
Internet Engineering Task Force A.Singh
Internet Draft University of Bremen
Intended status: experimental M. Scharf
Expires: January 2011 Alcatel-Lucent Bell Labs
 August 6, 2010

PayLoad Multi-connection Transport using Multiple Addresses
draft-singh-mptcp-plmt-00.txt

Abstract

 The single path transport provided by the Transmission Control
 Protocol (TCP) can be extended to a multipath transport session for
 multi-homed end hosts by coupling several TCP connections over
 multiple interfaces of the end hosts. Payload Multi-connection
 Transport (PLMT) is a multipath protocol variant that encodes all
 the control/signaling information in the payload of TCP connections
 and therefore requires no additional TCP options. PLMT allows for
 the simultaneous use of the multiple connections over potentially
 disjoint paths while being mostly backward compatible to single path
 transport of TCP. PLMT operates as an additional protocol layer
 between the network stack and the application layer. This document
 describes PLMT as an example for a multipath mechanism that could
 possibly be realized entirely in the user-space of an operating
 system.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or obsoleted by other documents
 at any time. It is inappropriate to use Internet-Drafts as
 reference material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 6, 2011.

Singh, et al. Expires January 6, 2011 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft PLMT August 2010

Copyright Notice

 Copyright (c) 2010 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with
 respect to this document. Code Components extracted from this
 document must include Simplified BSD License text as described in
 Section 4.e of the Trust Legal Provisions and are provided without
 warranty as described in the Simplified BSD License.

Singh, et al. Expires January 6, 2011 [Page 2]

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info
https://trustee.ietf.org/license-info

Internet-Draft PLMT August 2010

Table of Contents

1. Introduction...5
2. Terminology..6
3. Design Considerations..7

3.1. Goals...7
3.2. Layered Representation....................................8
3.3. Operation Summary...8
3.4. Compatibility..11
3.5. Advantages and Drawbacks of PLMT.........................11

4. PLMT Protocol...16
4.1. Session Initiation.......................................16

 4.2. Exchange of PLMT Signaling Over the PLMT Control Channel.16
4.2.1. Establishment of the Control Connection.............16
4.2.2. PLMT Capable Messages...............................17
4.2.3. Further Usage of the Control Connection.............19
4.2.4. Discussion of Control Connection Failure Cases......20

4.3. PLMT Data Connection Setup and Operation.................20
4.3.1. Guidelines for selection of a Signature.............21

 4.3.2. Bundling of Initial Connection to the Control
 Connection in Parallel Setup...............................21
 4.3.3. Bundling of Initial Connection to the Control
 Connection in Late Setup...................................23

4.4. Additional Subflow Connections Initiation and Operation..24
4.4.1. Address Advertisement...............................24
4.4.2. Subflow Connection Setup............................25
4.4.3. TLV Encoding of Data Segments.......................26
4.4.4. Data Acknowledgments................................26

4.5. Other Aspects..27
4.5.1. Congestion Control..................................27
4.5.2. Path Management and Scheduling......................28
4.5.3. Closing Connections and Sessions....................28

5. Interaction with Middleboxes..................................28
5.1. Middleboxes that Translate Address/Ports.................29
5.2. Middleboxes that Manipulate TCP Options..................29
5.3. Middleboxes that Parse Content...........................29
5.4. Middleboxes that Change content..........................30

6. Security Considerations.......................................30
6.1. Reappearance of Signature in Application Data...............30
6.2. Resilience against Malicious Attacks........................31
7. Open Issues...31
8. IANA Considerations...31
9. Conclusion..32
10. References...32
10.1. Normative References.......................................32
10.2. Informative References.....................................32

Singh, et al. Expires January 6, 2011 [Page 3]

Internet-Draft PLMT August 2010

11. Acknowledgments..33

Singh, et al. Expires January 6, 2011 [Page 4]

Internet-Draft PLMT August 2010

1. Introduction

 The objective of a multipath transport mechanism is to allow the
 simultaneous use of multiple connections over multiple paths. A
 multipath transport mechanism is expected to be beneficial since it
 enhances the network resource utilization and since it provides
 resilience to node failures in the network [5].

 One key mechanism that aims to provide multipath transport is
 Multipath TCP (MPTCP). MPTCP enables multipath transport by
 utilizing multiple addresses of the end host to establish multiple
 paths (subflows) for a TCP connection [6]. MPTCP extends the
 standard Transmission Control Protocol (TCP) [2] to add the
 multipath capability and uses several new TCP options to encode
 control/signaling information.

 Another multipath transport solution, MCTCP [9] uses the new TCP
 options only during connection setup to transport signaling
 information. Afterwards the additional signaling information is sent
 together with the application data in the payload using a type-
 length-value (TLV) framing format.

 This document presents the Payload Multi-connection Transport (PLMT)
 protocol design as a further alternative multipath transport
 mechanism. PLMT also uses a type-length-value (TLV) framing format
 to send application data and control/signaling information. However,
 in order to transmit control/signaling information; PLMT does not
 use new TCP options, unlike other multipath transport solutions.
 Instead, PLMT sets up a control connection to a well-known port for
 the signaling information exchange, and it uses payload encoding
 over standard TCP connections. The control connection can either be
 set up before starting the data transport, or afterwards. In either
 case, it is possible to implement the PLMT signaling without
 changing the network stack. Each of the multiple PLMT connections is
 a standard TCP connection that transports TLV encoded data segments
 and that are coupled together to the PLMT session.

 Therefore, PLMT is easily deployable and extensible. PLMT is also
 transparent to applications and offers reliable transport similar to
 a standard TCP connection. PLMT is also mostly backward compatible
 to single path standard TCP. By design, PLMT robustly operates in
 environments with middleboxes that prevent the use of new TCP
 options. But the use of out-of-band signaling also comes at some
 cost concerning complexity, fall-back options, and security.
 However, as outlined in this document, PLMT is designed to minimize
 these risks and is rather robust. This document presents PLMT and
 discusses both the advantages and drawbacks of its design.

Singh, et al. Expires January 6, 2011 [Page 5]

Internet-Draft PLMT August 2010

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC-2119 [1].

 This document uses the terminology defined in [5][6], though some of
 the terms are re-defined.

 Session: A connection over which an application can communicate
 between two hosts. For an application, there is a one-to-one mapping
 between a session and the socket. If a session includes only the
 initial connection, it is almost identical to a standard TCP
 connection.

 PLMT Control Port: A port allocated to accept the PLMT control
 connections.

 PLMT Layer: A protocol layer implementing the multi-connection
 capability of the PLMT. It can for instance be realized in the user
 space of an operating system.

 Initial Connection: A TCP connection established by an application
 request. If both ends are PLMT capable, the first subflow uses this
 connection.

 Additional Subflow Connection: A new TCP connection established for
 a subsequent subflow.

 Control Connection: A TCP connection that is established to the PLMT
 Control Port. The IP addresses are identical to the Initial
 Connection.

 PLMT Data Segment: The segmented application data with TLV header.

 Active Opener: Refers to the TCP client for a Session with PLMT
 Layer.

 Passive Opener: Refers to the TCP server for a Session with PLMT
 Layer.

 Legacy End-host: Refers to a host without PLMT Layer.

 Token: A 64-bit number that is unique on a host.

