
Workgroup: Delay-Tolerant Networking

Internet-Draft: draft-sipos-dtn-udpcl-01

Published: 25 March 2021

Intended Status: Standards Track

Expires: 26 September 2021

Authors: B. Sipos

RKF Engineering

Delay-Tolerant Networking UDP Convergence Layer Protocol

Abstract

This document describes a UDP-based convergence layer (UDPCL) for

Delay-Tolerant Networking (DTN). This version of the UDPCL protocol

clarifies requirements of RFC7122, adds discussion of multicast

addressing, and updates to the Bundle Protocol (BP) contents,

encodings, and convergence layer requirements in BP Version 7.

Specifically, the UDPCL uses CBOR-encoded BPv7 bundles as its

service data unit being transported and provides a reliable

transport of such bundles. This version of UDPCL also includes

security and extensibility mechanisms.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 26 September 2021.

Copyright Notice

Copyright (c) 2021 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

1.1. Scope

1.2. Use of CDDL

1.3. Requirements Language

1.4. Definitions Specific to the UDPCL Protocol

2. General Protocol Description

2.1. Convergence Layer Services

2.2. PKIX Environments and CA Policy

2.3. Fragmentation Policies

2.4. Error Checking Policies

2.5. Congestion Control Policies

3. UDPCL Operation

3.1. IP Addressing

3.2. UDP Header

3.3. UDPCL Packets

3.4. UDPCL Messages

3.5. UDPCL Extension Items

3.5.1. DTLS Initiation (STARTTLS)

3.5.2. Bundle Transfer

3.5.3. Sender Listen

3.5.4. Sender Node ID

3.6. Explicit Transfers

3.6.1. Bundle Transfer ID

3.6.2. Fragmentation and Reassembly

3.7. UDPCL Security

3.7.1. Entity Identification

3.7.2. Certificate Profile for UDPCL

3.7.3. DTLS Handshake

3.7.4. DTLS Authentication

3.7.5. Policy Recommendations

3.7.6. Example Secured and Bidirectional Transfers

4. Implementation Status

5. Security Considerations

5.1. Threat: Passive Leak of Node Data

5.2. Threat: Passive Leak of Bundle Data

5.3. Threat: Transport Security Stripping

5.4. Threat: Weak DTLS Configurations

5.5. Threat: Untrusted End-Entity Certificate

5.6. Threat: Certificate Validation Vulnerabilities

5.7. Threat: BP Node Impersonation

5.8. Threat: Denial of Service

5.9. Mandatory-to-Implement DTLS

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

5.10. Alternate Uses of DTLS

5.10.1. DTLS Without Authentication

5.10.2. Non-Certificate DTLS Use

5.11. Predictability of Transfer IDs

6. IANA Considerations

6.1. Port Number

6.2. UDPCL Extension Types

7. Acknowledgments

8. References

8.1. Normative References

8.2. Informative References

Appendix A. Significant changes from RFC7122

Author's Address

1. Introduction

This document describes the UDP-based convergence-layer protocol for

Delay-Tolerant Networking. Delay-Tolerant Networking is an end-to-

end architecture providing communications in and/or through highly

stressed environments, including those with intermittent

connectivity, long and/or variable delays, and high bit error rates.

More detailed descriptions of the rationale and capabilities of

these networks can be found in "Delay-Tolerant Network Architecture"

[RFC4838].

An important goal of the DTN architecture is to accommodate a wide

range of networking technologies and environments. The protocol used

for DTN communications is the Bundle Protocol Version 7 (BPv7) [I-

D.ietf-dtn-bpbis], an application-layer protocol that is used to

construct a store-and-forward overlay network. BPv7 requires the

services of a "convergence-layer adapter" (CLA) to send and receive

bundles using the service of some "native" link, network, or

Internet protocol. This document describes one such convergence-

layer adapter that uses the well-known User Datagram Protocol (UDP).

This convergence layer is referred to as UDP Convergence Layer

(UDPCL). For the remainder of this document, the abbreviation "BP"

without the version suffix refers to BPv7.

The locations of the UDPCL and the BP in the Internet model protocol

stack (described in [RFC1122]) are shown in Figure 1. In particular,

when BP is using UDP as its bearer with UDPCL as its convergence

layer, both BP and UDPCL reside at the application layer of the

Internet model.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Figure 1: The Locations of the Bundle Protocol and the UDP Convergence-

Layer Protocol above the Internet Protocol Stack

1.1. Scope

This document describes the format of the protocol data units passed

between entities participating in UDPCL communications. This

document does not address:

The format of protocol data units of the Bundle Protocol, as

those are defined elsewhere in [I-D.ietf-dtn-bpbis]. This

includes the concept of bundle fragmentation or bundle

encapsulation. The UDPCL transfers bundles as opaque data blocks.

Mechanisms for locating or identifying other bundle entities

(peers) within a network or across an internet. The mapping of

Node ID to potential convergence layer (CL) protocol and network

address is left to implementation and configuration of the BP

Agent and its various potential routing strategies.

Logic for routing bundles along a path toward a bundle's

endpoint. This CL protocol is involved only in transporting

bundles between adjacent entities in a routing sequence.

Logic for performing rate control and congestion control of

bundle transfers, both incoming and outgoing from a UDPCL entity.

Policies or mechanisms for issuing Public Key Infrastructure

Using X.509 (PKIX) certificates; provisioning, deploying, or

accessing certificates and private keys; deploying or accessing

certificate revocation lists (CRLs); or configuring security

parameters on an individual entity or across a network.

+-------------------------+

| DTN Application | -\

+-------------------------| |

| Bundle Protocol (BP) | -> Application Layer

+-------------------------+ |

| UDP Conv. Layer (UDPCL) | |

+-------------------------+ |

| DTLS (optional) | -/

+-------------------------+

| UDP | ---> Transport Layer

+-------------------------+

| IPv4/IPv6 | ---> Network Layer

+-------------------------+

| Link-Layer Protocol | ---> Link Layer

+-------------------------+

¶

*

¶

*

¶

*

¶

*

¶

*

¶

UDPCL Entity:

Uses of Datagram Transport Layer Security (DTLS) which are not

based on PKIX certificate authentication (see Section 5.10.2) or

in which authentication of both entities is not possible (see

Section 5.10.1).

Any UDPCL implementation requires a BP agent to perform those above

listed functions in order to perform end-to-end bundle delivery.

1.2. Use of CDDL

This document defines CBOR structure using the Concise Data

Definition Language (CDDL) of [RFC8610]. The entire CDDL structure

can be extracted from the XML version of this document using the

XPath expression:

'//sourcecode[@type="cddl"]'

The following initial fragment defines the top-level symbols of this

document's CDDL.

start = udpcl-ext-map

1.3. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

1.4. Definitions Specific to the UDPCL Protocol

This section contains definitions specific to the UDPCL protocol.

This is the notional UDPCL application that initiates

UDPCL transfers. This design, implementation, configuration, and

specific behavior of such an entity is outside of the scope of

this document. However, the concept of an entity has utility

within the scope of this document as the container and initiator

of transfers. The relationship between a UDPCL entity and UDPCL

sessions is defined as follows:

A UDPCL Entity MAY actively perform any number of transfers

and should do so whenever the entity has a bundle to

forward to another entity in the network.

*

¶

¶

¶

¶

¶

¶

¶

¶

¶

*

¶

UDP Conversation:

Transfer:

Transmit:

Receive:

A UDPCL Entity MAY support zero or more passive listening

elements that listen for transfers from other entities in

the network, including non-unicast transfers.

These relationships are illustrated in Figure 2. For the

remainder of this document, the term "entity" without the prefix

"UDPCL" refers to a UDPCL entity.

This refers to datagrams exchanged between two

network peers, with each peer identified by a (unicast IP

address, UDP port) tuple. Because UDP is connectionless, there is

no notion of a conversation being "opened" or "closed" and some

conversations are uni-directional.

This refers to the procedures and mechanisms for

conveyance of an individual bundle from one entity to one or more

destinations. This version of UDPCL includes a fragmentation

mechanism to allow transfers which are larger than the allowable

UDP datagram size.

This refers to a transfer outgoing from an entity as seen

from that transmitting entity.

This refers to a transfer incoming to an entity as seen

from that receiving entity.

