
INTERNET-DRAFT M. Sirbu
draft-sirbu-kerb-ext-00.txt J. Chuang
Updates: RFC 1510 CMU/INI
May 6, 1996

Public-Key Based Ticket Granting Service in Kerberos

0. Status of this Memo

 This document is an Internet-Draft. Internet-Drafts are working
 documents of the Internet Engineering Task Force (IETF), its areas,
 and its working groups. Note that other groups may also distribute
 working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or obsoleted by other
 documents at any time. It is inappropriate to use Internet-Drafts
 as reference material or to cite them other than as ``work in
 progress.''

 To learn the current status of any Internet-Draft, please check the
 ``1id-abstracts.txt'' listing contained in the Internet-Drafts
 Shadow Directories on ds.internic.net (US East Coast),
 nic.nordu.net (Europe), ftp.isi.edu (US West Coast), or
 munnari.oz.au (Pacific Rim).

 The distribution of this memo is unlimited. It is filed as
draft-sirbu-kerb-ext-00.txt, and expires November 11, 1996.

 Please send comments to the authors.

1. Abstract

 This document defines extensions to the Kerberos protocol
 specification (RFC 1510, "The Kerberos Network Authentication
 Service (V5)", September 1993) to provide a method for supporting
 ticket-granting services based on public-key cryptographic
 algorithms.

2. Motivation

 Conventional Kerberos uses a two-level ticket scheme. The client
 first obtains a Ticket Granting Ticket (TGT) via a request from the
 Authentication Server (AS) at the Key Distribution Center (KDC).
 The client then presents the TGT to the Ticket Granting Server
 (TGS) to request for a service ticket for the application server it
 wishes to communicate with. Upon verifying the client's identity
 from the TGT, the TGS establishes a shared symmetric session
 key between the client and server, with mutual authentication of

https://datatracker.ietf.org/doc/html/draft-sirbu-kerb-ext-00.txt
https://datatracker.ietf.org/doc/html/rfc1510
https://datatracker.ietf.org/doc/html/draft-sirbu-kerb-ext-00.txt
https://datatracker.ietf.org/doc/html/rfc1510

 the two principals achieved.

 The Kerberos KDC/TGS arrangement introduces two significant
 security and performance concerns. First, because the KDC
 maintains a shared symmetric cipher key with every principal in the
 system, it is an attractive target for attack; recovering from
 compromise of the KDC requires establishing new shared keys with
 all users of the system. Second, a centralized KDC will be a
 communications or processing bottleneck if a large number of users
 present a heavy traffic load.

 Both of these problems will be alleviated with this proposed
 public-key based extension to Kerberos, which is first described
 in [CTS95].

 In the proposed extension, there is no need for a trusted third
 party beyond the certificate authority, which distributes public-
 key certificates for the principals. The client and server can
 authenticate themselves to each other. There is no longer a
 centralized database of symmetric keys to be compromised.

 In addition, the decentralized storage and usage of public-private
 key pairs distribute the authentication workload across the
 network to individual client/server pairs. This is especially
 attractive from a scalability point of view.

3. Public-Key Based Ticket Granting Service (PKTGS)

 In the proposed mode of "Public-Key Kerberos" or "PK Kerberos"
 operation, only the initial authentication between parties will be
 based on public key cryptography. All subsequent communications,
 including repeated authentications, will continue to use the more
 computationally efficient symmetric key methods.

 The only message exchanges affected by the proposed extension are
 those involving the AS and TGS exchanges, as specified in section

5.4 of [rfc1510]. Once a session key is established between the
 client and the server, normal operation proceeds as per RFC1510.

3.1 PK Kerberos Operation

 In Kerberos V5, the client obtains a TGT from the Authentication
 Service (AS) of the KDC and sends it to the TGS to secure a shared
 session key between itself and the server it wishes to communicate
 with. In PK Kerberos, however, the client is allowed to
 authenticate itself with the server directly. The distribution of
 public key certificates is performed by either a certificate
 authority (CA) or the application server itself. The server also
 assumes the role of the TGS.

https://datatracker.ietf.org/doc/html/rfc1510#section-5.4
https://datatracker.ietf.org/doc/html/rfc1510#section-5.4
https://datatracker.ietf.org/doc/html/rfc1510

 In PK Kerberos, the client presents a service ticket request
 encrypted with a certified public key (we call this a Public-Key
 based TGS request, or PKTGS-REQ) to the server. Since this request
 is digitally signed with the client's private key, and encrypted
 with the server's public key, the server and only the server can
 authenticate the identity of the client. Conversely, the client is
 assured of the identity of the server because only the server can
 decrypt the PKTGS-REQ and construct a valid response.

 In addition to the client's identity and other relevant
 information, a randomly generated one-time key is also included in
 the service ticket request. This key is not the actual session
 key, but is instead used by the server to return the service ticket
 to the client. This key works identically to the symmetric key
 generated by the KDC to be shared by the client and the TGS in the
 traditional TGT-REQ/TGS-REP exchange.

 The client's public key certificate is also included with this
 request to facilitate the verification of its signature.

 The server, in response to the above PKTGS-REQ message, returns a
 symmetric-cipher-based service ticket. This service ticket is
 identical in form to a Kerberos service ticket. Therefore, the
 message format for PKTGS-REP is very similar to that for TGS-REP.
 With this service ticket, the client and the server can proceed to
 communicate normally.

 A client application can also choose to present the PKTGS-REQ to a
 centralized Ticket Granting Server. This may be necessary,
 especially during the period of migration to public-key based
 Kerberos, when some of the application servers are not yet equipped
 to process service ticket requests. This option, described in

Section 4.3, is a special case where the server in question
 is simply a PK-aware TGS.

