-01

Internet Draft draft-singer-rtp-qtfile-01 October 18 1999

 RTP hint tracks are hint tracks (media handler 'hint'), with an
 entry-format in the sample description of 'rtp '

 aligned(8) class RtpSampleEntry extends SampleEntry('rtp ') {
 unsigned int(32) timescale;
 unsigned int(16) rtphinttrackversion = 1;
 unsigned int(16) rtplastcompatibleversion = 1;
 unsigned int(32) maxpacketsize;
 rtptags[] rtpdata;
 }

 aligned(8) class rtptag(tagtype) {
 unsigned int(32) size;
 unsigned int(32) type = tagtype;
 }

 aligned8) class timescaletag extends rtptag('tims') {
 unsigned int(32) timescale;
 }

 aligned8) class timestampoffsettag extends rtptag('tsro') {
 unsigned int(32) timeoffset;
 }

 aligned8) class sequenceoffsettag extends rtptag('snro') {
 unsigned int(32) sequenceoffset;
 }

 The semantics of these fields are as follows: rtphinttrackversion
 is the version of this hint track; this document is version 1
 rtplastcompatibleversion is the version of the oldest compatible
 reader that should be able to read this hint track maxpacketsize is
 the size, in bytes, of the largest packet this track will form
 rtpdata is a series of rtptags, to fill the rest of the atom,
 selected from the subclasses of rtptag timescale is an obligatory
 tag; it is the rtptimescale that was used to form this hint track
 timeoffset and sequenceoffset are optional; they indicate that the
 server should use these fixed offsets for these fields in the RTP
 packets, instead of truly random numbers

3.1.2 Declarative and Session Description data

 To aid servers which use the SDP format, the hint tracks contain base
 data which can be used in assembling a complete SDP description.
 This data is stored in hint-information ('hnti') atoms within user-
 data ('udta') atoms in the movie atom, or in each track. In the
 movie, the hnti atom has a sub-atom of type 'rtp ' and starts with

D. Singer [Page 8]

https://datatracker.ietf.org/doc/html/draft-singer-rtp-qtfile-01

Internet Draft draft-singer-rtp-qtfile-01 October 18 1999

 'sdp ' (note the spaces). Within RTP hint tracks, the sub-atom has
 the type 'sdp ' (again, note the space). The contents in either case
 is ASCII text, suitable for forming into complete SDP descriptions.
 The server will need to generate a number of the lines of the SDP;
 the data supplied here is only partial, limited to that known at
 hinting time. There is also an optional user-data atom giving
 overall information about the hint track.

 aligned(8) class hintinformation extends Atom('hinf') {
 infotags[] infodata;
 }

 aligned(8) class infotag(tagtype) {
 unsigned int(32) size;
 unsigned int(32) type = tagtype;
 }

 The following information tags and values are defined. They are all
 optional, and unrecognized tags should be ignored.
 tag value field type value
 trpy unsigned int(64) total bytes that will be sent,
 including RTP headers, but not
 other headers outside that (e.g
 UDP, IP or link layer headers)
 nump unsigned int(64) total number of packets sent
 tpyl unsigned int(64) total bytes that will be sent,
 not including RTP headers
 maxr unsigned int(32)[2] maximum data rate. two values,
 granularity (in milliseconds),
 and m, the maximum data
 transmitted in any interval of
 that duration. There may be
 multiple maxr tags.
 dmed unsigned int(64) total bytes copied by reference
 from media tracks
 dimm unsigned int(64) total bytes sent as immediate
 data from the hint track
 drep unsigned int(64) total bytes of repeated data
 that will be sent
 tmin unsigned int(32) smallest relative transmission
 time, in milliseconds
 tmax unsigned int(32) largest relative transmission
 time, in milliseconds
 pmax unsigned int(32) largest packet sent, including
 RTP header
 dmax unsigned int(32) largest packet duration, in
 milliseconds

D. Singer [Page 9]

https://datatracker.ietf.org/doc/html/draft-singer-rtp-qtfile-01

Internet Draft draft-singer-rtp-qtfile-01 October 18 1999

 payt unsigned int(32), string the payload type, followed by a
 counted string of the rtpmap
 information

3.1.3 RTP Sample Format

 Each sample in the RTP hint track contains the instructions to send
 out a set of packets which must be transmitted at a given time. The
 time in the hint track is transmission time, not necessarily the
 media time of the associated media.