*

¶

¶

¶

¶

¶

¶

Figure 2: The relationships between UDPCL entities

2. General Protocol Description

The service of this protocol is the transmission of DTN bundles via

the User Datagram Protocol (UDP). This document specifies the

optional fragmentation of bundles, procedures for DTLS setup and

teardown, and a set of messages and entity requirements. The general

operation of the protocol is as follows.

Fundamentally, the UDPCL is a (logically) unidirectional "transmit

and forget" protocol which itself maintains no long-term state and

provides no feedback to the transmitter. The only long-term state

related to UDPCL is used by DTLS in its session keeping (which is

bound to a UDP conversation). An entity receiving a bundle from a

particular source address-and-port does not imply that the

transmitter is willing to accept bundle transfers on that same

address-and-port. It is the obligation of a BP agent and its routing

schemes to determine a bundle return path.

2.1. Convergence Layer Services

This version of the UDPCL provides the following services to support

the over-laying Bundle Protocol agent. In all cases, this is not an

API definition but a logical description of how the CL can interact

+--+

| UDPCL Entity |

| | +----------------+

| +--------------------------------+ | | |-+

| | Actively Initiated Transfer #1 |--------->| Other | |

| +--------------------------------+ | | UDPCL Entity's | |

| ... | | Passive | |

| +--------------------------------+ | | Listener | |

| | Actively Initiated Transfer #n |--------->| | |

| | | | | |

| | Sender Listen |<---------| | |

| +--------------------------------+ | +----------------+ |

| | +-----------------+

| +---------------------------+ |

| | +---------------------------+ | +----------------+

| | | Optional Passive | | | |-+

| +-| Listener(s) |<---------+ Other | |

| +---------------------------+ | | UDPCL Entity's | |

| ^ | | Active | |

| | | | Initiator(s) | |

| +-------------| | |

+--+ +----------------+ |

 +-----------------+

¶

¶

Begin Transmission:

Transmission Started:

Transmission Finished:

Reception Started:

Reception Success:

Reception Failure:

Attempt DTLS Session:

with the BP agent. Each of these interactions can be associated with

any number of additional metadata items as necessary to support the

operation of the CL or BP agent.

The principal purpose of the UDPCL is to allow

a BP agent to transmit bundle data to one or more other entities.

The receiver of each transfer is identified by an (destination)

IPv4 or IPv6 address and a UDP port number (see Section 3 for

details). The CL does not necessarily perform any transmission

queueing, but may block while transmissions are being processed

at the UDP layer. Any queueing of transmissions is the obligation

of the BP agent.

The UDPCL entity indicates to the BP agent

when a bundle transmission begins sending UDP datagrams. Once

started, there is no notion of a UDPCL transmission failure; a BP

agent has to rely on bundle-level status reporting to track

bundle progress through the network. Because of potential

queueing or DTLS setup time, this may be delayed from the BP

agent providing the bundle-to-transmit.

The UDPCL entity indicates to the BP agent

when a bundle has been fully transmitted. This is not a positive

indication that any next-hop receiver has either received or

processed the transfer.

The UDPCL entity indicates to the BP agent when

a bundle transfer has begun, which may include information about

the total size of a fragmented transfer.

The UDPCL entity indicates to the BP agent when

a bundle has been fully transferred from a peer entity. The

transmitter of each transfer is identified by an (source) IP

address and a UDP port number (see Section 3 for details).

The UDPCL entity indicates to the BP agent on

certain reasons for reception failure, notably upon an unfinished

transfer timeout (see Section 3.5.2).

The UDPCL allows a BP agent to preemptively

attempt to establish a DTLS session with a peer entity (see

Section 3.5.1 and Section 3.7). Each session attempt can send a

¶

¶

¶

¶

¶

¶

¶

Close DTLS Session:

DTLS Session State Changed:

Begin Sender Listen:

End Sender Listen:

Sender Listen Received:

different set of session negotiation parameters as directed by

the BP agent.

The UDPCL allows a BP agent to preemptively

close an established DTLS session with a peer entity. The closure

request is on a per-session basis.

The UDPCL entity indicates to the BP

agent when a DTLS session state changes. The possible DTLS

session states are defined in [RFC6347].

The UDPCL allows a BP agent to indicate when

packets on a particular address-and-port is listened for (see

Section 3.5.3). The Sender Listen interval is configurable for

each peer address-and-port.

The UDPCL allows a BP agent to indicate when

packets on a particular address-and-port are no longer be

accepted.

The UDPCL entity indicates to the BP agent

when a Sender Listen extension has been received from a peer. The

Sender Node ID, if present, is part of this indication.

2.2. PKIX Environments and CA Policy

This specification gives requirements about how to use PKIX

certificates issued by a Certificate Authority (CA), but does not

define any mechanisms for how those certificates come to be. The

UDPCL uses the exact same mechanisms and makes the same assumptions

as TCPCL in Section 3.4 of [I-D.ietf-dtn-tcpclv4].

2.3. Fragmentation Policies

It is a implementation matter for a sending entity to determine the

path maximum transmit unit (PMTU) to be used as a target upper-bound

UDP datagram size. Some techniques to perform MTU discovery are

defined in [RFC8899]. All IP packets sent by a UDPCL entity SHOULD

have the "don't fragment" bit set to allow detection of PMTU issues.

The priority order of fragmentation is the following:

When possible, bundles too large to fit in one PMTU-sized

packet SHOULD be fragmented at the BP layer. Bundle payload

fragmentation does not help a large bundle if extension blocks

are a major contributor to bundle size, so in some

circumstances BP layer fragmentation will not reduce the bundle

size sufficiently. It is outside the scope of UDPCL to manage

BP agent fragmentation policies; bundles are received from the

BP agent either already fragmented or not.

¶

¶

¶

¶

¶

¶

¶

¶

¶

1.

¶

https://tools.ietf.org/html/draft-ietf-dtn-tcpclv4-24#section-3.4

Bundles too large to fit in one PMTU-sized packet SHALL be

fragmented as a UDPCL transfer (see Section 3.6). Fragmentation

at this level treats bundle transfers as opaque data, so it is

independent of bundle block sizes or counts.

All IP packets larger than expected PMTU SHALL be fragmented by

the transmitting entity to fit within one PMTU. Because of the

issues listed in Section 3.2 of [RFC8085] and [RFC8900], it is

best to avoid IP fragmentation as much as possible.

A UDPCL entity SHOULD NOT proactively drop an outgoing transfer due

to datagram size. If intermediate network nodes drop IP packets it

is an implementation matter to receive network feedback (e.g. ICMP

Packet Too Big).

2.4. Error Checking Policies

The core Bundle Protocol specification assumes that bundles are

transferring over an erasure channel, i.e., a channel that either

delivers packets correctly or not at all.

A UDP transmitter SHALL NOT disable UDP checksums. A UDP receiver

SHALL NOT disable the checking of received UDP checksums.

Even when UDP checksums are enabled, a small probability of UDP

packet corruption remains. In some environments, it may be

acceptable for a BP agent to occasionally receive corrupted input.

In general, however, a UDPCL entity SHOULD insure the a bundle's

blocks are either covered by a CRC or a BPSec integrity check.

2.5. Congestion Control Policies

The applications using UDPCL for bundle transport SHALL conform to

the congestion control requirements of Section 3.1 of [RFC8085]. The

application SHALL either perform active congestion control of

bundles or behave as the Low Data-Volume application as defined in

Section 3.1.3 of [RFC8085].

When nodes have bidirectional transfer capability, the bundle

deletion reason code "traffic pared" can be used by a receiving

agent to signal to the bundle source application that throttling of

bundles along that path SHOULD occur.

3. UDPCL Operation

This section defines the UDPCL protocol and its interactions with

under-layers (IP and UDP) and over-layers (BP), as illustrated in

Figure 1. The section is organized from the network layer up toward

the BP layer. It also discusses behavior within the UDPCL layer,

which is illustrated in Figure 3.

2.

¶

3.

¶

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc8085#section-3.2
https://rfc-editor.org/rfc/rfc8085#section-3.1
https://rfc-editor.org/rfc/rfc8085#section-3.1.3

Figure 3: Breakdown of sub-layers within the UDPCL

3.1. IP Addressing

The earlier UDPCL specification in [RFC7122] did not include

guidance on IP addressing, interface sourcing, or potential use of

multicast, though the architecture of [RFC4838] explicitly includes

multicast and anycast as expected network modes.