 Signature: A long bit pattern that is used to identify PLMT messages
 inside TCP connections. The length is 16 byte (128 bit). It MUST be

https://datatracker.ietf.org/doc/html/rfc2119

Singh, et al. Expires January 6, 2011 [Page 6]

Internet-Draft PLMT August 2010

 selected in a way such that it is unlikely to occur in application
 protocols. Guidelines how to determine a Signature are explained in

section 4.3.1. .

 Session Sequence Number: The sequence number of a byte inside a byte
 stream of a session, determined by the PLMT Layer.

3. Design Considerations

 This section gives a high-level overview of PLMT's design.

 3.1. Goals

 Important design assumptions and goals of the PLMT design are:

 o No change of network stack: PLMT is designed to minimize the
 impact on the network stack implementation. The signaling can
 be completely implemented in the user-space of an operating
 system.

 o Backward compatible: The PLMT should be backward compatible to
 standard TCP. A single connection PLMT should be exactly
 similar to the standard TCP connection. As long as only one
 connection exists, it is not necessary to use TLV framing on
 that connection.

 o Co-existence with standard TCP connections: A PLMT capable end
 host must be able to differentiate between PLMT connections and
 regular TCP connections. This is crucial, since PLMT
 connections use TLV encoding.

 o Multihomed and multiaddressed end hosts: PLMT assumes that for
 the establishment of multiple connections at least one of the
 end hosts must be multihomed and multiaddressed.

 o Middlebox compatibility: PLMT should be compliant to the vast
 majority of middleboxes, such as NAPT middleboxes and
 firewalls. Therefore, PLMT should not rely on TCP extensions.
 PLMT should also allow a middlebox to identify that a host
 establishes PLMT connections, and prevent this.

Singh, et al. Expires January 6, 2011 [Page 7]

Internet-Draft PLMT August 2010

 o Transparency: PLMT should be transparent to the legacy
 application i.e., it should provide the same API and services
 (of the standard TCP) to the application.

 3.2. Layered Representation

 PLMT operates as an additional protocol layer (shim layer) between
 the application layer and the transport layer. It is designed to be
 transparent to both higher and lower layers and to be implemented in
 the user space. It can be used by legacy applications without any
 changes. Figure 1 illustrates this layering.

 +-------------------------------+
 | Application |
 +-----------------------------+ +-------------------------------+
 | Application | | PLMT |
 +-----------------------------+ +---------------+---------------+
 | TCP | | TCP | TCP |
 +--------------+--------------+ +---------------+---------------+
 | IP | | IP | IP |
 +--------------+--------------+ +---------------+---------------+
 Figure 1 Comparison of Standard TCP and PLMT Protocol Stacks

3.3. Operation Summary

 This section gives an outlook to the overall high-level operation of
 PLMT. Figure 2 depicts a simple scenario to illustrate the basic
 PLMT operation. A detailed PLMT protocol specification and operation
 description is provided in section 4.

 o A legacy application, unaware of the presence of PLMT will
 initiate a standard TCP connection by opening a TCP socket for
 a Session. PLMT-aware applications MAY use a new application
 interface [8] to control the functioning of PLMT.

 o The PLMT Layer then manages the connection establishment of
 Initial Connection, Control Connection and additional Subflow
 Connections.

 o In order to enable PLMT, the Active Opener opens a PLMT
 control connection to a well-known port at the Passive Opener.
 The control connection is used to determine whether the remote
 end supports PLMT, and to exchange the necessary control
 information such as the Tokens. The Control Connection, as well

Singh, et al. Expires January 6, 2011 [Page 8]

Internet-Draft PLMT August 2010

 as Subflow Connections, are established in the standard TCP way
 by the PLMT Layer.

 o A node may either set up a Control Connection before or in
 parallel to the setting up of the Initial Connection (refer
 Figure 2). Alternatively, it may first use the Initial
 Connection and decide later to open the Control Connection. The
 latter case is discussed in section 4.3.3. . The control
 connection must be set up using the same IP source and
 destination addresses like the Initial Connection, and use the
 PLMT control port. If the setup of the Control Connection
 fails, PLMT will not be enabled and fall back to standard TCP.

 o If the Passive Opener supports PLMT and TLV transport is
 successfully enabled, the Initial Connection will use a TLV
 framing for data transmission. Then, the Initial Connection is
 also termed first Subflow Connection. The setup of the TCP
 connections between two hosts A and B is illustrated in Figure
 2. PLMT signals the use of TLV encoding by sending the
 Signature in the payload of the TCP byte stream. The Signature
 is a long bit pattern that is selected in such a way that it is
 unlikely to occur in a TCP connection not using PLMT.
 Furthermore, Tokens are used to verify that the Initial and
 Control Connection originate indeed at the same hosts. A
 detailed analysis of the security implications of PLMT and the
 resulting very small risk of false positives when detecting its
 connections are provided in section 6. .

 o If multiple interfaces are present, PLMT can establish
 multiple Subflow Connections to allow data transport over
 multiple paths. Once TLV encoded data transport is activated, a
 Session level data sequence number is used for in-order
 delivery of the Data Segments over multiple Subflow
 Connections. The PLMT Layer manages the multiple interfaces and
 connections and delivers the packets over the different
 connections. At the receiver, the PLMT Layer reassembles the
 byte stream and transparently delivery them to the application.

 o As the Subflow Connections are standard TCP connections, they
 are terminated as a regular TCP connection with the 4-way FIN
 handshake. The Session is terminated with the termination of
 the last subflow.

Singh, et al. Expires January 6, 2011 [Page 9]

Internet-Draft PLMT August 2010

 End-host A End-host B
 --------------------------- ---------------------------
 Address A1 Address A2 Address B1 Address B2
 ------------ ------------ ------------ ------------
 | | | |
 | (Initial Connection setup) | |
 |---------------SYN----------------------->| |
 |<------------SYN/ACK----------------------| |
 |---------------ACK----------------------->| |
 | | | |
 | (Control Connection setup) | |
 |~~~~~~~~~~~~~~~SYN~~~~~~~~~~~~~~~~~~~~~~~>| |
 |<~~~~~~~~~~~~SYN/ACK~~~~~~~~~~~~~~~~~~~~~~| |
 |~~~~~~~~~~~~~~~ACK~~~~~~~~~~~~~~~~~~~~~~~>| |
 | | | |
 | (Token exchange over Control Connection | |
 | as detailed in Figure 3) | |
 |~~~>| |
 |<~~~| |
 | | | |
 | Signature+Token | |
 |--->| |
 | Signature+Token | |
 |<---| |
 | | | |
 | (TLV-encoded Data Segments | |
 | over the Initial Connection) | |
 |--->| |
 |<---| |
 | | | |
 |(Address Exchange over the Control or Initial Connection)|
 | | | |
 | (Additional Subflow Connection setup (TCP)) |
 |==========================SYN===========================>|
 |<=======================SYN/ACK==========================|
 |==========================ACK===========================>|
 | | | |
 | (Signature and TLV-encoded Data Segments |
 | over the Subflow Connection) |
 |==>|
 |<==|
 | | | | |

 Figure 2 PLMT Connections Establishment in case that the Control Connection
 is set up in parallel to the Initial Connection

Singh, et al. Expires January 6, 2011 [Page 10]

Internet-Draft PLMT August 2010

 3.4. Compatibility

 PLMT uses the Control Connection to detect whether a Passive Opener
 indeed supports its operation. If the setup of the Control
 Connection fails, it falls back to standard TCP transport, and does
 not use any additional PLMT signaling. PLMT is thus compatible with
 legacy TCP stacks and is able to detect them.