 Notice that we now describe the internal structure of samples, which
 are media data, not meta data, in the terminology of this proposal.
 These need not be structured as objects.

 Each sample contains two areas: the instructions to compose the
 packets, and any extra data needed when sending those packets (e.g.
 an encrypted version of the media data).

 aligned(8) class RTPsample {
 unsigned int(16) packetcount;
 unsigned int(16) reserved;
 RTPpacket packets[packetcount];
 byte extradata[];
 }

 Each RTP packet contains the information to send a single packet. In
 order to separate media time from transmission time, an RTP time
 stamp is specifically included, along with data needed to form the
 RTP header. Other header information is supplied; the algorithms for
 forming the RTP header given the information here are simple. Then
 there is a table of construction entries:

D. Singer [Page 10]

https://datatracker.ietf.org/doc/html/draft-singer-rtp-qtfile-01

Internet Draft draft-singer-rtp-qtfile-01 October 18 1999

 aligned(8) class RTPpacket {
 signed int(32) relative-time;
 // the next fields form initialization for the RTP
 // header (16 bits), and the bit positions correspond
 bit(2) reserved;
 bit(1) P-bit;
 bit(1) X-bit;
 bit(4) reserved;
 bit(1) M-bit;
 bit(7) payload-type;

 unsigned int(16) RTPsequenceseed;
 unsigned int(13) flags;
 unsigned int(1) x-flag;
 unsigned int(1) b-flag;
 unsigned int(1) r-flag;
 unsigned int(16) entrycount;
 dataentry constructors[entrycount];
 if (x-flag) {
 unsigned int(32) extra-information-size;
 TLV tlventries[];
 }
 }

 aligned(32) class TLV {
 unsigned int(32) tlvsize;
 unsigned int(32) tlvtype;
 unsigned int(8) tlvdata;
 }

 The relative-time field is a signed value in the hint track's
 timescale, adjusting the transmission time of the packet away from
 the RTP sample time. This allows the hinter to smooth the data rate
 of the transmitted packets.

 The x-flag indicates that there is extra information after the
 constructors, in the form of TLVentries. Only one such entry is
 currently defined; tlvtype = 'rtpo' gives a 32-bit signed integer
 offset to the actual RTP time-stamp to place in the packet. This
 enables packets to be placed in the hint track in decoding order, but
 have their presentation time-stamp in the transmitted packet be in a
 different order. Note that all TLVentries are defined to be 32-bit
 aligned, and therefore their length should be padded to a 4-byte
 boundary; the only existing entry has a length of 4 bytes, so this
 is not currently an issue.

D. Singer [Page 11]

https://datatracker.ietf.org/doc/html/draft-singer-rtp-qtfile-01

Internet Draft draft-singer-rtp-qtfile-01 October 18 1999

 The b-flag indicates a disposable 'b-frame'. The r-flag indicates a
 'repeat packet', one that is sent as a duplicate of a previous
 packet. Servers may wish to optimize handling of these packets.