The BP agent determines the mapping from destination EID to next-hop

CL parameters, including transfer destination address and transfer

source interface. Some EIDs represent unicast destinations and

others non-unicast destinations as defined in Section 4.2.5.1 of [I-

D.ietf-dtn-bpbis]. The unicast-ness of an EID does not necessarily

correspond with the unicast-ness, as some bundle routing schemes

involve attempting multiple parallel paths to a unicast endpoint.

For unicast transfers to a single node, the destination address

SHALL be a non-multicast IPv4 or IPv6 address (which does include

link-local addresses). For unicast transfers, the source interface

address MAY be supplied by the BP agent or otherwise determined by

the operating system IP routing. When performing unicast transfers,

a UDPCL entity SHOULD require DTLS use (see Section 3.7) or restrict

the network to one protected by IPsec or some other under-layer

security mechanism (e.g., a virtual private network).

For multicast transfers to one or more nodes, the destination

address SHALL be a multicast IPv4 [IANA-IPv4-MCAST] or IPv6 [IANA-

IPv6-MCAST] address. For multicast transfers, the source interface

address MUST be supplied by the BP agent rather than inferred by the

UDPCL entity.

3.2. UDP Header

Destination port number 4556 has been assigned by IANA [IANA-PORTS]

as the Registered Port number for the UDP convergence layer and

SHALL be used as a default. Other destination port numbers MAY be

used per local configuration. Determining a passive entity's

destination port number (if different from the registered UDPCL port

number) is up to the implementation.

+--+

| Bundle Transfer | Extension Signaling | <- Sequencing /

+--+ fragmentation

| Bundle | Ext. Map | ... | Padding | <- Messaging

+--+

| UDPCL Packet | <- Packetization

+--+

¶

¶

¶

¶

¶

https://tools.ietf.org/html/draft-ietf-dtn-bpbis-31#section-4.2.5.1

Unframed Transfer:

Keepalive

BPv6 Bundle:

Any source port number MAY be used for UDPCL transfers. Typically an

operating system assigned number in the UDP Ephemeral range

(49152-65535) is used. For repeated messaging to the same

destination address-and-port, the active entity SHOULD reuse the

same source address-and-port. Reusing source address-and-port allows

simplifies network monitoring and analysis and also enables bi-

directional messaging as defined in Section 3.5.3.

3.3. UDPCL Packets

The lowest layer of UDPCL communication are individual-datagram

packets. To exchange UDPCL data, an active entity SHALL transmit a

UDP datagram to a listening passive entity in accordance with

[RFC0768], typically by using the services provided by the operating

system. For backward compatibility with [RFC7122], UDPCL has no

explicit message type identifier.

Each UDP datagram SHALL contain one or more UDPCL message as defined

in Section 3.4. Each type of message defines additional restrictions

on how it may be used in a packet.

The following are special cases of UDPCL packet uses.

An unframed transfer packet SHALL consist of a

single encoded BPv6 or BPv7 bundle with no padding. This provides

backward compatibility with [RFC7122] and a allows a trivial use

of UDPCL which is just embedding an encoded bundle in a UDP

datagram.

A keepalive packet SHALL consist of exactly four octets

of padding with no preceding message. This behavior maintains

backward compatibility with [RFC7122].

3.4. UDPCL Messages

The middle layer of UDPCL communication are unframed, but self-

delimited, messages. Specific message types MAY be concatenated

together into a single packet, each message type indicates any

restrictions on how it can be used within a packet.

For backward compatibility with [RFC7122], UDPCL has no explicit

message type identifier. The message type is inferred by the

inspecting the data contents according to the following rules:

All encoded BP version 6 bundles begin with the

version identifier octet 0x06 in accordance with [RFC5050]. A

message with a leading octet value of 0x06 SHALL be treated as a

BPv6 bundle. Multiple BPv6 Bundles SHOULD NOT be present in one

UDPCL packet to maintain compatibility with [RFC7122].

¶

¶

¶

¶

¶

¶

¶

¶

¶

BPv7 Bundle:

Extension Map:

Padding:

DTLS Record:

All encoded BP version 7 bundles begin with a CBOR

array head in accordance with [I-D.ietf-dtn-bpbis]. A message

with a leading octet value indicating CBOR array (major type 4)

SHALL be treated as a BPv7 bundle.

BPv7 bundles transmitted via UDPCL SHALL NOT include any leading

CBOR tag. If the BP agent provides bundles with such tags the

transmitting UDPCL entity SHALL remove them.

All UDPCL extensions SHALL be contained in a CBOR

map in accordance with the definitions of Section 3.5. The

encoded Extension Map SHALL NOT have any CBOR tags. A message

with a leading octet value indicating CBOR map (major type 5)

SHALL be treated as an Extension Map.

Padding data SHALL be a sequence of octets all with value

0x00. A message with a leading octet value of 0x00 SHALL be

treated as padding.

Padding is used to ensure a UDP datagram is exactly a desired

size. Because padding has no intrinsic length indication, if

present it SHALL be the last contents of any UDPCL packet. A

receiving UDPCL entity SHALL ignore all padding, including any

trailing non-zero octets.

In addition to the UDPCL specific messaging,

immediately after a DTLS Initiation (see Section 3.5.1) the DTLS

handshake sequence will begin. Data with a leading octet value of

0x16 SHALL be treated as a DTLS handshake record in accordance

with Section 4.1 of [RFC6347].

If the datagram with the DTLS Initiation extension is not

received by an entity, the entity SHOULD still detect the DTLS

handshake records and start the handshake sequence at that point.

Data with a leading octet value of 0x17--0x19 SHALL be treated as

a DTLS sequencing failure; DTLS non-handshake records should

never be seen by the UDPCL messaging layer.

A summary of how a receiving UDPCL entity can interpret the first

octet of a datagram is listed in Table 1. When inspecting using CBOR

major types, the range of values is caused by the CBOR head encoding

of [RFC8949].

Octet Value Message Content

0x00 Padding (remainder of packet)

0x06 BPv6 Bundle

0x16--0x19 DTLS Record (remainder of packet)

¶

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc6347#section-4.1

Octet Value Message Content

0x80--0x9F BPv7 Bundle (CBOR array)

0xA0--0xBF Extension Map (CBOR map)

others unused

Table 1: First-Octet Contents

3.5. UDPCL Extension Items

Extensions to UDPCL are encoded per-datagram in a single CBOR map as

defined in Section 3.4. Each UDPCL extension item SHALL be

identified by a unique Extension ID used as a key in the Extension

Map. Extension ID values SHALL be a CBOR int item no longer than 16-

bits. Extension ID assignments are listed in Section 6.2.

Unless prohibited by particular extension type requirements, a

single Extension Map MAY contain any combination of extension items.

Receivers SHALL ignore extension items with unknown Extension ID and

continue to process known extension items.

; Map structure requiring non-zero-int keys.

; CDDL cannot enforce type-specific requirements about other items

; being present (or not present) in the same map.

udpcl-ext-map = $udpcl-ext-map .within udpcl-ext-map-structure

$udpcl-ext-map = {

 * $$udpcl-ext-item

}

udpcl-ext-map-structure = {

 * ext-key => any

}

ext-key = (int .size 2) .ne 0

Figure 4: Extension Map structure CDDL

The following subsections define the initial UDPCL extension types.

3.5.1. DTLS Initiation (STARTTLS)

This extension item indicates that the transmitter is about to begin

a DTLS handshake sequence in accordance with Section 3.7.

The DTLS Initiation value SHALL be an untagged null value. There are

no DTLS parameters actually transmitted as part of this extension,

it only serves to indicate to the recipient that the next datagram

will be a DTLS ClientHello. Although the datagram containing this

extension is not retransmitted, the DTLS handshake itself will

retransmit ClientHello messages until confirmation is received.

¶

¶

¶

¶

¶

Transfer ID:

Total Length:

Fragment Offset:

Fragment Data:

$$udpcl-ext-item //= (

 5: null

)

Figure 5: DTLS Initiation CDDL

If the entity is configured to enable exchanging messages according

to DTLS 1.2 [RFC6347] or any successors which are compatible with

that DTLS ClientHello, the first message in any sequence to a

unicast recipient SHALL be an Extension Map with the DTLS Initiation

item. The RECOMMENDED policy is to enable DTLS for all unicast

recipients, even if security policy does not allow or require

authentication. This follows the opportunistic security model of

[RFC7435], though an active attacker could interfere with the

exchange in such cases (see Section 5.3).