 The PLMT Layer is transparent to applications, i. e., it is
 compatible with legacy applications unaware of PLMT.

 The PLMT protocol does not require extensions of the TCP protocol
 and reuses the standard TCP mechanisms for the reliable, in-order
 operation of its connections. PLMT uses its own frame format based
 on the TLV encoding to send the application data and the control
 information. The use of TLV encoding is known from other TCP-based
 protocols such as TLS [3]. Therefore, PLMT should pass most
 middleboxes, in particular all middleboxes that would block TCP
 options. An exception is the case of middleboxes that parse the byte
 stream and block TLV content. In this case, PLMT transport may fail
 in certain cases, as discussed in section 5.3. and 5.4. .

 The signaling and message transport of PLMT can be implemented on a
 host without changing the network stack, i. e., as a library in the
 user space. With a combination of scheduling and rate shaping
 mechanisms, the PLMT Layer can also try to emulate congestion
 control coupling algorithms such as [4]. In this case, it may be
 possible to implement PLMT entirely in the user space of a host.

 3.5. Advantages and Drawbacks of PLMT

 PLMT follows the principles outlined for a multipath transport
 solution based on TCP in [5]. PLMT uses the TCP payload to transport
 signaling messages and requires no new TCP options. Thus, PLMT
 brings along all advantages of the payload encoding mechanism (cf.
 [9]):

 o PLMT does not use any TCP option to setup its connections.
 Therefore, it might be possible to implement PLMT entirely in
 the user-space, which would significantly facilitate deployment
 of PLMT.

 o In addition, the signaling messages are not constrained with
 the limited size of the TCP options, and PLMT does not consume
 further option space in SYN segments.

Singh, et al. Expires January 6, 2011 [Page 11]

Internet-Draft PLMT August 2010

 o PLMT does not modify TCP and is therefore compatible with many
 middleboxes, especially ones which do not allow unknown TCP
 options to get through, or ones that re-write the TCP options.

 o Middleboxes can very easily identify the setup of a PLMT
 Control Connection due to the use of a well-known port. If a
 middlebox on the path of the Initial Connection wants to
 prevent the use of multipath transport, it can simply block the
 connection setup to that port. Then, multipath transport will
 not be used for the corresponding connection.

 PLMT is developed as an example for a multipath transport protocol
 that does not use any new TCP option, or other TCP extensions, and
 that is still backward compatible. Still, due to the use of payload
 encoding and an out-of-band control channel for the exchange of
 control information, a number of issues arise. The following text
 discusses these problems (some of which may exist for other
 multipath transport solutions as well) and possible solutions.

 o PLMT opens a Control Connection per PLMT Session, i. e., an
 additional TCP connection. If a host opens Control Connections
 for every short TCP-based transfer, this would result in a
 large number of additional connection setups, which would
 consume bandwidth, processing resources, and port numbers. The
 worst case is that a PLMT Control Connection is set up for
 every Initial Connection, but additional subflows are never
 established. Then, the number of TCP connection doubles without
 any performance benefit. As a remedy, PLMT can also first use
 an Initial Connection without Control Connection, and try to
 establish the Control Connection after some time. Once PLMT
 capability is detected and additional signaling information has
 been exchanged, the Initial Connection as well as potential
 additional Subflow Connections can then be used to transport
 PLMT TLV-encoded data traffic. This mechanism avoids needless
 Control Connection setups for short transfers.

 o PLMT needs a well known, dedicated port for the Control
 Connections, similar to TLS [3]. If PLMT is enabled on a host,
 it may try to establish Control Connections to that port for
 all communication partners. Even if heuristics can be used to
 learn whether servers are supporting PLMT, or not, and thus

Singh, et al. Expires January 6, 2011 [Page 12]

Internet-Draft PLMT August 2010

 reduce the connection setup attempts, numerous legacy hosts in
 the Internet will receive connection setups on that port. To
 legacy systems, this may look similar to a SYN flooding attack.
 As a counter measure, network administrators may configure
 firewalls to block the PLMT Control Port, which prevents the
 usage of the protocol once it is more widely deployed.

 o Middlebox that transparently change the length of content are
 a problem for multipath transport protocols. When using TLV-
 based transport, PLMT could detect such middleboxes by using a
 checksum, or by observing broken TLV headers, and try
 retransmissions. However, if the byte stream is transparently
 changed before switching to TLV encoding, difficulties can
 arise. For instance, the Signature may not be at the position
 where it is expected. In this case, PLMT cannot enter the TLV
 mode, but it can also not necessarily fall back, and it may
 either have to cancel that transfer by closing the PLMT
 Session, or, in the worst case, it may even deliver corrupted
 data to an application.

 o PLMT delays the setup of connections in various scenarios. If
 an Active Opener wants to use TLV encoding immediately on the
 Initial Connection, it must await the setup of the control
 connection. If there is no response (no SYN/ACK), the Active
 Opener may either retransmit the SYN, i. e., wait for a longer
 time, or give up. Then, multipath transport is not possible. In
 all cases, there is at least a small delay before the data
 transport over the Initial Connection can start. If the Active
 Opener decides to setup the Control Connection later, this
 delay is avoided. But then the Active Opener must stop data
 transmission after the setup of the Control Connection, in
 order to ensure a safe exchange of tokens, which interrupts the
 data transport.

 o The Passive Opener has a significant processing overhead due
 to PLMT. First and most obviously, there is the overhead of
 maintaining the Control Connections, which can be significant
 for a highly-loaded server with thousands of connections.

 o The second and trickier challenge is the distinction between
 legacy TCP connections and connection originating from hosts

Singh, et al. Expires January 6, 2011 [Page 13]

Internet-Draft PLMT August 2010

 that use PLMT. PLMT Subflow Connections are characterized by
 the presence of the Signature in the byte stream. This means
 that the PLMT layer must accept all incoming connections, parse
 for the presence of a valid Signature, and then decide whether
 it is a legacy connection or a connection transporting PLMT
 content with TLV encoding. The parsing for Signatures is
 difficult if an incoming connection sends less data than the
 length of the Signature. If the first bytes match a valid
 Signature, or if no bytes are received at all, the PLMT layer
 must wait for the arrival of further data, or time out, e. g.,
 if the corresponding application does not send enough bytes. If
 it times out, the only safe option is to close the connection.
 This means that the PLMT layer may reject not only PLMT
 connections that suffered from retransmissions within the first
 byte, but also valid TCP connection setup from legacy stacks if
 they happen to (partly) match a Signature. If the delayed setup
 of Control Connections is allowed, the parsing overhead is even
 larger. The PLMT layer must then parse all established TCP
 connections for all valid Signatures at the negotiated
 positions in the byte stream, which may also require temporary
 buffering of data, if only parts of a valid Signature are
 received, or if the rest of the first TLV message is missing.
 In all cases, the delivery of data to applications may be
 delayed.

 o On a Passive Opener, the PLMT layer has to accept incoming
 connections in order to parse the payload, before it can hand
 over the connection to the application. This can delay data
 delivery, and also may result in inconsistent views when the
 connection is indeed established. Further studies are needed to
 understand whether the delay of connection establishment as
 seen by applications, which does not occur in case of option-
 based multipath protocols, could break existing applications.

