
Network Working Group I.B.C. Baz Castillo

Internet-Draft XtraTelecom S.A.

Intended status: Informational S.I.C. Ibarra Corretge

Expires: April 27, 2012 AG Projects

J.L.M.V. Millan Villegas

XtraTelecom S.A.

October 25, 2011

Open In-The-Wire Protocol for RTC-Web

draft-sipdoc-rtcweb-open-wire-protocol-00

Abstract

RTC-Web clients communicate with a server in order to request or manage

realtime communications with other users. This document exposes four

hypothetical and different RTC-Web scenarios and analyzes the

requirements of the in-the-wire protocol in each of them.

The aim of this document is to make RTC-Web properly fit in the nature

of the Web.

Status of this Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task

Force (IETF). Note that other groups may also distribute working

documents as Internet-Drafts. The list of current Internet- Drafts is

at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months

and may be updated, replaced, or obsoleted by other documents at any

time. It is inappropriate to use Internet-Drafts as reference material

or to cite them other than as "work in progress."

This Internet-Draft will expire on April 27, 2012.

Copyright Notice

Copyright (c) 2011 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents (http://trustee.ietf.org/license-

info) in effect on the date of publication of this document. Please

review these documents carefully, as they describe your rights and

restrictions with respect to this document. Code Components extracted

from this document must include Simplified BSD License text as

described in Section 4.e of the Trust Legal Provisions and are provided

without warranty as described in the Simplified BSD License.

Table of Contents

1. Conventions

2. Introduction

3. Definitions

4. Overview of an RTC-Web Communication

5. More Use Cases

5.1. RTC-Web in Facebook

5.2. SIP over WebSocket

5.3. Poker Game

6. Conclusions

7. New Requirements for RTC-Web

8. Security Considerations

9. IANA Considerations

10. References

10.1. Normative References

10.2. Informative References

Authors' Addresses

1. Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

document are to be interpreted as described in [RFC2119].

2. Introduction

In contrast to protocols such as SIP [RFC3261] or XMPP [RFC6120], RTC-

Web [RTC-Web] does not define a protocol for establishing media

sessions between peers. Instead RTC-Web defines the media protocols

(RTP/SRTP/ICE) to be used by web browsers. It also states how the web

browser natively handles media streams (including media security and

validation concerns), defines the requirements for the communication

between the RTC-Web stack in the browser and the web application (via a

JavaScript API to be defined by W3C) and MAY suggest some kind of media

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

JavaScript WebRTC API:

RTC-Web Server:

In-The-Wire Protocol:

Call Control Protocol:

negotiation protocol to be carried in-the-wire between RTC-Web clients

and servers.

That said, RTC-Web does not mandate any user identifier syntax (in the

way SIP defines the SIP URI), nor an authentication mechanism, in-the-

wire messages format or the way messages are exchanged between RTC-Web

clients and servers. There are many different ways by which those

targets can be achieved nowadays on the Web.

All this flexibility makes the whole picture of an RTC-Web scenario and

the scope in which RTC-Web is involved hard to understand. This

document tries to identify each component in the RTC-Web architecture

and clarify which components can be left up to web developers and which

others should be mandated by RTC-Web specifications.

3. Definitions

The following terms have special significance in the context of RTC-

Web.

This is the communication layer between the

native RTC-Web stack in the browser and JavaScript. It includes

JavaScript functions to manage media sessions along with JavaScript

callbacks which will be called by the RTC-Web stack when some media

related event takes place. This API MUST be exposed by every RTC-Web

compliant browser. It's being defined by W3C.

The server that RTC-Web clients communicate with for

initiating and managing media sessions with remote peers. This is

usually an HTTP [RFC2616] server or a WebSocket [I-D.ietf-hybi-

thewebsocketprotocol] server behaving as a centralized point for

signaling messages exchanged between peers (and MAY accomplish other

tasks such as authentication, authorization, peer lookup procedures

and protocol conversion). A given RTC-Web server will implement the

In-The-Wire Protocol (defined below) chosen by the website

developer.

This is the communication layer between users'

web browser and the RTC-Web Server. It involves a signaling protocol

to be carried over HTTP or WebSocket (the protocols JavaScript can

interact with). The messages exchanged over this protocol contain

call control information and media negotiation information (both

Call Control Protocol and Media Negotiation Protocol explained

next).