The Extension Map containing a DTLS Initiation item SHALL NOT

contain any other items. A DTLS Initiation item SHALL NOT be present

in any message transmitted within a DTLS session. A receiver of a

DTLS Initiation item within a DTLS session SHALL ignore it. Between

transmitting a DTLS Initiation item and finishing a DTLS handshake

(either success or failure) an entity SHALL NOT transmit any other

UDP datagrams in that same conversation.

3.5.2. Bundle Transfer

This extension item allows CL-layer fragmentation of bundle

transfers as defined in Section 3.6.

The Transfer value SHALL be an untagged CBOR array of four items.

The items are defined in the following order:

This field SHALL be a CBOR uint item no larger than

32-bits, which is used to correlate multiple fragments.

This field SHALL be a CBOR uint item no larger than

32-bits, which is used to indicate the total length (in octets)

of the transfer. If multiple Transfer items for the same Transfer

ID are received with differing Total Length values, the receiver

SHALL treat the transfer as being malformed and refuse to handle

any further fragments associated with the transfer.

This field SHALL be a CBOR uint item no larger

than 32-bits, which is used to indicate the offset (in octets)

into the transfer for the start of this fragment.

This field SHALL be a CBOR bstr item no larger than

2^32-1 octets, in which the fragment data is contained. The bstr

itself indicates the length of the fragment data.

¶

¶

¶

¶

¶

¶

¶

¶

$$udpcl-ext-item //= (

 2: [

 transfer-id: uint .size 4,

 total-length: uint .size 4,

 fragment-offset: uint .size 4,

 fragment-data: bstr,

]

)

Figure 6: Transfer CDDL

3.5.3. Sender Listen

This extension item indicates that the transmitter is listening for

UDPCL packets on the source address-and-port used to transmit the

message containing this extension item. This is different from

simply listening on a UDP port (either the default or any other)

when the entity is behind a NAT or firewall which will not allow

unsolicited UDP/IP datagrams. Although the packet containing this

extension is not retransmitted, the time interval is finite and the

extension is sent repeatedly while the transmitter continues to

listen for packets. There is no positive indication that packets are

no longer accepted; the Sender Listen just stops being transmitted.

The Sender Listen value SHALL be an untagged uint value representing

the interval of time (in milliseconds) that the entity is willing to

accept UDPCL packets on the source address-and-port used for the

associated transmitted message. After transmitting a Sender Listen,

the entity SHALL listen for and accept datagrams on the source

address-and-port used for the associated transmitted message. As

long as the entity is still willing to accept packets, at the end of

one accept interval the entity SHALL transmit another Sender Listen

item. This repetition continues until the entity is no longer

willing to listen for packets.

A receiving entity SHOULD treat a peer as no longer listening after

an implementation-defined timeout since the last received Sender

Listen item. A RECOMMENDED Sender Listen timeout is three (3) times

the associated time duration; this allows a single dropped datagram

to not interrupt a continuous sequence.

$$udpcl-ext-item //= (

 3: time-duration,

)

time-duration = uint

Figure 7: Sender Listen CDDL

¶

¶

¶

Unlike the generic source port requirement in Section 3.2, when

repeated Sender Listen are transmitted in a sequence a consistent

source address-and-port SHALL be used.

The Sender Listen interval SHOULD be no shorter than 1 second and no

longer than 60 seconds.

An entity SHOULD include a Sender Node ID item along with a Sender

Listen item if the conditions of Section 3.5.4 are met. An entity

MAY include any other extension type along with a Sender Listen

item. An entity SHALL NOT transmit a Sender Listen item before or

along with a DTLS Initiate if DTLS is desired for a conversation.

This extension is not a neighbor discovery mechanism and does not

indicate an entity listening generally on a particular UDP port.

Sender Listen applies only to UDP datagrams from the the peer

address-and-port. An entity SHALL NOT include a Sender Listen item

in a message transmitted to a multicast address.

3.5.4. Sender Node ID

This extension item indicates the Node ID of the transmitter. For

DTLS-secured sessions (see Section 3.7.4) this extension can be used

to disambiguate an end-entity certificate which has multiple NODE-ID

values.

The Sender Node ID value SHALL be an untagged tstr value containing

a Node ID. Every Node ID SHALL be a URI consistent with the

requirements of [RFC3986] and the URI schemes of the IANA "Bundle

Protocol URI Scheme Type" registry [IANA-BUNDLE].

$$udpcl-ext-item //= (

 4: nodeid,

)

nodeid = tstr

Figure 8: Sender Node ID CDDL

An entity SHOULD NOT include a Sender Node ID item if a DTLS session

has already been established and the presented end-entity

certificate contains a single NODE-ID. In this case there is no

ambiguity about which Node ID is identified by the certificate.

If an entity receives a peer Node ID which is not authenticated (by

the procedure of Section 3.7.4) that Node ID SHOULD NOT be used by a

BP agent for any discovery or routing functions. Trusting an

unauthenticated Node ID can lead to the threat described in Section

5.7.

¶

¶

¶

¶

¶

¶

¶

¶

3.6. Explicit Transfers

This version of UDPCL supports CL-layer fragmentation of bundles

larger than the PMTU would otherwise allow. Policies related to

fragmentation at, above, or below the UDPCL layer are defined in

Section 2.3. The entire fragmented bundle is referred to as a

Transfer and individual fragments of a transfer are encoded as

Transfer extension items in accordance with Section 3.5.2.

This mechanism also allows a bundle transfer to be transmitted along

with additional extension items, which the unframed bundle-in-

datagram data does not. This specification does not define any

extension items which augment an associated transfer.

3.6.1. Bundle Transfer ID

Each Transfer item contains a Transfer ID which is used to correlate

messages for a single bundle transfer. A Transfer ID does not

attempt to address uniqueness of the bundle data itself and has no

relation to concepts such as bundle fragmentation. Each invocation

of UDPCL by the BP agent, requesting transmission of a bundle

(fragmentary or otherwise), can cause the initiation of a single

UDPCL transfer.

Because UDPCL operation is connectionless, Transfer IDs from each

entity SHALL be unique for the operating duration of the entity. In

practice, the ID needs only be unique for the longest receiver

reassembly time window; but because that information is not part of

the protocol there is no way for an transmitting entity to know the

reassembly time window of any receiver (see Section 3.6.2). When

there are bidirectional bundle transfers between UDPCL entities, an

entity SHOULD NOT rely on any relation between Transfer IDs

originating from each side of the conversation.

Although there is not a strict requirement for Transfer ID initial

values or ordering (see Section 5.11), in the absence of any other

mechanism for generating Transfer IDs an entity SHALL use the

following algorithm: the initial Transfer ID from each entity is

zero; subsequent Transfer ID values are incremented from the prior

Transfer ID value by one; upon exhaustion of the entire 32-bit

Transfer ID space, the subsequent Transfer ID value is zero.

3.6.2. Fragmentation and Reassembly

The full data content of a transfer SHALL be an unframed (BPv6 or

BPv7) bundle as defined in Section 3.4. A receiving entity SHALL

discard any reassembled transfer which does not properly contain a

bundle.

¶

¶

¶

¶

¶

¶

A transmitting entity MAY produce a Transfer with a single fragment

(i.e., a Fragment Data size identical to the Total Length). A

transmitting entity SHALL NOT produce Transfer fragments with

overlapping span. A transmitting entity SHOULD transmit Transfer

fragments in order of Fragment Offset; this makes the behavior

deterministic.

Because of the nature of UDP transport, there is no guaranteed order

or timing of received Transfer items. A receiving entity SHALL

consider a transport as finished when Fragment Data has been

received which fully covers the Total Length of the transfer.

A receiving entity SHALL discard any Transfer item containing

different CBOR types than defined in this document. A receiving

entity SHALL discard any Transfer item containing a fragment with an

overlapping span. Because there is no feedback indication at the

UDPCL layer, a transmitter has no indication when a transfer is

discarded by the receiver.