 o Due to the processing and buffer overhead required to identify
 connections by payload parsing, the Passive Opener is
 vulnerable to a Denial-of-Service (DoS) attack: An attacker can
 open a large number of Control Connections, which will consume
 resources on a server and slow down data delivery on other
 connections. Passive Openers can reduce the risk by only
 accepting Coupled Connections from source IP addresses that

Singh, et al. Expires January 6, 2011 [Page 14]

Internet-Draft PLMT August 2010

 originate also an existing connection, but this does not offer
 a complete protection, in particular if an attacker is sitting
 behind a large NAPT middlebox. Another remedy is to limit the
 amount of allowed Control Connections, but then other users of
 PLMT suffer from the effects of Control Connection setup
 failures.

 o PLMT must exchange the Token information in the payload of the
 Initial Connection, in order to verify that an Initial
 Connection and a Coupled Connection indeed have the same
 endpoints. This requires the transport of a TLV-encoded
 message. As a consequence, unlike other multipath transport
 protocols [6] [9], PLMT cannot fall back to a backward
 compatible byte stream transport if a middlebox on the path
 should block the TLV transport.

 o If there is a single-homed Active Opener and a multi-homed
 Passive Opener, PLMT cannot indicate to the Active Opener that
 multipath transport may make sense, i. e., that it could
 establish a Control Connection, before that connection actually
 exists. Other multipath transport protocols [6] [9] have a
 signaling mechanism for this. PLMT can only detect this
 situation if it blindly opens Control Connections in all cases.

 o If a middlebox does not intercept the information on the
 Control Connections, or if it does not know the Signature by
 other means, it cannot determine if a given TCP connection
 transports PLMT data, or not. If a middlebox is not on the path
 of the Control Connection, it cannot prevent the usage of TLV
 encoding. For the latter case, a possible remedy would be that
 Additional Subflow Connections use another well-known port,
 which could then be blocked.

 o A Passive Opener can accept with a certain, small probability
 erroneously a connection from a legacy host as PLMT Subflow
 Connection, if an application happens to send a bit pattern
 that is identical to one of the valid Signature of that Passive
 Opener, plus the valid Tokens. This may either happen if the
 first bytes of a standard TCP connection match an active
 Signature, or if a corresponding bit pattern is present exactly
 at the same sequence position as negotiated on a control

Singh, et al. Expires January 6, 2011 [Page 15]

Internet-Draft PLMT August 2010

 connection. In that case, TLV-encoded content will be injected
 into a legacy connection, which will be corrupted. Due to the
 length of the Signature, this error probability is very small.

 o An attacker can abuse PLMT to break legacy TCP connections to
 a PLMT-enabled Passive Opener, if it is sitting behind the same
 NAPT middlebox like another Active Opener, as already
 explained. In this case, the attacker can open multiple Control
 Connections, not only as a DoS attack, but also to attack other
 users. With a very small probability, the Signature and Tokens
 negotiated over the Control Connection will match another
 connection. If so, TLV content will be injected on that
 connection, and it will break, too. Again, the success
 probability of this attack is very small.

 In summary, PLMT is a multipath protocol that is designed as a
 payload-only solution. It is useful for controlled and trusted
 environments, for networks with middleboxes that affect the use of
 TCP options, and for use cases where it is impossible to change the
 network stack.

4. PLMT Protocol

 This section details the operations of PLMT protocol.

4.1. Session Initiation

 A session initiation begins with an application request for a new TCP
 connection, upon which the PLMT protocol performs the following
 actions.

4.2. Exchange of PLMT Signaling Over the PLMT Control Channel

 A node MAY setup a TCP Control Connection before or in parallel to
 the setting up of the Initial Connection (Parallel Setup), or it MAY
 set up the Control Connection at a later point in time (Late Setup).
 Both variants have advantages and drawbacks and affect the way how
 the Initial Connection is used.

 4.2.1. Establishment of the Control Connection

 The Active Opener Must set up the TCP Control Connection using the
 same source and destination IP addresses, and it MUST be destined to
 the PLMT Control Port. If the TCP connection is successfully set up,
 this is a first indication that the Passive Opener indeed supports

Singh, et al. Expires January 6, 2011 [Page 16]

Internet-Draft PLMT August 2010

 PLMT. In order to exclude the case that another service is
 accidentally running on that port, PLMT support is further verified
 by PLMT Capable Messages.

 A Passive Opener SHOULD verify whether there are already established
 TCP connections from the same Active Opener, in order to reduce the
 vulnerability to DoS attacks.

 4.2.2. PLMT Capable Messages

 If the Control Connection is set up successfully, the two hosts can
 be expected to have an operational PLMT Shim Layer. The End-host MUST
 exchange the Tokens as shown in Figure 3 for further validation of
 the existence of PLMT Shim layer and the willingness of the Passive
 Opener to use PLMT. Note that at this stage of the signaling the
 Passive Opener cannot safely identify the Initial Connection that
 this Control Connection shall be associated with.

 End-host A End-host B
 --------------------------- ---------------------------
 Address A1 Address A2 Address B1 Address B2
 ------------ ------------ ------------ ------------
 | | | |
 | (Control Connection setup (TCP)) | |
 |~~~~~~~~~~~~~~~SYN~~~~~~~~~~~~~~~~~~~~~~~>| |
 |<~~~~~~~~~~~~SYN/ACK~~~~~~~~~~~~~~~~~~~~~~| |
 |~~~~~~~~~~~~~~~ACK~~~~~~~~~~~~~~~~~~~~~~~>| |
 | | | |
 | (PLMT Capable Signaling) | |
 |~~~~~~~~~~PLMT Token Indication~~~~~~~~~~>| |
 |<~~~~~~~~PLMT Token Confirmation~~~~~~~~~~| |
 | | | |

 Figure 3 PLMT Signaling Exchange over the Control Connection

 The frame format of the PLMT Token Indication message is shown in
 Figure 4. The Token is a unique number for a host and is used to
 identify a particular PLMT Session. To make it harder for an
 attacker to guess the Token by brute-force method, a 64-bit Token
 SHOULD be generated randomly [7]. Furthermore, the PLMT Token
 Indication message includes the Signature of the Active Opener, as
 well as the byte position in the Initial Connection where this
 Signature will be present on the Initial Connection. The byte
 position is provided in the Token Indication in order to reduce the
 parsing overhead of a Passive Opener, and the risk that an attacker
 can hijack a connection by negotiation of a large number of
 Signatures and Tokens with a Passive Opener. This implies that an

Singh, et al. Expires January 6, 2011 [Page 17]

Internet-Draft PLMT August 2010

 Active Opener can only send data up to this position before it
 receives a PLMT Token Confirmation message. In case of a Parallel
 connection setup, this position is set to 0, as the Signature is set
 at the beginning of the connection. As a side note, the whole
 mechanism can fail if the bytestream length is affected by a
 middlebox.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+--------------------------------+--------------+
 |Kind=TOKENIND | Length=32 | reserved |
 +---------------+--------------------------------+--------------+
 : Active Opener Signature (in total 16 byte) :
 +---+
 : Active Opener Token (in total 8 bytes) :
 +---+
 | Signature offset (4 byte) |
 +---+

 Figure 4 PLMT Token Indication message (sent via the Control
 Connection)