This involves the format and semantics of the

messages exchanged between the RTC-Web client (web browser) and the

RTC-Web Server for routing and other purposes such as authorization,

authentication, registration and others. Examples of a Call Control

Protocol could be SIP or XMPP carried over HTTP or WebSocket, whose

messages contain information about the originator and recipient of

Media Negotiation Protocol:

JavaScript RTC-Web Library:

JavaScript WebSite Library:

the message, credentials, type of message, etc. However any other

custom protocol (such as HTTP POST or some JSON-based protocol over

WebSocket) can accomplish this task. Call Control Protocol messages

MAY carry media negotiation information (in the same way a SIP

INVITE request contains an SDP body).

When a RTC-Web client wants to establish a

media session with a remote peer, it sends a Call Control Protocol

request over the wire to the RTC-Web Server indicating the

destination of the request (along with other fields). Such a request

also carries media information exposed by the originator. In the SIP

protocol example, the Media Negotiation Protocol is represented by

the SDP offer/answer body conveyed by INVITE and 200 OK messages

(simplified). In the case of RTC-Web, such media negotiation MAY be

carried as ROAP [I-D.jennings-rtcweb-signaling] Offer/Answer JSON

objects.

This is a website-agnostic JavaScript

library. Web developers (end-users) can include it within their

websites. The library defines a custom In-The-Wire Protocol by

providing an API with functions for generating requests and

responses (to be sent in-the-wire) along with callbacks for

processing incoming request/responses and state change

notifications. This JavaScript library is coded by an RTC-Web expert

and is supposed to hide the complexity of the JavaScript WebRTC API

and the management of the In-The-Wire Signaling to the end-user.

This is the API the end-user should use and care about (and here is

where the famous term "20 lines of code" applies).

This is the custom JavaScript library that

a web developer (the end-user) provides in his website. In the

context of RTC-Web, this custom library is supposed to make usage of

functions and features present in a JavaScript RTC-Web Library

(defined above). This is the library in which the end-user writes

"20 lines of code" for integrating RTC-Web capabilities within his

website.

4. Overview of an RTC-Web Communication

 {

 "request": {

 "call-id": "0skilqwp",

 "transaction-id": 1001,

 "request-type": "call",

 "source-user": "Bob",

 "destination-user": "Alice",

 "subject": null,

 "cookie": "kj87kjsdhf",

 "media": _ROAP_OFFER_OBJECT_

 }

 }

 {

 "response": {

 "call-id": "0skilqwp",

 "transaction-id": 1001,

 "status": "accepted",

 "source-user": "Alice",

 "destination-user": "Bob",

 "cookie": "t112mnkszz",

 "media": _ROAP_ANSWER_OBJECT_

 }

 }

 {

 "request": {

 "call-id": "0skilqwp",

 "transaction-id": 1001,

 "request-type": "ack",

 "source-user": "Bob",

 "destination-user": "Alice",

 "cookie": "kj87kjsdhf",

 "media": _ROAP_OK_MESSAGE_

 }

 }

 {

 "request": {

 "call-id": "0skilqwp",

 "transaction-id": 1002,

 "request-type": "hangup",

 "source-user": "Alice",

 "destination-user": "Bob",

 "cookie": "t112mnkszz"

 }

 }

rtcquery.js (a JavaScript RTC-Web Library):

mysite.js (a JavaScript WebSite Library):

A mandatory Call Control Protocol section:

An optional Media Negotiation Protocol section:

Here a hypothetical and very simple RTC-Web scenario is described:

A user visits a web page "mysite.com" using his browser and logs-

in the web by introducing his username (Bob) and password. The

authentication is achieved by sending an HTTP POST request with

the user's credentials. The web server validates the credentials

and replies with a HTTP 200 response containing a Cookie

"kj87kjsdhf" to be used within the same session. The user is

redirected to a new page from which the browser retrieves two

JavaScript libraries:

This is a GPL

JavaScript library implementing a custom In-The-Wire Protocol

for RTC-Web based on JSON and WebSocket. This library is

becoming the most successful and extended RTC-Web library and

there are O'Reilly books about it.