A receiving entity SHOULD discard unfinished transfer state after an

implementation-defined timeout since the last received fragment.

Entities SHOULD choose a transfer timeout interval no longer than

one minute (60 seconds). Discarding an unfinished transfer causes no

indication to the transmitting entity, but does indicate this to the

BP agent. This timeout is purely receiver-side and represents the

maximum allowed time between sequential received datagrams (in any

order), which should be short if the datagrams take a similar

network path.

3.7. UDPCL Security

This version of the UDPCL supports establishing a DTLS session

within an existing UDP conversation. When DTLS is used within the

UDPCL it affects the entire conversation. There is no concept of a

plaintext message being sent in a conversation after a DTLS session

is established.

Once established, the lifetime of a DTLS session SHALL be bound by

the DTLS session ticket lifetime or either peer sending a Closure

Alert record.

Subsequent DTLS session attempts to the same passive entity MAY

attempt to use the DTLS session resumption feature. There is no

guarantee that the passive entity will accept the request to resume

a DTLS session, and the active entity cannot assume any resumption

outcome.

¶

¶

¶

¶

¶

¶

¶

3.7.1. Entity Identification

The UDPCL uses DTLS for certificate exchange in both directions to

identify each entity and to allow each entity to authenticate its

peer. Each certificate can potentially identify multiple entities

and there is no problem using such a certificate as long as the

identifiers are sufficient to meet authentication policy (as

described in later sections) for the entity which presents it.

The types and priorities of identities used by DTLS in UDPCL is the

same as those for TLS in TCPCL as defined in Section 4.4.1 of [I-

D.ietf-dtn-tcpclv4].

3.7.2. Certificate Profile for UDPCL

All end-entity certificates used by a UDPCL entity SHALL conform to

the profile defined in Section 4.4.2 of [I-D.ietf-dtn-tcpclv4].

3.7.3. DTLS Handshake

The signaling for DTLS Initiation is described in Section 3.5.1.

After sending or receiving an Extension Map containing a DTLS

Initiation item, an entity SHALL begin the handshake procedure of

Section 4.2 of [RFC6347]. By convention, this protocol uses the

entity which sent the DTLS Initiation (the active peer) as the

"client" role of the DTLS handshake request.

Upon receiving an unexpected ClientHello record outside of a DTLS

session, an entity SHALL begin the DTLS handshake procedure as if a

DTLS Initiation had been received. This allows recovering from a

dropped packet containing DTLS Initiation.

3.7.4. DTLS Authentication

The function and mechanism of DTLS authentication in UDPCL is the

same as for TLS in TCPCL as defined in Section 4.4.4 of [I-D.ietf-

dtn-tcpclv4], with the exception that Node ID Authentication is

based on an optional Sender Node ID extension (see Section 3.5.4)

used to disambiguate when an end-entity certificate contains

multiple NODE-ID values.

3.7.5. Policy Recommendations

The policy recommendations given here are are the same as those for

TCPCL in Section 4.4.5 of [I-D.ietf-dtn-tcpclv4]. They are restated

in this document for clarity.

A RECOMMENDED security policy is to enable the use of OCSP checking

during DTLS handshake. A RECOMMENDED security policy is that if an

Extended Key Usage is present that it needs to contain "id-kp-

¶

¶

¶

¶

¶

¶

¶

https://tools.ietf.org/html/draft-ietf-dtn-tcpclv4-24#section-4.4.1
https://tools.ietf.org/html/draft-ietf-dtn-tcpclv4-24#section-4.4.2
https://rfc-editor.org/rfc/rfc6347#section-4.2
https://tools.ietf.org/html/draft-ietf-dtn-tcpclv4-24#section-4.4.4
https://tools.ietf.org/html/draft-ietf-dtn-tcpclv4-24#section-4.4.5

bundleSecurity" of [IANA-SMI] to be usable with UDPCL security. A

RECOMMENDED security policy is to require a validated NODE-ID and to

ignore any network-level DNS-ID or IPADDR-ID.

This policy relies on and informs the certificate requirements in

Section 3.7.2. This policy assumes that a DTN-aware CA (see Section

2.2) will only issue a certificate for a Node ID when it has

verified that the private key holder actually controls the DTN node;

this is needed to avoid the threat identified in Section 5.7. This

policy requires that a certificate contain a NODE-ID and allows the

certificate to also contain network-level identifiers. A tailored

policy on a more controlled network could relax the requirement on

Node ID validation and allow just network-level identifiers to

authenticate a peer.

3.7.6. Example Secured and Bidirectional Transfers

This simple example shows a sequence of pre-transfer setup followed

by a set of (unrelated) bundle transfers. All messaging in this

example occurs between the same Entity A address-and-port and Entity

B address-and-port.

The example Entity A has a policy to only send or receive bundles

within a DTLS session, so any outgoing bundles to Entity B are

queued until the DTLS session is established. Because Entity A is

willing to accept transfers on its ephemeral UDP port, the first

outgoing message after the DTLS handshake contains the Sender Listen

extension (along with a Sender Node ID indicating its identity to

Entity B).

¶

¶

¶

¶

Figure 9: An example of the flow of protocol messages on a single UDP

conversation between two entities

4. Implementation Status

This section is to be removed before publishing as an RFC.

[NOTE to the RFC Editor: please remove this section before

publication, as well as the reference to [RFC7942], [github-dtn-

demo-agent], and [github-dtn-wireshark].]

This section records the status of known implementations of the

protocol defined by this specification at the time of posting of

this Internet-Draft, and is based on a proposal described in

[RFC7942]. The description of implementations in this section is

intended to assist the IETF in its decision processes in progressing

drafts to RFCs. Please note that the listing of any individual

implementation here does not imply endorsement by the IETF.

Furthermore, no effort has been spent to verify the information

presented here that was supplied by IETF contributors. This is not

intended as, and must not be construed to be, a catalog of available

 Entity A Entity B

 active peer passive peer

+-------------------------+

| Initiate DTLS Ext. | ->

+-------------------------+

+-------------------------+ +-------------------------+

| DTLS Negotiation | -> <- | DTLS Negotiation |

| (as client) | | (as server) |

+-------------------------+ +-------------------------+

 DNS-ID and IPADDR-ID authentication occurs.

 Secured UDPCL messaging can begin.

+-------------------------+

| Sender Listen Ext. | ->

| Sender Node ID Ext. |

+-------------------------+

 NODE-ID authentication occurs.

 DTLS session is established, transfers can begin.

+-------------------------+

| Unframed Transfer | -> +-------------------------+

+-------------------------+ <- | Unframed Transfer |

+-------------------------+ +-------------------------+

| Unframed Transfer | ->

+-------------------------+

¶

¶

implementations or their features. Readers are advised to note that

other implementations can exist.

An example implementation of the this draft of UDPCL has been

created as a GitHub project [github-dtn-demo-agent] and is intended

to use as a proof-of-concept and as a possible source of

interoperability testing. This example implementation uses D-Bus as

the CL-BP Agent interface, so it only runs on hosts which provide

the Python "dbus" library.

A wireshark dissector for UDPCL has been created as a GitHub project

[github-dtn-wireshark] and has been kept in-sync with the latest

encoding of this specification.

5. Security Considerations

This section separates security considerations into threat

categories based on guidance of BCP 72 [RFC3552].

5.1. Threat: Passive Leak of Node Data

When used without DTLS security, the UDPCL can expose the Node ID

and other configuration data to passive eavesdroppers. This can

occur even if no bundle transfers are transmitted. This can be

avoided by always using DTLS, even if authentication is not

available (see Section 5.10).

5.2. Threat: Passive Leak of Bundle Data

UDPCL can be used to provide point-to-point unicast transport

security, but does not provide multicast security, security of data-

at-rest, and does not guarantee end-to-end bundle security. In those

cases the bundle security mechanisms defined in [I-D.ietf-dtn-bpsec]

are to be used instead.

When used without DTLS security, the UDPCL exposes all bundle data

to passive eavesdroppers. This can be avoided by always using DTLS

for unicast messaging, even if authentication is not available (see

Section 5.10).

5.3. Threat: Transport Security Stripping

When security policy allows non-DTLS messaging, UDPCL does not

protect against active network attackers. It is possible for a on-

path attacker to drop or alter packets containing Extension Map and/

or DTLS handshake records, which will cause the receiver to not

negotiate a DTLS session. This leads to the "SSL Stripping" attack

described in [RFC7457].