 As a response to the reception of the PLMT Token Indication from the
 Active Opener, the Passive Opener SHOULD either send back an own
 Token in a PLMT Token Confirmation message shown in Figure 5, or it
 SHOULD immediately close the Control Connection instead. This
 message also echoes back the Active Opener's Token, in order to
 verify that the reply is indeed sent by a PLMT layer.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+--------------------------------+--------------+
 |Kind=TOKENCONF | Length=36 | reserved |
 +---------------+--------------------------------+--------------+
 : Passive Opener Signature (in total 16 byte) :
 +---+
 : Passive Opener Token (in total 8 byte) :
 +---+
 : Echo of Active Opener Token (in total 8 bytes) :
 +---+

 Figure 5 PLMT Token Confirmation message (sent via the Control
 Connection)

Singh, et al. Expires January 6, 2011 [Page 18]

Internet-Draft PLMT August 2010

 Upon reception of that message, the Active Opener MUST first verify
 the validity of the message (in particular the echoed Token). If the
 message is valid, it MUST send the Signature provided from the
 Passive Opener at the indicated byte position in the Initial
 Connection, directly followed by a PLMT Token Message. Afterwards,
 TLV framing has to be used. The Passive Opener must similarly react:
 After having received the Signature and Token on an Initial
 Connection, the Passive Opener MUST send the Active Opener's
 Signature and a PLMT Token Message over the Initial Connection, too,
 and use TLV framing afterwards. Thus, after having sent the
 Signature, the Active Opener must parse all incoming bytes on the
 Initial Connection for the Signature of the Passive Opener, in order
 to detect the begin of TLV transfer in the reverse direction. In the
 simplest case, the Passive Opener has not sent any data in the
 meantime, i. e., the Signature is received immediately. However,
 other cases are possible, too.

 Note that this method is inefficient and also has a very small risk
 of false positives, as it requires byte-wise parsing of the byte
 stream. Yet, the fundamental problem is that the Passive Opener
 cannot provide a byte offset for the Signature over the Control
 Channel during the PLMT Capability Signaling phase, as the Initial
 Connection and the Control Connection cannot be associated at that
 time. As an optimization, the Passive Opener could provide a
 bytestream offset by a separate signaling message once it has
 received the Token on the Initial Connection, but PLMT cannot rely
 on this, as the Control Connection could fail or stall in the
 meantime and then the PLMT session would not be in consistent state.
 The PLMT signaling exchange is designed to reflect an atomic
 transaction.

 4.2.3. Further Usage of the Control Connection

 The Control connection is only needed to exchange token information
 and to verify the association with the Initial Connection. After the
 PLMT capability exchange has been completed, the control connection
 is actually not needed any more, and it MAY be closed. All further
 control information, such as additional addresses etc., can also be
 exchanged over the Subflow Connections, by corresponding TLV
 messages. However, the Control Connection MAY also be kept
 established and used for further PLMT signaling. In particular, it
 could be useful to exchange address information over the Control
 Connection instead of the Subflow Connections. This would enable
 future NAPT helper for the PLMT protocol that could try to translate
 private to public addresses. A detailed discussion of this is
 outside the scope of this document.

Singh, et al. Expires January 6, 2011 [Page 19]

Internet-Draft PLMT August 2010

 4.2.4. Discussion of Control Connection Failure Cases

 A failure to setup a Control Connection is an indication that the
 other end host does not have a PLMT Layer, or that middleboxes do not
 allow the establishment of a PLMT Control Connection. An Active
 Opener MUST await the successful PLMT capability exchange on the
 Control Connection before starting to send the Signature and TLV
 encoded content. An Active Opener MAY also give up after a certain
 waiting time. Then, it MUST close the Control Connection, and use
 backward compatible bytestream transport on the Initial Connection.

 The PLMT capability exchange requires a single exchange of messages
 on the Control Connection only. If the Connection fails afterwards,
 all control information can be exchanged over Subflow Connections. If
 the control connection fails and the Active Opener does not receive
 the Token Confirmation message, without that the Passive Opener
 detects this, there may be a synchronization mismatch and the Passive
 opener may inject a Signature and a Token to the Initial Connection
 even if this is not expected by the Active Opener. In order to avoid
 data corruption, the Active Opener could parse all incoming data for
 the Signature after failure of a Control Connections, but this may
 increase the processing overhead.

 If a Control Connection fails after the exchange of the tokens, PLMT
 could in principle continue to operate, since TLV encoded data can be
 transported over the established Subflow Connections, and since the
 Signatures and Tokens are already known.

4.3. PLMT Data Connection Setup and Operation

 PLMT provides two modes of operation, which differ by the time when
 the control connection is established: Parallel Setup and Late
 Setup. The Parallel Setup is significantly simpler for a Passive
 Opener, as Signatures are sent in the first bytes of a connection
 and therefore are simple to identify. But, unfortunately, the setup
 of a Control Connection for every data transfer with a short
 duration results in overhead and additional delay without any
 performance gains. This mode is therefore mainly useful if it is
 known in advance that a TCP connection will transport a large amount
 of data. In order to reduce the overhead for short connection, PLMT
 also allows that the Control Connection is established later than
 the Initial Connection. In this case, the PLMT Layer on a host MUST
 not initiate the TLV data encoding before the PLMT capability of the
 other host has been determined through the Control Connection, (cf.
 Figure 3).

Singh, et al. Expires January 6, 2011 [Page 20]

Internet-Draft PLMT August 2010

 4.3.1. Guidelines for selection of a Signature

 To allow for a simple identification of where exactly the TLV
 encoding inside the byte stream starts, a 128-bit Signature is used,
 which is used as a delimiter between bytestream and TLV encoding (cf.
 Figure 6). The Signature is selected by the hosts that must parse it,
 and MUST be chosen such that collisions with existing application
 protocols are minimal. Note that it is up to the hosts to decide what
 Signature to use for different connections The most secure solution
 is to use a different Signature for every Control Connection, but
 then the parsing effort is the largest. For performance optimization,
 the PLMT Layer at a host MAY use the same Signature in more than one
 connection, but it MUST change the value on a regular basis.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---+
 | Signature (16 byte) :
 +---+---------------+
 : Signature :
 +---+---------------+
 : Signature :
 +---+---------------+
 : Signature |
 +---+

 Figure 6 PLMT Signature (sent on Subflow Connections)

 4.3.2. Bundling of Initial Connection to the Control Connection
 in Parallel Setup

 The Control Connection is used to determine the PLMT capability of
 the end hosts. The Initial Connection MUST not transport any data
 before the Control Connection is established and the PLMT Capability
 Exchange is completed. If the Control Connection setup or PLMT
 Capability Exchange fails, then the Initial Connection MUST not
 transmit data with TLV encoding but the legacy TCP bytestream.

 Before using TLV encoding, a host must first send the Signature on
 the Initial Connection as depicted in Figure 7. The first TLV-
 encoded messages after that delimiter must exchange the tokens to
 bundle the Initial Connection with the Control Connection, and to
 verify at both endpoints that the Initial Connection and the Control
 Connection indeed terminate at the same host. The tokens are
 exchanged by a Token Indication and a Token Confirmation message.
 After these messages, both sides are allowed to send other PLMT
 messages in TLV encoding over the Connection, or to establish

Singh, et al. Expires January 6, 2011 [Page 21]

Internet-Draft PLMT August 2010

 further Subflow Connections. Both Active and Passive Opener must
 verify the Tokens. If the Tokens do not match the ones exchanged
 over the control connection, the PLMT session must be closed, as
 apparently an error has occurred.