This is the JavaScript

code created by the web developer of "mysite.com". It includes

website specific functions and makes use of the "rtcquery.js"

library to incorporate RTC-Web capabilities to the web page

(by adding "20 lines of code").

Once all the JavaScript code (both "rtcquery.js" and "mysite.js")

is loaded by the browser, it opens a WebSocket connection with

the web server, which is also a WebSocket server listening on the

same port (it could be a different server though).

The web developer of "mysite.com" has implemented the In-The-Wire

Protocol defined in "rtcquery.js" into his WebSocket server using

PHP. For this task, the developer has studied the documentation

available in the website of the rtcQuery.js project.

The custom In-The-Wire Protocol states that each request sent

over the WebSocket connection is a JSON object containing:

This includes fields

such as "call-id" (a common string for all the requests/

responses within the same call), "transaction-id" (an integer

for correlating a request and its associated responses),

"request-type" (for example "call"), "source-user" (current

user), "destination-user" (the remote peer), "subject" (some

description of the call) and "cookie" (the Cookie sent by web

server, which is used by the client to identify itself and get

authorization by the WebSocket server).

This is conveyed

by attaching a ROAP [I-D.jennings-rtcweb-signaling] Offer or

OK JSON object.

*

*

*

*

In-The-Wire Protocol responses are similar to the requests, but

instead of "request-type" and "subject", they contain a "status"

field indicating the nature of the response (which can be

"accepted", "rejected" or "not-online") and instead of a ROAP

Offer they MAY contain a ROAP Answer.

The new page rendered by the browser includes a big section with

"online" users (those that are available for audio/video

sessions). The user wants to make an audio call with Alice (who

is online) and clicks a "Call" button next to Alice's buddy.

Then the JavaScript code makes a call (using the JavaScript

WebRTC API) to the browser RTC-Web stack in order to ask for a

ROAP Offer object with just "audio" capability (note:

PeerConnection stuff ommited for brevity). The RTC-Web stack

performs some internal operations to discover the browser IP,

gets some available UDP port for sending RTP, chooses an audio

codec from the list of available codecs in the browser, and

returns the ROAP Offer JSON object.

After that, the JavaScript code constructs an In-The-Wire

Protocol request (a JSON object) as follows:

The JavaScript code sends the request to the web server via the

existing WebSocket connection.

The server inspects the "cookie" and the "source-user" fields,

and authorizes the request since such Cookie value is associated

to an existing web session owned by Bob.

Then the server checks for Alice's status. Alice is online and

connected via WebSocket to the server, so using such connection

the server delivers the request to Alice (previously removing the

"cookie" field).

Alice's browser receives the request and some JavaScript callback

(defined by the JavaScript code when a WebSocket messsage is

received) is called. Alice is prompted to accept or reject the

incoming call request from Bob. Alice presses "Accept".

The JavaScript code in Alice's browser makes a call (using the

JavaScript WebRTC API) to the browser RTC-Web stack and gets a

ROAP Answer object with just "audio" capability. Then it

constructs an In-The-Wire Protocol response as follows (note that

it includes her Cookie) and sends it to the server via the

WebSocket connection:

The server inspects the "cookie" and "source-user" and validates

the response. Then it inspects the "destination-user" and routes

the response object to Bob.

*

*

*

*

*

*

*

*

*

*

RTC-Web Server:

In-The-Wire Protocol:

Call Control Protocol:

Media Negotiation Protocol:

JavaScript RTC-Web Library:

JavaScript WebSite Library:

Upon receipt of the response, the JavaScript code in Bob's

browser automatically sends a request acknowledging the response

to the server:

The request is routed to Alice's browser and its ROAP OK message

automatically delivered to the RTC-Web stack by the JavaScript

code.

At this point, both Bob and Alice's browsers perform ICE

connectivity checks and finally establish a RTP audio session.

The success of the media session establishment is notified to the

users via some JavaScript pop-up.

After a while Alice decides to terminate the call by pressing a

"Hangup" button. The JavaScript code asks the RTC-Web stack in

the browser to finish sending RTP and sends a JSON request to Bob

via the WebSocket connection:

Bob receives the request. His JavaScript code calls the RTC-Web

stack to finish the media session (by passing it some "session-

id" identifier retrieved from the initial ROAP Offer).