¶

¶

¶

¶

¶

¶

¶

¶

When DTLS is available on an entity, it is strongly encouraged that

the security policy disallow non-DTLS messaging for unicast

purposes. This requires that the DTLS handshake occurs before any

other UDPCL messaging, regardless of the policy-driven parameters of

the handshake and policy-driven handling of the handshake outcome.

One mechanism to mitigate the possibility of DTLS stripping is the

use of DNS-based Authentication of Named Entities (DANE) [RFC6698]

toward the passive peer. This mechanism relies on DNS and is

unidirectional, so it doesn't help with applying policy toward the

active peer, but it can be useful in an environment using

opportunistic security. The configuration and use of DANE are

outside of the scope of this document.

The negotiated use of DTLS is identical behavior to STARTTLS use in

[RFC2595], [RFC4511], and others.

5.4. Threat: Weak DTLS Configurations

Even when using DTLS to secure the UDPCL session, the actual

ciphersuite negotiated between the DTLS peers can be insecure.

Recommendations for ciphersuite use are included in BCP 195

[RFC7525]. It is up to security policies within each UDPCL entity to

ensure that the negotiated DTLS ciphersuite meets transport security

requirements.

5.5. Threat: Untrusted End-Entity Certificate

The profile in Section 3.7.4 uses end-entity certificates chained up

to a trusted root CA. During DTLS handshake, either entity can send

a certificate set which does not contain the full chain, possibly

excluding intermediate or root CAs. In an environment where peers

are known to already contain needed root and intermediate CAs there

is no need to include those CAs, but this has a risk of an entity

not actually having one of the needed CAs.

5.6. Threat: Certificate Validation Vulnerabilities

Even when DTLS itself is operating properly an attacker can attempt

to exploit vulnerabilities within certificate check algorithms or

configuration to establish a secure DTLS session using an invalid

certificate. An invalid certificate exploit could lead to bundle

data leaking and/or denial of service to the Node ID being

impersonated.

There are many reasons, described in [RFC5280] and [RFC6125], why a

certificate can fail to validate, including using the certificate

outside of its valid time interval, using purposes for which it was

not authorized, or using it after it has been revoked by its CA.

Validating a certificate is a complex task and can require network

¶

¶

¶

¶

¶

¶

connectivity outside of the primary UDPCL network path(s) if a

mechanism such as OCSP [RFC6960] is used by the CA. The

configuration and use of particular certificate validation methods

are outside of the scope of this document.

5.7. Threat: BP Node Impersonation

The certificates exchanged by DTLS enable authentication of peer DNS

name and Node ID, but it is possible that a peer either not provide

a valid certificate or that the certificate does not validate either

the DNS-ID/IPADDR-ID or NODE-ID of the peer (see Section 2.2).

Having a CA-validated certificate does not alone guarantee the

identity of the network host or BP node from which the certificate

is provided; additional validation procedures in Section 3.7.3 bind

the DNS-ID/IPADDR-ID or NODE-ID based on the contents of the

certificate.

The DNS-ID/IPADDR-ID validation is a weaker form of authentication,

because even if a peer is operating on an authenticated network DNS

name or IP address it can provide an invalid Node ID and cause

bundles to be "leaked" to an invalid node. Especially in DTN

environments, network names and addresses of nodes can be time-

variable so binding a certificate to a Node ID is a more stable

identity.

NODE-ID validation ensures that the peer to which a bundle is

transferred is in fact the node which the BP Agent expects it to be.

In circumstances where certificates can only be issued to DNS names,

Node ID validation is not possible but it could be reasonable to

assume that a trusted host is not going to present an invalid Node

ID. Determining when a DNS-ID/IPADDR-ID authentication can be

trusted to validate a Node ID is also a policy matter outside of the

scope of this document.

One mitigation to arbitrary entities with valid PKIX certificates

impersonating arbitrary Node IDs is the use of the PKIX Extended Key

Usage key purpose "id-kp-bundleSecurity" of [IANA-SMI]. When this

Extended Key Usage is present in the certificate, it represents a

stronger assertion that the private key holder should in fact be

trusted to operate as a DTN Node.

5.8. Threat: Denial of Service

The behaviors described in this section all amount to a potential

denial-of-service to a UDPCL entity. The denial-of-service could be

limited to an individual UDPCL entity, or could affect all entities

on a host or network segment.

An entity can send a large amount of data to a UDPCL entity,

requiring the receiving entity to handle the data. The victim entity

¶

¶

¶

¶

¶

¶

can block UDP packets from network peers which are thought to be

incorrectly behaving within network.

An entity can also send only one fragment of a seemingly valid

transfer and never send the remaining fragments, which will cause

resources on the receiver to be wasted on transfer reassembly state.

The victim entity can either block packets from network peers or

intentionally keep a short unfinished transfer timeout (see Section

3.6.2).

The keepalive mechanism can be abused to waste throughput within a

network link which would otherwise be usable for bundle

transmissions.

5.9. Mandatory-to-Implement DTLS

Following IETF best current practice, DTLS is mandatory to implement

for all UDPCL implementations but DTLS is optional to use for a any

given transfer. The recommended configuration of Section 3.5.1 is to

always attempt DTLS, but entities are permitted to disable DTLS

based on local configuration. The configuration to enable or disable

DTLS for an entity or a session is outside of the scope of this

document. The configuration to disable DTLS is different from the

threat of DTLS stripping described in Section 5.3.

5.10. Alternate Uses of DTLS

This specification makes use of PKIX certificate validation and

authentication within DTLS. There are alternate uses of DTLS which

are not necessarily incompatible with the security goals of this

specification, but are outside of the scope of this document. The

following subsections give examples of alternate DTLS uses.

5.10.1. DTLS Without Authentication

In environments where PKI is available but there are restrictions on

the issuance of certificates (including the contents of

certificates), it may be possible to make use of DTLS in a way which

authenticates only the passive entity of a UDPCL transfer or which

does not authenticate either entity. Using DTLS in a way which does

not successfully authenticate some claim of both peer entities of a

UDPCL transfer is outside of the scope of this document but does

have similar properties to the opportunistic security model of

[RFC7435].

5.10.2. Non-Certificate DTLS Use

In environments where PKI is unavailable, alternate uses of DTLS

which do not require certificates such as pre-shared key (PSK)

authentication [RFC5489] and the use of raw public keys [RFC7250]

¶

¶

¶

¶

¶

¶

are available and can be used to ensure confidentiality within

UDPCL. Using non-PKI node authentication methods is outside of the

scope of this document.

5.11. Predictability of Transfer IDs

The only requirement on Transfer IDs is that they are unique from

the transmitting peer only. The trivial algorithm of the first

transfer starting at zero and later transfers incrementing by one

causes absolutely predictable Transfer IDs. Even when UDPCL is not

DTLS secured and there is a on-path attacker altering UDPCL

messages, there is no UDPCL feedback mechanism to interrupt or

refuse a transfer so there is no benefit in having unpredictable

Transfer IDs.

6. IANA Considerations

Registration procedures referred to in this section are defined in

[RFC8126].

6.1. Port Number

Within the port registry of [IANA-PORTS], UDP port number 4556 has

been previously assigned as the default port for the UDP convergence

layer in [RFC7122]. This assignment to UDPCL is unchanged, but the

assignment reference is updated to this specification. There is no

UDPCL version indication on-the-wire but this specification is a

superset of [RFC7122] and is fully backward compatible. The related

assignment for DCCP port 4556 (registered by [RFC7122]) is

unchanged.

Parameter Value

Service Name: dtn-bundle

Transport Protocol(s): UDP

Assignee: IESG <iesg@ietf.org>

Contact: IESG <iesg@ietf.org>

Description: DTN Bundle UDP CL Protocol

Reference: This specification.

Port Number: 4556

Table 2

6.2. UDPCL Extension Types

EDITOR NOTE: sub-registry to-be-created upon publication of this

specification.

IANA will create, under the "Bundle Protocol" registry [IANA-

BUNDLE], a sub-registry titled "Bundle Protocol UDP Convergence-

Layer Extension Types" and initialize it with the contents of Table

¶

¶

¶

¶

¶

3. For positive code points the registration procedure is

Specification Required. Negative code points are reserved for use on

private networks for functions not published to the IANA.