 There are various forms of the constructor. Each constructor is 16
 bytes, to make iteration easier. The first byte is a union
 discriminator:

 aligned(8) class RTPconstructor(type) {
 unsigned int(8) constructor-type = type;

 }

 aligned(8) class RTPnoopconstructor
 extends RTPconstructor(0)
 {
 unsigned int(8) pad[15]; // 15 bytes
ignored
 }

 aligned(8) class RTPimmediateconstructor
 extends RTPconstructor(1)
 {
 unsigned int(8) count;
 unsigned int(8) data[count];
 unsigned int(8) pad[14-count];
 }

 aligned(8) class RTPsampleconstructor
 extends RTPconstructor(2)
 {
 unsigned int(8) trackrefindex;
 unsigned int(16) length;
 unsigned int(32) samplenumber;
 unsigned int(32) sampleoffset;
 unsigned int(16) bytesperblock = 1;
 unsigned int(16) samplesperblock = 1;
 }

 aligned(8) class RTPsampledescriptionconstructor
 extends RTPconstructor(3)
 {
 unsigned int(8) trackrefindex;
 unsigned int(16) length;
 unsigned int(32) sampledescriptionindex;
 unsigned int(32) descriptionoffset;
 }

D. Singer [Page 12]

https://datatracker.ietf.org/doc/html/draft-singer-rtp-qtfile-01

Internet Draft draft-singer-rtp-qtfile-01 October 18 1999

 The immediate mode permits the insertion of payload-specific headers
 (e.g. the RTP H.261 header). For hint tracks where the media is sent
 unchanged, the sample entry then specifies the bytes to copy from the
 media track, by giving the sample number, data offset, and length to
 copy. For complex cases (e.g. encryption or forward error
 correction), the transformed data would be placed into the hint
 samples, and then hintsample mode would be used. Note that this would
 be from the extradata field in the RTPsample itself.

 The bytesperblock and samplesperblock concern compressed audio. This
 allows translation of the samplenumber into an actual byte offset in
 the audio track. The sampledescription mode allows sending of
 (portions of) sample descriptions as part of an RTP packet.

 Note that these structures should be flexible enough to cover not
 only the standard RTP payloads (H.261, MPEG, etc.) but also private
 packings such as the QuickTime-in-RTP [3], or generic packing as is
 now being proposed [4].

 Notice that there is no requirement that successive packets transmit
 successive bytes from the media stream. For example, to conform with
 RTP-standard packing of H.261, it is sometimes required that a byte
 be sent at the end of one packet and also at the beginning of the
 next (when a macroblock boundary falls within a byte). Conversely,
 payload packings that interleave the data to achieve error resilience
 will skip some bytes, to send them in another packet.

 Note that it is possible, and legal, to copy all data into the hint
 track, and use sample constructors with a trackrefindex of -1
 uniformly. These will be simpler to interpret for the server, but
 the file will be larger.

Acknowledgments

 The author would like to thank a number of people, particularly Peter
 Hoddie (Apple Computer), William Belknap (IBM Corporation),
 Christopher Walton (Netscape), Dave Pawson (Oracle), Ronald Jacoby
 (Silicon Graphics, Inc.), and Gerard Fernando and Michael Speer (Sun
 Microsystems).

D. Singer [Page 13]

https://datatracker.ietf.org/doc/html/draft-singer-rtp-qtfile-01

Internet Draft draft-singer-rtp-qtfile-01 October 18 1999

References

 [1] H. Schulzrinne, et. al., "RTP : A Transport Protocol for Real-
 Time Applications", IETF RFC 1889, January 1996.

 [2] Apple Computer, Inc., "QuickTime File Format Specification", May
 1996.
 <ftp://ftp.apple.com/Quicktime/devworld/QuickTime/mac/QuickTime.pdf>.

Expires : April 22 1999

Author's Contact Information
 David Singer
 Email: singer@apple.com
 Tel: (408) 974 3162

 Apple Computer, Inc.
 One Infinite Loop, MS:302-3MT
 Cupertino CA 95014
 USA

D. Singer [Page 14]

https://datatracker.ietf.org/doc/html/draft-singer-rtp-qtfile-01
https://datatracker.ietf.org/doc/html/rfc1889
ftp://ftp.apple.com/Quicktime/devworld/QuickTime/mac/QuickTime.pdf