Session is now terminated. Bob did not get a date with Alice, but

has been enjoying a RTC experience so he is satisfied.

Lets inspect the RTC-Web components as defined by this document in the

given scenario:

A WebSocket server running in the same port as the web

server.

Custom JSON messages over WebSocket transport.

All the fields in the JSON message (but the

"media" field).

The media information is located in the

"media" parameter of the JSON message. It's carried as ROAP Offer/

Answer JSON object.

"rtcquery.js" library made GPL by the

rtcQuery.js project.

"mysite.js" custom library (makes use of

"rtcquery.js").

5. More Use Cases

5.1. RTC-Web in Facebook

*

*

*

*

*

*

 POST /ajax/chat/send.php?__a=1 HTTP/1.1

 Host: www.facebook.com

 Connection: keep-alive

 X-SVN-Rev: 460802

 Content-Type: application/x-www-form-urlencoded; charset=UTF-8

 Referer: http://www.facebook.com/?sfrm=1

 Content-Length: XXX

 Cookie: datr=ZjyfTjurvmsqvYVBDcXF8u; c_user=104442654509775; L=2;

 lu=RgQytVtJJBoSvWUNOYzs0oQg; sct=1319153603;

 xs=60%3A1c179a7dfb7f08278477b20e778bd391; p=112;

 presence=631L212REp_5f1B08654409875F4EriF0CEstateFDutF131910363 \

 96EvisF1HsndF1ODiFA21B02609687525A2C_5dEfFA21B02602687525A2Euct \

 319103618FD55F1G318103604PEuoFD1B02602687525FDexpF1319103680370 \

 lF_5b1_5dEolF0CCEalFD1B02602687525FDiF0umF0CCCC;

 wd=1366x675

 Pragma: no-cache

 Cache-Control: no-cache

 msg_id=1319103647568%3A3629978310&client_time=1319103646048&

 to=100002772687525&num_tabs=1&pvs_time&msg_text=hello&

 to_offline=false&to_idle=false&window_id=2877189837&

 sidebar_launched=true&sidebar_enabled=true&sidebar_capable=true&

 sidebar_should_show=false&sidebar_visible=false&

 post_form_id=449eb730c851e127f21d8a88b6a00667&fb_dtsg=AQC3StlW&lsd&

 post_form_id_source=AsyncRequest&__user=100002624409995

Facebook integrates IM (instant messaging) into its web application.

For that the JavaScript code performs HTTP long polling for retrieving

incoming IM messages in realtime, and sends an HTTP POST request when a

user sends a message to another user. Such HTTP POST requests look as

follows:

The above request contains some parameters in both the Cookie header

and the body. The Cookie header seems to contain information about the

identity of the user sending the IM message. The Cookie value is

probably also used for authentication in the server. The "msg_text"

parameter in the body contains the IM text message itself while the

"to" parameter in the body seems to contain the destination user (a

long integer probably representing the user ID). The meaning of other

parameters in both the Cookie and the body are up to Facebook, this is,

they are specific to the application. It seems obvious that it's not

possible to standarize all these parameters.

RTC-Web Server:

In-The-Wire Protocol:

Call Control Protocol:

 POST /ajax/call/call.php?__a=1 HTTP/1.1

 Host: www.facebook.com

 Connection: keep-alive

 X-SVN-Rev: 460802

 Content-Type: application/x-www-form-urlencoded; charset=UTF-8

 Referer: http://www.facebook.com/?sfrm=1

 Content-Length: XXX

 Cookie: datr=ZjyfTjurvmsqvYVBDcXF8u; c_user=104442654509775; L=2;

 lu=RgQytVtJJBoSvWUNOYzs0oQg; sct=1319153603;

 xs=60%3A1c179a7dfb7f08278477b20e778bd391; p=112;

 presence=631L212REp_5f1B08654409875F4EriF0CEstateFDutF131910363 \

 96EvisF1HsndF1ODiFA21B02609687525A2C_5dEfFA21B02602687525A2Euct \

 319103618FD55F1G318103604PEuoFD1B02602687525FDexpF1319103680370 \

 lF_5b1_5dEolF0CCEalFD1B02602687525FDiF0umF0CCCC;