Specifications of new extension types need to define the CBOR item

structure of the extension data as well as the purpose and

relationship of the new extension to existing session/transfer state

within the baseline UDPCL sequencing. Receiving entities will ignore

items with unknown Extension ID, and that behavior needs to be

considered by new extension types.

Expert(s) are encouraged to be biased towards approving

registrations unless they are abusive, frivolous, or actively

harmful (not merely aesthetically displeasing, or architecturally

dubious).

Extension

ID
Name References

negative
Private/Experimental

Use
This specification.

0 Reserved This specification.

2 Transfer
Section 3.5.2 of this

specification.

3 Sender Listen
Section 3.5.3 of this

specification.

4 Sender Node ID
Section 3.5.4 of this

specification.

5
DTLS Initiation

(STARTTLS)

Section 3.5.1 of this

specification.

6-65535 Unassigned

Table 3: Extension Type Codes

7. Acknowledgments

TBD

¶

¶

¶

¶

[IANA-BUNDLE]

[IANA-PORTS]

[IANA-IPv4-MCAST]

[IANA-IPv6-MCAST]

[IANA-SMI]

[RFC0768]

[RFC1122]

[RFC2119]

[RFC3986]

[RFC5050]

[RFC5280]

8. References

8.1. Normative References

IANA, "Bundle Protocol", <https://www.iana.org/

assignments/bundle/>.

IANA, "Service Name and Transport Protocol Port Number

Registry", <https://www.iana.org/assignments/service-

names-port-numbers/>.

IANA, "IPv4 Multicast Address Space Registry",

<https://www.iana.org/assignments/multicast-addresses/>.

IANA, "IPv6 Multicast Address Space Registry",

<https://www.iana.org/assignments/ipv6-multicast-

addresses/>.

IANA, "Structure of Management Information (SMI)

Numbers", <https://www.iana.org/assignments/smi-numbers/

>.

Postel, J., "User Datagram Protocol", STD 6, RFC 768, DOI

10.17487/RFC0768, August 1980, <https://www.rfc-

editor.org/info/rfc768>.

Braden, R., Ed., "Requirements for Internet Hosts -

Communication Layers", STD 3, RFC 1122, DOI 10.17487/

RFC1122, October 1989, <https://www.rfc-editor.org/info/

rfc1122>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform

Resource Identifier (URI): Generic Syntax", STD 66, RFC

3986, DOI 10.17487/RFC3986, January 2005, <https://

www.rfc-editor.org/info/rfc3986>.

Scott, K. and S. Burleigh, "Bundle Protocol

Specification", RFC 5050, DOI 10.17487/RFC5050, November

2007, <https://www.rfc-editor.org/info/rfc5050>.

Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,

Housley, R., and W. Polk, "Internet X.509 Public Key

Infrastructure Certificate and Certificate Revocation

List (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May

2008, <https://www.rfc-editor.org/info/rfc5280>.

https://www.iana.org/assignments/bundle/
https://www.iana.org/assignments/bundle/
https://www.iana.org/assignments/service-names-port-numbers/
https://www.iana.org/assignments/service-names-port-numbers/
https://www.iana.org/assignments/multicast-addresses/
https://www.iana.org/assignments/ipv6-multicast-addresses/
https://www.iana.org/assignments/ipv6-multicast-addresses/
https://www.iana.org/assignments/smi-numbers/
https://www.rfc-editor.org/info/rfc768
https://www.rfc-editor.org/info/rfc768
https://www.rfc-editor.org/info/rfc1122
https://www.rfc-editor.org/info/rfc1122
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc5050
https://www.rfc-editor.org/info/rfc5280

[RFC6125]

[RFC6347]

[RFC6960]

[RFC7525]

[RFC8085]

[RFC8126]

[RFC8174]

[RFC8610]

[RFC8949]

Saint-Andre, P. and J. Hodges, "Representation and

Verification of Domain-Based Application Service Identity

within Internet Public Key Infrastructure Using X.509

(PKIX) Certificates in the Context of Transport Layer

Security (TLS)", RFC 6125, DOI 10.17487/RFC6125, March

2011, <https://www.rfc-editor.org/info/rfc6125>.

Rescorla, E. and N. Modadugu, "Datagram Transport Layer

Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347,

January 2012, <https://www.rfc-editor.org/info/rfc6347>.

Santesson, S., Myers, M., Ankney, R., Malpani, A.,

Galperin, S., and C. Adams, "X.509 Internet Public Key

Infrastructure Online Certificate Status Protocol -

OCSP", RFC 6960, DOI 10.17487/RFC6960, June 2013,

<https://www.rfc-editor.org/info/rfc6960>.

Sheffer, Y., Holz, R., and P. Saint-Andre,

"Recommendations for Secure Use of Transport Layer

Security (TLS) and Datagram Transport Layer Security

(DTLS)", BCP 195, RFC 7525, DOI 10.17487/RFC7525, May

2015, <https://www.rfc-editor.org/info/rfc7525>.

Eggert, L., Fairhurst, G., and G. Shepherd, "UDP Usage

Guidelines", BCP 145, RFC 8085, DOI 10.17487/RFC8085,

March 2017, <https://www.rfc-editor.org/info/rfc8085>.

Cotton, M., Leiba, B., and T. Narten, "Guidelines for

Writing an IANA Considerations Section in RFCs", BCP 26,

RFC 8126, DOI 10.17487/RFC8126, June 2017, <https://

www.rfc-editor.org/info/rfc8126>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Birkholz, H., Vigano, C., and C. Bormann, "Concise Data

Definition Language (CDDL): A Notational Convention to

Express Concise Binary Object Representation (CBOR) and

JSON Data Structures", RFC 8610, DOI 10.17487/RFC8610,

June 2019, <https://www.rfc-editor.org/info/rfc8610>.

Bormann, C. and P. Hoffman, "Concise Binary Object

Representation (CBOR)", STD 94, RFC 8949, DOI 10.17487/

https://www.rfc-editor.org/info/rfc6125
https://www.rfc-editor.org/info/rfc6347
https://www.rfc-editor.org/info/rfc6960
https://www.rfc-editor.org/info/rfc7525
https://www.rfc-editor.org/info/rfc8085
https://www.rfc-editor.org/info/rfc8126
https://www.rfc-editor.org/info/rfc8126
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8610

[I-D.ietf-dtn-bpbis]

[I-D.ietf-dtn-tcpclv4]

[RFC2595]

[RFC3552]

[RFC4511]

[RFC4838]

[RFC5489]

[RFC6698]

[RFC7122]

RFC8949, December 2020, <https://www.rfc-editor.org/info/

rfc8949>.

Burleigh, S., Fall, K., and E. Birrane, "Bundle Protocol

Version 7", Work in Progress, Internet-Draft, draft-ietf-

dtn-bpbis-31, 25 January 2021, <https://tools.ietf.org/

html/draft-ietf-dtn-bpbis-31>.

Sipos, B., Demmer, M., Ott, J., and S. Perreault, "Delay-

Tolerant Networking TCP Convergence Layer Protocol

Version 4", Work in Progress, Internet-Draft, draft-ietf-

dtn-tcpclv4-24, 7 December 2020, <https://tools.ietf.org/

html/draft-ietf-dtn-tcpclv4-24>.

8.2. Informative References

Newman, C., "Using TLS with IMAP, POP3 and ACAP", RFC

2595, DOI 10.17487/RFC2595, June 1999, <https://www.rfc-

editor.org/info/rfc2595>.

Rescorla, E. and B. Korver, "Guidelines for Writing RFC

Text on Security Considerations", BCP 72, RFC 3552, DOI

10.17487/RFC3552, July 2003, <https://www.rfc-editor.org/

info/rfc3552>.

Sermersheim, J., Ed., "Lightweight Directory Access

Protocol (LDAP): The Protocol", RFC 4511, DOI 10.17487/

RFC4511, June 2006, <https://www.rfc-editor.org/info/

rfc4511>.

Cerf, V., Burleigh, S., Hooke, A., Torgerson, L., Durst,

R., Scott, K., Fall, K., and H. Weiss, "Delay-Tolerant

Networking Architecture", RFC 4838, DOI 10.17487/RFC4838,

April 2007, <https://www.rfc-editor.org/info/rfc4838>.