 End-host A End-host B
 --------------------------- ---------------------------
 Address A1 Address A2 Address B1 Address B2
 ------------ ------------ ------------ ------------
 | | | |
 | (Initial Connection setup (TCP)) | |
 |---------------SYN----------------------->| |
 |<------------SYN/ACK----------------------| |
 |---------------ACK----------------------->| |
 | | | |
 | (PLMT Capability of the Other End-host has been |
 | determined over the Control Connection) |
 | | | |
 | (First TLV encoded message exchange | |
 | over the Initial Connection) | |
 |---B's Signature + Token B Verification-->| |
 | | | Token |
 | | | verif. |
 |<--A's Signature + Token A Verification---| |
 Token | | | |
 verif. | | | |
 | | | |
 | (TLV encoded data transport | |
 | over the Initial Connection) | |
 |---------------TLV----------------------->| |
 |<--------------TLV------------------------| |
 | | | |
 Figure 7 Bundling of Initial PLMT Subflow Connection and Control
 Connection for Parallel Setup

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------------------------+-------------+
 |Kind=TOKEN | Length=12 | reserved |
 +---------------+---------------------------------+-------------+
 | Token (8 byte) |
 +---+

 Figure 8 PLMT Token Verification Message (sent over the Initial
 Connection)

Singh, et al. Expires January 6, 2011 [Page 22]

Internet-Draft PLMT August 2010

 4.3.3. Bundling of Initial Connection to the Control Connection
 in Late Setup

 In order to avoid the setup overhead of control Connections for
 short-lived transfers, the PLMT protocol MAY establish the Control
 Connection after data has already been exchanged on the Initial
 Connection. This document does not describe heuristics when to set up
 the Control connection. They may take into account factors such as
 number of bytes transferred, cached information about support of
 PLMT, or user preferences.

 A receiver MUST assume that all bytes received on an incoming TCP
 connection are sent by legacy end system, before a match with a valid
 Signature is possible. Until then, all data must be passed to the
 application in unmodified form. Thus, PLMT risks with a very small
 probability that corrupted data is delivered to an application.

 Once the Control Connection is established and the PLMT capability
 information of the end hosts has been exchanged, the Active Opener
 can send the Passive Opener's Signature and a PLMT Token
 Verification message over the Initial Connection, at the position in
 the byte stream that has been advertised over the control channel.
 The mechanism of token exchange in the payload of the Initial
 Connection is used to verify that the Initial Connection and Control
 Connection actually involve the same hosts.

 End-host A End-host B
 --------------------------- ---------------------------
 Address A1 Address A2 Address B1 Address B2
 ------------ ------------ ------------ ------------
 | | | |
 | (Initial Connection setup (TCP)) | |
 |---------------SYN----------------------->| |
 |<------------SYN/ACK----------------------| |
 |---------------ACK----------------------->| |
 | | | |
 | (Data Segments | |
 | sent over the Initial Connection) | |
 |--->| |
 |<---| |
 | | | |
 | (Control Connection setup (TCP)) | |
 |~~~~~~~~~~~~~~~SYN~~~~~~~~~~~~~~~~~~~~~~~>| |
 |<~~~~~~~~~~~~SYN/ACK~~~~~~~~~~~~~~~~~~~~~~| |
 |~~~~~~~~~~~~~~~ACK~~~~~~~~~~~~~~~~~~~~~~~>| |

Singh, et al. Expires January 6, 2011 [Page 23]

Internet-Draft PLMT August 2010

 | | | |
 | (TLV-Enabled PLMT Control Signaling | |
 | sent over the Control Connection) | |
 |~~~Sign. indic. (A's sign., A's token)~~~>| |
 |<~~Sign. confirm. (B's sign., B's token)~~| |
 | | | |
 | (Message exchange over the | |
 | Initial Connection) | |
 |---B's Signature + Token B verification-->| |
 | | Token |
 |..| verif. |
 |<--A's Signature + Token A verification---| |
 Token | | | |
 verif. | (TLV encoded data transport | |
 | over the Initial Connection) | | |
 |---------------TLV----------------------->| |
 |<--------------TLV------------------------| |
 | | | |
 Figure 9 Bundling of PLMT First Subflow Connection and Control
 Connection for Delayed Setup

4.4. Additional Subflow Connections Initiation and Operation

 4.4.1. Address Advertisement

 The Initial Subflow Connection, as well as the Control Connection, is
 established by the Active Opener. Once TLV encoding is enabled on the
 Initial Subflow Connection, and it is thus verified that the two end-
 hosts are PLMT capable, any of the end-hosts MAY initiate further
 Subflow Connections. PLMT assumes that at least one of the two
 connection endpoints is multihomed, i. e., has at least two IP
 addresses. The end-hosts MAY exchange these addresses via the Control
 Connection or via any Subflow Connection, once TLV transport is
 enabled. The frame format of advertising and releasing addresses is
 given in Figure 10 and 11, respectively.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+-------------------------------+-------+-------+
 | Kind=ADD_ADDR | Length | IPVer | (res) |
 +---------------+-------------------------------+-------+-------+
 | Address (IPv4 - 4 octets / IPv6 - 16 octets) |
 +---+

 Figure 10 PLMT Add Address

Singh, et al. Expires January 6, 2011 [Page 24]

Internet-Draft PLMT August 2010

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+-------------------------------+-------+-------+
 | Kind=DEL_ADDR | Length | IPVer | (res) |
 +---------------+-------------------------------+-------+-------+
 | Address (IPv4 - 4 octets / IPv6 - 16 octets) |
 +---+

 Figure 11 PLMT Remove Address

 4.4.2. Subflow Connection Setup

 For each initiation of an additional Subflow Connection, a new TCP
 connection is initiated with a three-way handshake (SYN, SYN/ACK,
 ACK). The Signatures are used by both ends to distinguish Subflow
 Connections from normal TCP connection, and to detect the start of
 TLV encoding. If a Subflow Connection is established that shall
 carry TLV Data Segments, a sender MUST send the Signature first
 before starting to send TLV Data Segments. In all cases, the first
 Data Segment after the Signature MUST be a Token Indication (from
 Active Opener) or Token Confirmation message (from Passive Opener).
 This setup of an additional Subflow Connection is illustrated in
 Figure 12.

 End-host A End-host B
 --------------------------- ---------------------------
 Address A1 Address A2 Address B1 Address B2
 ------------ ------------ ------------ ------------
 | | | |
 | (TLV encoded Data Segments) | |
 |--->| |
 |<---| |
 | | | |
 | (Over Subflow or Control Connection) |
 |<--------------ADD_ADDR-B2----------------| |
 | | | |
 | (Additional Subflow Connection Setup (TCP)) |
 |***************************SYN**************************>|
 |<************************SYN/ACK*************************|
 |***************************ACK**************************>|
 | | | |
 |***B's Signature + Token B verification*****************>|
 | | Token |
 |..| verif. |
 |<**A's Signature + Token A verification******************|
 Token | | | |
 verif. | (TLV encoded data transport | |

Singh, et al. Expires January 6, 2011 [Page 25]

Internet-Draft PLMT August 2010

 | over the additional Subflow Connection) | |
 |***************TLV**************************************>|
 | | | |
 |<**************TLV***************************************|

 Figure 12 Additional Subflow Connection setup

 4.4.3. TLV Encoding of Data Segments

 TLV encoded Data Segments can be sent on each Subflow Connection.
 Each Data Segment carries a 64-bit Session Sequence Number. A PLMT-
 capable host must maintain a Session Sequence Number in addition to
 the TCP sequence numbers of TCP on a Subflow Connection.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +----------------+-------------------------------+--------------+
 | Kind = DATA | Length=20+n | reserved |
 +----------------+-------------------------------+--------------+
 : Session Sequence Number (8 byte) :
 +---+
 : Data Segment (n bytes total) |
 +---+

 Figure 13 TLV encoded Data Segment message

 Session Sequence Numbers are used to reorder the data inside the
 PLMT session that arrives over multiple Subflow Connections. The
 Session Sequence Number is thus similar to the TCP sequence number
 and identifies each byte of data. Each Data Segment carries the
 Session Sequence Number, which refers to the byte number of the
 first byte in the Data segment.