 wd=1366x675

 Pragma: no-cache

 Cache-Control: no-cache

 call_id=1319103647568%3A3629978310&client_time=1319103646048&

 to=100002772687525&num_tabs=1&pvs_time&to_offline=false&

 to_idle=false&window_id=2877189837&sidebar_launched=true&

 sidebar_enabled=true&sidebar_capable=true&

 sidebar_should_show=false&sidebar_visible=false&

 post_form_id=449eb730c851e127f21d8a88b6a00667&fb_dtsg=AQC3StlW&

 lsd&post_form_id_source=AsyncRequest&__user=100002624409995&

 media=_ROAP_OFFER_OBJECT_

Assuming that Facebook is willing to integrate RTC-Web within the web

application, it makes sense that Facebook would be interested in

reusing the same protocol and message format it's already using for IM

(which is also realtime communication). So when a user clicks some

"Call" button within his Facebook contact list, it is expected that the

JavaScript code could generate an HTTP POST as follows:

The new HTTP POST request differs in the request URI (which now points

to "/ajax/call/call.php"). The body includes a "media" parameter whose

value is a ROAP Offer JSON object (properly encoded if necessary).

Given this HTTP POST request, lets inspect the RTC-Web components as

defined by this document:

Facebook uses their HTTP servers as RTC-Web servers.

Facebook uses HTTP protocol and a common HTTP

POST request.

The information about the call originator is

mainly included in the Cookie header, while other topics as the

destination user of the call are located in the body (the "to"

parameter).

Media Negotiation Protocol:

JavaScript RTC-Web Library:

JavaScript WebSite Library:

The media information is located in the

"media" parameter of the body. In this case Facebook uses a ROAP

Offer JSON object for carrying such media information.

It is expected to be an advanced

JavaScript library designed by Facebook which also includes other

functions unrelated to RTC-Web.

Merged with the JavaScript RTC-Web Library

into a single JavaScript file.

If Facebook would desire to interoperate (federate) with a SIP network

it is clear that it would need a signaling protocol gateway which

converts the HTTP POST information into a SIP request, and the ROAP

Offer into a SDP body.

5.2. SIP over WebSocket

This is an optimal solution for interoperating with SIP without

requiring a protocol gateway. In this scenario the web user downloads a

JavaScript code from the website and the JavaScript code establishes a

WebSocket connection with a SIP proxy (the RTC-Web server) implementing

the WebSocket transport [I-D.ibc-rtcweb-sip-websocket] (along with

other common SIP transports as UDP and TCP). The messages exchanged

between the RTC-Web client and server over the WebSocket connection are

pure SIP requests and responses, with no modifications (others than the

new "WS" transport identificator in the Via header).

 INVITE sip:bob@example.org SIP/2.0

 Via: SIP/2.0/WS invalid.domain;branch=z9hG4bK56sdasks

 From: sip:alice@example.org;tag=asdyka899

 To: sip:bob@example.org

 Call-ID: asidkj3ss

 CSeq: 1 INVITE

 Max-Forwards: 70

 Contact: <sip:alice@invalid.domain;transport=ws>

 Supported: path, outbound

 Content-Type: application/sdp

 SDP

When the user makes a call from the web it generates a SIP INVITE to be

sent over the WebSocket connection, which looks as follows:

For this to work, the JavaScript code must map the ROAP Offer retrieved

via the JavaScript WebRTC API into a normal SDP (it's not the aim of

this documment to discuss about the complexity such mapping could

involve).

When the INVITE arrives to the RTC-Web Server (which behaves as a pure

SIP proxy) it just performs standard SIP routing procedures (the same

RTC-Web Server:

In-The-Wire Protocol:

Call Control Protocol:

Media Negotiation Protocol:

JavaScript RTC-Web Library:

JavaScript WebSite Library:

as if the request would have arrived via UDP or TCP transports), so

there is no need for a protocol gateway when interoperating with a pure

SIP network out there.

Given this INVITE request, lets inspect the RTC-Web components as

defined by this document:

A SIP proxy that also implements the WebSocket

transport.

Pure SIP protocol.

Contained in the headers of the SIP request

(From, request URI, Contact, Authorization...).

The session description (SDP) carried in

the SIP request body.

It could be a GPL "jssip.js" library

implementing SIP over WebSocket and a SIP stack in JavaScript.