Badra, M. and I. Hajjeh, "ECDHE_PSK Cipher Suites for

Transport Layer Security (TLS)", RFC 5489, DOI 10.17487/

RFC5489, March 2009, <https://www.rfc-editor.org/info/

rfc5489>.

Hoffman, P. and J. Schlyter, "The DNS-Based

Authentication of Named Entities (DANE) Transport Layer

Security (TLS) Protocol: TLSA", RFC 6698, DOI 10.17487/

RFC6698, August 2012, <https://www.rfc-editor.org/info/

rfc6698>.

Kruse, H., Jero, S., and S. Ostermann, "Datagram

Convergence Layers for the Delay- and Disruption-Tolerant

https://www.rfc-editor.org/info/rfc8949
https://www.rfc-editor.org/info/rfc8949
https://tools.ietf.org/html/draft-ietf-dtn-bpbis-31
https://tools.ietf.org/html/draft-ietf-dtn-bpbis-31
https://tools.ietf.org/html/draft-ietf-dtn-tcpclv4-24
https://tools.ietf.org/html/draft-ietf-dtn-tcpclv4-24
https://www.rfc-editor.org/info/rfc2595
https://www.rfc-editor.org/info/rfc2595
https://www.rfc-editor.org/info/rfc3552
https://www.rfc-editor.org/info/rfc3552
https://www.rfc-editor.org/info/rfc4511
https://www.rfc-editor.org/info/rfc4511
https://www.rfc-editor.org/info/rfc4838
https://www.rfc-editor.org/info/rfc5489
https://www.rfc-editor.org/info/rfc5489
https://www.rfc-editor.org/info/rfc6698
https://www.rfc-editor.org/info/rfc6698

[RFC7250]

[RFC7435]

[RFC7457]

[RFC7942]

[RFC8899]

[RFC8900]

[I-D.ietf-dtn-bpsec]

[github-dtn-demo-agent]

[github-dtn-wireshark]

Networking (DTN) Bundle Protocol and Licklider

Transmission Protocol (LTP)", RFC 7122, DOI 10.17487/

RFC7122, March 2014, <https://www.rfc-editor.org/info/

rfc7122>.

Wouters, P., Ed., Tschofenig, H., Ed., Gilmore, J.,

Weiler, S., and T. Kivinen, "Using Raw Public Keys in

Transport Layer Security (TLS) and Datagram Transport

Layer Security (DTLS)", RFC 7250, DOI 10.17487/RFC7250,

June 2014, <https://www.rfc-editor.org/info/rfc7250>.

Dukhovni, V., "Opportunistic Security: Some Protection

Most of the Time", RFC 7435, DOI 10.17487/RFC7435,

December 2014, <https://www.rfc-editor.org/info/rfc7435>.

Sheffer, Y., Holz, R., and P. Saint-Andre, "Summarizing

Known Attacks on Transport Layer Security (TLS) and

Datagram TLS (DTLS)", RFC 7457, DOI 10.17487/RFC7457,

February 2015, <https://www.rfc-editor.org/info/rfc7457>.

Sheffer, Y. and A. Farrel, "Improving Awareness of

Running Code: The Implementation Status Section", BCP

205, RFC 7942, DOI 10.17487/RFC7942, July 2016, <https://

www.rfc-editor.org/info/rfc7942>.

Fairhurst, G., Jones, T., Tüxen, M., Rüngeler, I., and T.

Völker, "Packetization Layer Path MTU Discovery for

Datagram Transports", RFC 8899, DOI 10.17487/RFC8899,

September 2020, <https://www.rfc-editor.org/info/

rfc8899>.

Bonica, R., Baker, F., Huston, G., Hinden, R., Troan, O.,

and F. Gont, "IP Fragmentation Considered Fragile", BCP

230, RFC 8900, DOI 10.17487/RFC8900, September 2020,

<https://www.rfc-editor.org/info/rfc8900>.

Birrane, E. and K. McKeever, "Bundle Protocol

Security Specification", Work in Progress, Internet-

Draft, draft-ietf-dtn-bpsec-26, 8 January 2021, <https://

tools.ietf.org/html/draft-ietf-dtn-bpsec-26>.

Sipos, B., "UDPCL Example Implementation",

<https://github.com/BSipos-RKF/dtn-demo-agent/>.

Sipos, B., "UDPCL Wireshark Dissector",

<https://github.com/BSipos-RKF/dtn-wireshark/>.

https://www.rfc-editor.org/info/rfc7122
https://www.rfc-editor.org/info/rfc7122
https://www.rfc-editor.org/info/rfc7250
https://www.rfc-editor.org/info/rfc7435
https://www.rfc-editor.org/info/rfc7457
https://www.rfc-editor.org/info/rfc7942
https://www.rfc-editor.org/info/rfc7942
https://www.rfc-editor.org/info/rfc8899
https://www.rfc-editor.org/info/rfc8899
https://www.rfc-editor.org/info/rfc8900
https://tools.ietf.org/html/draft-ietf-dtn-bpsec-26
https://tools.ietf.org/html/draft-ietf-dtn-bpsec-26
https://github.com/BSipos-RKF/dtn-demo-agent/
https://github.com/BSipos-RKF/dtn-wireshark/

Appendix A. Significant changes from RFC7122

The areas in which changes from [RFC7122] have been made to existing

requirements:

Made explicit references to UDP- and IP-related RFCs.

Made more strict Keepalive and Padding requirements.

Defined UDPCL security and made mandatory-to-implement.

The areas in which extensions from [RFC7122] have been made as new

behaviors are:

Added BPv7 bundle as a possible UDPCL payload.

Added Extension Map message type and initial extension types.

Defined semantics for UDPCL multicast addressing.

Author's Address

Brian Sipos

RKF Engineering Solutions, LLC

7500 Old Georgetown Road

Suite 1275

Bethesda, MD 20814-6198

United States of America

Email: BSipos@rkf-eng.com

¶

* ¶

* ¶

* ¶

¶

* ¶

* ¶

* ¶

mailto:BSipos@rkf-eng.com

	Delay-Tolerant Networking UDP Convergence Layer Protocol
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Scope
	1.2. Use of CDDL
	1.3. Requirements Language
	1.4. Definitions Specific to the UDPCL Protocol

	2. General Protocol Description
	2.1. Convergence Layer Services
	2.2. PKIX Environments and CA Policy
	2.3. Fragmentation Policies
	2.4. Error Checking Policies
	2.5. Congestion Control Policies

	3. UDPCL Operation
	3.1. IP Addressing
	3.2. UDP Header
	3.3. UDPCL Packets
	3.4. UDPCL Messages
	3.5. UDPCL Extension Items
	3.5.1. DTLS Initiation (STARTTLS)
	3.5.2. Bundle Transfer
	3.5.3. Sender Listen
	3.5.4. Sender Node ID

	3.6. Explicit Transfers
	3.6.1. Bundle Transfer ID
	3.6.2. Fragmentation and Reassembly

	3.7. UDPCL Security
	3.7.1. Entity Identification
	3.7.2. Certificate Profile for UDPCL
	3.7.3. DTLS Handshake
	3.7.4. DTLS Authentication
	3.7.5. Policy Recommendations
	3.7.6. Example Secured and Bidirectional Transfers

	4. Implementation Status
	5. Security Considerations
	5.1. Threat: Passive Leak of Node Data
	5.2. Threat: Passive Leak of Bundle Data
	5.3. Threat: Transport Security Stripping
	5.4. Threat: Weak DTLS Configurations
	5.5. Threat: Untrusted End-Entity Certificate
	5.6. Threat: Certificate Validation Vulnerabilities
	5.7. Threat: BP Node Impersonation
	5.8. Threat: Denial of Service
	5.9. Mandatory-to-Implement DTLS
	5.10. Alternate Uses of DTLS
	5.10.1. DTLS Without Authentication
	5.10.2. Non-Certificate DTLS Use

	5.11. Predictability of Transfer IDs

	6. IANA Considerations
	6.1. Port Number
	6.2. UDPCL Extension Types

	7. Acknowledgments
	8. References
	8.1. Normative References
	8.2. Informative References

	Appendix A. Significant changes from RFC7122
	Author's Address