 Even when a PLMT-capable host is not transmitting TLV data segments,
 the end host MUST store Session Sequence Numbers for all ongoing TCP
 connections, in order to be able to deal with late setups of a
 Control Connection.

 4.4.4. Data Acknowledgments

 In addition to the regular Subflow Connection TCP acknowledgements,
 session-level Data Acknowledgements are used to cumulatively
 acknowledge the data received over the different Subflow
 Connections. A Data Acknowledgement that acknowledges the reception
 of a Data Segment message includes the next expected byte of Data
 Segments. In a normal operation, session-level Data Acknowledgements
 are actually not needed, but certain performance enhancing proxies

Singh, et al. Expires January 6, 2011 [Page 26]

Internet-Draft PLMT August 2010

 or middlebox failures may result in situations in which the
 acknowledgments on a SubFlow Connection erroneously allows release
 of data in the sender, even if it is not yet received.

 The Data Acknowlegdements also include a session-level receive
 window to correctly perform flow control at session level, and to
 avoid deadlocks.

 Since the use of data acknowledgements is only a mechanism to
 increase robustness, the data acknowledgements SHOULD be sent at
 bigger intervals of time. It is left for further study how often
 they should be sent. Another open question is on which of the
 connections the messages should be sent.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+--------------------------------+--------------+
 |Kind=SESS_ACK | Length=12 | reserved |
 +---------------+--------------------------------+--------------+
 : Next expected Session Sequence Number (8 byte in total) :
 +---+
 : Session receive window (8 bytes in total) :
 +---+

 Figure 14 Data Acknowledgement message

4.5. Other Aspects

 4.5.1. Congestion Control

 One of the goals for having a multi-connection transport solution is
 to enhance the usage of network resources, commonly known as
 resource pooling principle. In order to achieve resource pooling,
 the congestion windows of the different Subflow Connections of the
 Session should be coupled together. The coupling should lead to
 transmission of more Data Segments over the less congested
 connections as compared to the more congested connections.

 Different congestion control algorithms may be implemented for
 multipath transport mechanisms to achieve the goals of resource
 pooling and fairness. One such algorithm is presented in [4]. The
 algorithm offers a potential solution in the current Internet by
 controlling the Subflow Connection congestion window increase as a
 function of the performance of other Subflow Connections of a
 session.

Singh, et al. Expires January 6, 2011 [Page 27]

Internet-Draft PLMT August 2010

 PLMT could use this algorithm for congestion control as well. If
 PLMT is entirely implemented in the user space, an alternative
 algorithm could be used that runs a corresponding scheduler, which
 uses own estimates for the path characteristics. The design of
 alternative algorithms for congestion control coupling is beyond the
 scope of this document.

 4.5.2. Path Management and Scheduling

 The establishment of multiple Subflow Connections to different
 addresses aims at a better utilization of the network resources.
 PLMT could use cross-layer information from the network layer for
 path management.

 The scheduling of TLV-encoded Data Segments over the different
 Subflow Connections is based on the local policy. PLMT can use
 different algorithms to control the splitting of the data stream
 from the application over the different Subflow Connections. PLMT
 uses the standard TCP mechanisms for reliable transport of data on
 its Subflow Connections.

 The retransmission strategy for lost Data Segments is a local
 policy. The session sequence number allows lost Data Segments to be
 sent over another Subflow Connection in addition to the
 retransmission over the same Subflow Connection. How often a Data
 Segment is sent over another Subflow Connection is again a design
 choice of the local policy.

 4.5.3. Closing Connections and Sessions

 A Subflow Connection is a standard TCP connection. To close a
 Subflow Connection the TCP 4-way FIN handshake mechanism is used.

 When the Session needs to be closed, it means that all the PLMT
 Connections need to be closed, including the Control Connection.

5. Interaction with Middleboxes

 The Internet consists of many different types of middleboxes, some
 parse the contents of the stream of a TCP connection, rewrite the
 content of packet headers or rewrite even the payload. For a new
 multipath transport like PLMT to be successfully deployable, its
 operation should be understood and tested against such middleboxes.
 Examples for well-known middleboxes are Network Address and Port
 Translators (NAPT). PLMT is designed to be compatible with
 middleboxes that have problems with TCP options. But there are also
 some problems with other types of middleboxes.

Singh, et al. Expires January 6, 2011 [Page 28]

Internet-Draft PLMT August 2010

5.1. Middleboxes that Translate Address/Ports

 Middleboxes that perform Network Address and Port Translations
 (NAPT) may cause problems for the creation of multiple connections
 (this is a potential issue for all multipath transport protocols).
 Hosts behind the NAPT know their local addresses but might not be
 aware of the global addresses that the NAPT uses. Therefore, the
 hosts MUST NOT advertise their multiple local addresses to the other
 host. The host behind the NAPT MAY still be multipath capable and
 MAY open a PLMT connection to the other host if the other host is
 also PLMT capable. Over the established PLMT connection, the other
 host MAY advertise its multiple addresses. These addresses will be
 used by the host behind the NAPT to open further Subflow
 Connections.

5.2. Middleboxes that Manipulate TCP Options

 The multipath solutions that use TCP options field for their
 operation may suffer from middleboxes that may remove or modify the
 TCP options. Some middleboxes may even drop packets with unknown TCP
 options, and this may happen for the connection establishment
 packets as well. PLMT does not employ any new TCP option and hence
 it would not be affected by such a middlebox behavior.

5.3. Middleboxes that Parse Content

 Current middleboxes in the Internet are not aware of multipath
 transport. Therefore, middleboxes will identify the single Subflow
 Connection to be a standard TCP connection. The TLV encoding of the
 payload may confuse the middlebox and may lead the middlebox to
 stall the connection in case that the middlebox parses the content.

 If a middlebox blocks TLV encoding, PLMT can try to transmit data
 over another path. However, PLMT cannot fall back to a mode that
 does not use TLV transport, since it must send the Signature and
 tokens in TLV encoding over the Initial Subflow Connection.

 Middleboxes that want to prevent multipath transport can block
 connection setups to the well-known port. This prevents the use of
 multipath transport if a middlebox is both on the path of the
 Initial Subflow Connection and the Control Connection. A middlebox
 that is not on the path of the Control Connection cannot safely
 distinguish normal TCP connections and PLMT Subflow Connections with
 TLV transport.