Website specific. It would make use of the

"jssip.js" library for adding RTC-Web capabilities "in 20 lines of

code".

5.3. Poker Game

A website "www.poker-game.info" makes use of HTTP Comet technology for

carrying realtime information about the game to each participant. The

messages exchanged via HTTP Comet between participants and the web

server are XML documents conveying updates and actions happening during

the game.

Now that website wants to integrate RTC-Web capabilities and enter each

participant into an audio multiconference in which every user listens

to all the participants and can speak to them.

 <?xml version="1.0" encoding="ISO-8859-1"?>

 <game-multiconf>

 <action>call</action>

 <media>_ROAP_OFFER_XML_</media>

 </game-multiconf>

To accomplish this architecture and still reuse the existing design,

once the user logs-in the web his browser receives an incoming audio

call from the conference server. Such call request is carried over the

HTTP connection (HTTP Comet) as a new XML document which looks as

follows:

The ROAP Offer is generated by the conference server, which satisfies

all the media requirements of RTC-Web (ICE, SRTP).

RTC-Web Server:

In-The-Wire Protocol:

Call Control Protocol:

Media Negotiation Protocol:

JavaScript RTC-Web Library:

JavaScript WebSite Library:

The JavaScript code in the client side answers the call (once the user

accepted it) and sends a similar XML containing a ROAP Answer via the

existing HTTP connection.

Given the above XML document, lets inspect the RTC-Web components as

defined by this document:

The web server of "www.poker-game.info".

Custom XML document through HTTP Comet.

It's minimal. There is no information about the

originator or recipient of the call (not needed in this scenario).

The XML contains an "action" field whose value "call" means

"incoming call request from the website".

A ROAP Offer/Answer in XML format.

A library created by the developer of

"www.poker-game.info". It implements the In-The-Wire Protocol as

stated above.

It is merged with the JavaScript RTC-Web

Library, so there is a single JavaScript file.

6. Conclusions

This document has shown four hypothetical scenarios of RTC-Web. Each

scenario uses its own In-The-Wire Protocol (JSON over WebSocket, HTTP

POST, SIP over WebSocket and XML over HTTP Comet) and it's hard to

expect that all these scenarios could be constrained to use the same

protocol and message format in-the-wire. The needs of each scenario are

not the same, neither the custom fields carried in-the-wire (see for

example the ammount of custom parameters Facebook includes within the

HTTP POST request).

In the Web each website decides how to accomplish the features and

capabilities it wants to provide to its users. Mandating the message

format in-the-wire seems not to be an option given the nature of the

Web. Mandating it would also make RTC-Web integration very hard into

existing websites which already implement their custom signaling

protocol and message format for realtime communications (as instant

messaging), their authentication mechanisms, etc.

RTC-Web will bridge the gap between realtime communication services

such as VoIP and the Web, so it must play by the rules present on the

Web. These rules include the freedom by which the web developer chooses

his preferred option to innovate and offer new services to users. That

is the key to success of the Web and should be respected.

7. New Requirements for RTC-Web

Given the conclusions in the previous section, this document states

some new requirements for RTC-Web:

It MUST be possible for a website developer to design his own

In-The-Wire Protocol (including the messages format and

transport used for carrying such messages).

It MUST be possible for a website developer to choose his

favourite JavaScript RTC-Web Library and adapt his web

application to make use of it.

It MUST be possible for a website developer to design a Media

Negotiation Protocol in which the media information is not

carried as ROAP Offer/Answer objects (by letting the developer

implement the ROAP mapping in JavaScript).

NOTE: This text is written assuming that ROAP [I-D.jennings-

rtcweb-signaling] becomes a standard in RTC-Web.

It MUST be possible for a website developer to make his RTC-Web

scenario to interoperate with a pure SIP or XMPP/Jingle network

without requiring a signaling protocol gateway (by using SIP

over WebSocket [I-D.ibc-rtcweb-sip-websocket] or XMPP over

WebSocket [I-D.moffitt-xmpp-over-websocket]).

This would be indeed feasible if previous bullets are

satisfied.

8. Security Considerations

Not applicable.

9. IANA Considerations

Not applicable.

10. References

10.1. Normative References

[RFC2119]
Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, March 1997.