Singh, et al. Expires January 6, 2011 [Page 29]

Internet-Draft PLMT August 2010

5.4. Middleboxes that Change content

 Middleboxes may also modify the payload and not only the packet
 headers. All the multipath solutions require a session-level data
 sequence number to re-order/combine the data stream received over
 the Subflow Connections. The PLMT design allows detecting such a
 middlebox behavior by identifying the connection which gets stalled
 due to undecodable TLV framing. In addition, checksums could be
 used. The Data Acknowledgements will identify the holes in the
 session sequence numbers so that a retransmission of the missing
 segments over other Subflow Connections will be initiated. This
 allows working around content-modifying middleboxes, unless they are
 present on all paths.

 If this type of middlebox is present on the Initial Connection, then
 the Signature matching may fail. This means that data transport over
 the Initial Connection may be corrupted, as, e. g., the Signature
 may be delivered to the application as part of the byte stream.

6. Security Considerations

 The Signature-based method to identify the setup of a new TLV-
 enabled data flow has two security issues: First, an application can
 accidentally generate a bit pattern that is equal to the Signature.
 Second, due to the use of out-of-band signaling, PLMT's method must
 be robust against malicious attacks that try to break or hijack PLMT
 sessions or normal connections. Unlike other multipath transport
 protocols, it is theoretically possible to attack a normal TCP
 connection to a PLMT-enabled server, even if it does not use
 multipath transport.

6.1. Reappearance of Signature in Application Data

 The Signature (and the tokens) is sent in two different contexts:

 o A connection which was started as a single legacy TCP
 connection is later switched to PLMT/TLV-enabled operation. In
 this case, the Active Opener provides the Session sequence
 number over the control connection of the last byte that is
 not TLV encoded. This way, the PLMT Layer of the Passive
 Opener knows how much user data has been transmitted through
 the legacy TCP connection and when to expect the Signature.
 Given the length of the Signature, as well as the following
 token exchange, it is extremely unlikely that a normal TCP
 connection is wrongly classified as a Subflow Connection. A
 similar problem occurs at the Active Opener.

Singh, et al. Expires January 6, 2011 [Page 30]

Internet-Draft PLMT August 2010

 o The Signature can also be present in the first bytes of a new
 PLMT Subflow Connection, if it is an additional Subflow
 Connection, or if the Control Connection is established first.
 In these cases, the Subflow Connection is characterized by the
 Signature being present in the first bytes of a connection. In
 case that an application itself opens an additional TCP
 connection to the same corresponding end host, a problem could
 occur if the Signature pattern (and follow-up token messages)
 is contained in the first data packet of the connection.

 Because of both effects, there is a residual probability that PLMT
 accepts a connection erroneously, if an application accidentally
 sends a bit pattern that is identical to the Signature (plus the
 Tokens), of if an attacker manages to guess the pattern. This
 probability is very small as the Signature is a long, random bit
 pattern.

 This probabilistic approach of a token-based identification is
 general practice in challenge-response authentication methods, where
 there is also an extremely small residual probability that an
 unauthorized (malicious) node guesses the response correctly.

6.2. Resilience against Malicious Attacks

 One aspect of address-agile multi-path transport mechanisms are
 possible malicious attacks. PLMT suffers from a DoS vulnerability,
 but it has protection methods against other attacks.

 PLMT uses the same token mechanism like other multipath transport
 protocols, but with much longer tokens. An attacker must not only
 correctly guess the Tokens, but also the Signature. As a
 consequence, the probability of blind guess attacks on PLMT is
 extremely small.

7. Open Issues

 This PLMT protocol specification is a work-in-progress, and there
 are still remaining unsolved issues that need further
 considerations.

8. IANA Considerations

 This document will make a request to IANA to allocate a new TCP/UDP
 port value for the PLMT Control Connection.

Singh, et al. Expires January 6, 2011 [Page 31]

Internet-Draft PLMT August 2010

9. Conclusion

 PLMT is a user-space solution to enable reliable, in-order data
 transfer over multiple paths. This specification defines the PLMT
 protocol. PLMT is defined as a worked example for a payload-based
 multipath transport, as an alternative to TCP option based signaling
 mechanisms. Due to some security vulnerabilities, it is mainly
 suitable for controlled and trusted environments.

10. References

10.1. Normative References

 [1] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [2] J. Postel, ''Transmission Control Protocol'', STD 7, RFC 793,
 September 1981.

 [3] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008.

10.2. Informative References

 [4] Raiciu, C., Handley, M. and D. Wischik, ''Coupled Multipath-
 Aware Congestion Control'', draft-ietf-mptcp-congestion-00
 (work in progress), July 2010.

 [5] Ford, A., Raiciu, C., Barre, S. and J. Iyengar, ''Architectural
 Guidelines for Multipath TCP Development'', draft-ietf-mptcp-

architecture-01 (work in progress), June 2010.

 [6] Ford, A., Raiciu, C. and M. Handley, ''TCP Extensions for
 Multipath Operation with Multiple Addresses'', draft-ietf-

mptcp-multiaddressed-01 (work in progress), July 2010.

 [7] M. Bagnulo, ''Threat Analysis for Multi-addressed/Multi-path
 TCP'', draft-ietf-mptcp-threat-02 (work in progress), March
 2010.

 [8] Scharf, M. and A. Ford, ''MPTCP Application Interface
 Considerations'', draft-scharf-mptcp-api-02 (work in progress),
 July 2010.

 [9] M. Scharf, ''Multi-Connection TCP (MCTCP) Transport'', draft-
scharf-mptcp-mctcp-00 (work in progress), July 2010.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/draft-ietf-mptcp-congestion-00
https://datatracker.ietf.org/doc/html/draft-ietf-mptcp-architecture-01
https://datatracker.ietf.org/doc/html/draft-ietf-mptcp-architecture-01
https://datatracker.ietf.org/doc/html/draft-ietf-mptcp-multiaddressed-01
https://datatracker.ietf.org/doc/html/draft-ietf-mptcp-multiaddressed-01
https://datatracker.ietf.org/doc/html/draft-ietf-mptcp-threat-02
https://datatracker.ietf.org/doc/html/draft-scharf-mptcp-api-02
https://datatracker.ietf.org/doc/html/draft-scharf-mptcp-mctcp-00
https://datatracker.ietf.org/doc/html/draft-scharf-mptcp-mctcp-00

Singh, et al. Expires January 6, 2011 [Page 32]

Internet-Draft PLMT August 2010

11. Acknowledgments

 The authors are supported by the German-Lab project
 (http://www.german-lab.de/), a research project funded by the German
 Federal Ministry of Education and Research (BMBF). The views
 expressed here are those of the author(s) only. The BMBF is not
 liable for any use that may be made of the information in this
 document.

 The authors gratefully acknowledge significant input into this
 document from Koojana Kuladinithi, Asanga Udugama, Andreas Koensgen,
 Andres Toro (all from University of Bremen), Andreas Timm-Giel
 (Hamburg University of Technology), Thomas-Rolf Banniza and Peter
 Schefczik (all from Alcatel-Lucent Bell Labs).

Authors' Addresses

 Amanpreet Singh
 University of Bremen
 Otto-Hahn-Allee 1
 28359 Bremen
 Germany

 Email: aps@comnets.uni-bremen.de

 Michael Scharf
 Alcatel-Lucent Bell Labs
 Lorenzstrasse 10
 70435 Stuttgart
 Germany

 EMail: michael.scharf@alcatel-lucent.com

Singh, et al. Expires January 6, 2011 [Page 33]

http://www.german-lab.de/