10.2. Informative References

[RFC3261]

Rosenberg, J., Schulzrinne, H.,

Camarillo, G., Johnston, A., Peterson,

J., Sparks, R., Handley, M. and E.

1.

2.

3.

*

4.

*

mailto:sob@harvard.edu
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc2119

Schooler, "SIP: Session Initiation

Protocol", RFC 3261, June 2002.

[RFC2616]

Fielding, R., Gettys, J., Mogul, J.,

Frystyk, H., Masinter, L., Leach, P. and

T. Berners-Lee, "Hypertext Transfer

Protocol -- HTTP/1.1", RFC 2616, June

1999.

[RFC6120]

Saint-Andre, P., "Extensible Messaging

and Presence Protocol (XMPP): Core", RFC

6120, March 2011.

[I-D.jennings-rtcweb-

signaling]

Jennings, C and J Rosenberg, "RTCWeb

Offer/Answer Protocol (ROAP)", Internet-

Draft draft-jennings-rtcweb-signaling-00,

October 2011.

[I-D.ietf-hybi-

thewebsocketprotocol]

Fette, I and A Melnikov, "The WebSocket

protocol", Internet-Draft draft-ietf-

hybi-thewebsocketprotocol-17, September

2011.

[I-D.ibc-rtcweb-sip-

websocket]

Castillo, I, Millan, J and V Pascual,

"WebSocket Transport for Session

Initiation Protocol (SIP)", Internet-

Draft draft-ibc-rtcweb-sip-websocket-00,

September 2011.

[I-D.moffitt-xmpp-

over-websocket]

Moffitt, J and E Cestari, "An XMPP Sub-

protocol for WebSocket", Internet-Draft

draft-moffitt-xmpp-over-websocket-00,

December 2010.

[RTC-Web]
IETFW3C, "Real Time Collaboration on the

World Wide Web", October 2010.

Authors' Addresses

Inaki Baz Castillo Baz Castillo XtraTelecom S.A. Barakaldo, Basque

Country Spain EMail: ibc@aliax.net

Saul Ibarra Corretge Ibarra Corretge AG Projects Amsterdam,

Netherlands EMail: saul@ag-projects.com

Jose Luis Millan Villegas Millan Villegas XtraTelecom S.A. Bilbao,

Basque Country Spain EMail: jmillan@aliax.net

http://tools.ietf.org/html/rfc3261
http://tools.ietf.org/html/rfc3261
mailto:fielding@ics.uci.edu
mailto:jg@w3.org
mailto:mogul@wrl.dec.com
mailto:frystyk@w3.org
mailto:masinter@parc.xerox.com
mailto:paulle@microsoft.com
mailto:timbl@w3.org
http://tools.ietf.org/html/rfc2616
http://tools.ietf.org/html/rfc2616
http://tools.ietf.org/html/rfc6120
http://tools.ietf.org/html/rfc6120
http://tools.ietf.org/html/draft-jennings-rtcweb-signaling-00
http://tools.ietf.org/html/draft-jennings-rtcweb-signaling-00
http://tools.ietf.org/html/draft-ietf-hybi-thewebsocketprotocol-17
http://tools.ietf.org/html/draft-ietf-hybi-thewebsocketprotocol-17
http://tools.ietf.org/html/draft-ibc-rtcweb-sip-websocket-00
http://tools.ietf.org/html/draft-ibc-rtcweb-sip-websocket-00
http://tools.ietf.org/html/draft-moffitt-xmpp-over-websocket-00
http://tools.ietf.org/html/draft-moffitt-xmpp-over-websocket-00
mailto:ibc@aliax.net
mailto:saul@ag-projects.com
mailto:jmillan@aliax.net

	Abstract
	Status of this Memo
	Copyright Notice
	Table of Contents
	1. Conventions
	2. Introduction
	3. Definitions
	4. Overview of an RTC-Web Communication
	5. More Use Cases
	5.1. RTC-Web in Facebook
	5.2. SIP over WebSocket
	5.3. Poker Game
	6. Conclusions
	7. New Requirements for RTC-Web
	8. Security Considerations
	9. IANA Considerations
	10. References
	10.1. Normative References
	10.2. Informative References
	Authors' Addresses