4. Message Exchanges

 In Kerberos V5, a normally executed authentication procedure begins
 with the following five message exchanges:

 1. client to KDC: AS-REQ
 2. KDC to client: AS-REP
 3. client to TGS: TGS-REQ
 4. TGS to client: TGS-REP
 5. client to server: AP-REQ

 In Public key Kerberos, the five step exchange for initial
 authentication is maintained, but the first four steps are replaced
 by PK-equivalent versions of the messages. Normal operations
 proceed from step 5 onwards.

 1. client to server/CA: SCERT-REQ
 2. server/CA to client: SCERT-REP
 3. client to server: PKTGS-REQ
 4. server to client: PKTGS-REP
 5. client to server: AP-REQ

 Each of the new steps is described in detail in the following sub-
 sections. A sample specification of the protocol, based upon the
 Interface Specification Language (ISL) [Bra96], can be found in

Appendix A.

4.1 Obtaining the Server's Public Key Certificate

 The construction of a PKTGS-REQ requires encryption using the
 recipient's (server's) public key. Therefore, the client must
 obtain the server's public key certificate before it can generate
 the PKTGS-REQ message. This request may either be serviced by a
 certificate authority (CA), or the server itself.

 If the client has certificate caching capabilities, steps 1 and 2
 may be bypassed for subsequent authentication attempts with a
 server. It is the responsibility of the client to check with the
 CRL for any revoked certificates. If the client obtains the
 server's certificate from the CA, it can be sure that the
 certificate has not been revoked.

4.1.1 Generation of SCERT-REQ

 The client initiates the authentication exchange by generating a
 simple request message, which consists of the principal name and
 realm of the server it wishes to communicate with. This message can
 be transmitted over any available channel, such as an unsecured
 remote procedure call.

4.1.2 Generation of SCERT-REP

 In response to a certificate request, the server or the CA returns
 the certificate, which contains the public key information. Again,
 this message can be transmitted via an unprotected channel.

4.2 Client/Server Authentication Using Public Key Cryptography

4.2.1 Generation of PKTGS-REQ

 Once the client has obtained and verified the server's public key
 certificate, it can proceed to generate the ticket request. The
 PKTGS-REQ message contains information fields similar to those in
 KDC-REQ messages, except that the authorization fields are now
 encrypted using the server's public key instead of the shared
 symmetric key shared by the KDC and the client in traditional

 Kerberos. In addition, these fields are also signed by the client,
 allowing the server to verify the identity of the client.

 In traditional Kerberos, the KDC generates a random symmetric key
 for the client to use in communicating with the TGS. The client
 now generates this random key, which will be referred to in the
 rest of this document as "Kr", and sends it in encrypted form to
 the server. The server will then retrieve and use this key to
 encrypt the responding message PKTGS-REP.

 The generation of this random key "Kr" does not impose any
 additional security requirements on the client. The same random
 number generator used to generate the 'nonce' field in KRB-KDC-REQ
 can be used to generate this key "Kr", as long as a proper key
 length is used. In fact, the inclusion of this one-time random key
 in the message eliminates the need for a separate 'nonce' field.

 An object containing all the necessary authorization information is
 first constructed. This object, named 'auth-data' (Section 5.3.2),
 includes the random key "Kr", the server's identity (to prevent
 replay attacks first addressed by Denning-Sacco [Sch95]), the
 server's public key information (to avert "man-in-the-middle"
 attacks), ticket life-time information, and a timestamp (to prevent
 replay attacks).

 The 'auth-data' field is signed with the client's private key using
 the 'SignedData' construct defined in PKCS #7. The resulting
 message digest, but not the content itself, is then encrypted with
 the server's public key using the 'EnvelopedData' construct.
 The omission of the 'auth-data' content field results in a shorter
 message length for PKTGS-REQ. This omission is possible because
 all the information needed to construct and verify the hash of
 'auth-data' is available to the server through other means.

4.2.2 Receipt of PKTGS-REQ

 Upon receipt of the PKTGS-REQ message, the server first decrypts
 and retrieves the content-encryption key using its private key.
 Using this key, it can decrypt the actual enveloped content. The
 server retrieves the client's public key, which is included in
 the 'certificate' field of the signed content. Using this public
 key, the client's signature (and authenticity of the request) is
 verified by comparing the retrieved message digest with an
 independently constructed message digest of 'auth-data'.

 While the 'auth-data' content field is omitted from the PKTGS-REQ
 message, the server can retrieve all the necessary information.
 Specifically, the field 'sPKeyInfo' can be retrieved from the
 server's own copy of its public key certificate. All the other
 fields present in 'auth-data' can and should be retrieved from the
 plaintext portion of PKTGS-REQ.

4.2.3 Generation of PKTGS-REP

 The message format for PKTGS-REP is similar to that for TGS-REP in
 traditional Kerberos [rfc1510], and will be described in Section

5.4 of this document.

 The process of generating this message is also identical to that
 of generating the TGS-REP, with the following three exceptions.

 First, this message is now generated by the server (acting in the
 capacity of the Ticket Granting Service) rather than the TGS.

 Second, while the ciphertext portion of the message is encrypted
 using the session key extracted from the TGT in traditional
 Kerberos, it is now encrypted using the symmetric 'randomKey' "Kr"
 extracted from PKTGS-REQ.

 Third, while the traditional service ticket is encrypted using a
 symmetric key shared by the TGS and the server, it is now encrypted
 using a symmetric key known only to the server. This is consistent
 with the fact that the server and the TGS are really one entity in
 this scenario.

4.2.4 Receipt of PKTGS-REP

 The client receives and processes this message in the same manner
 as it would a traditional TGS-REP. As in traditional Kerberos,
 the client will not be able to decrypt and/or modify the ticket.
 It will be able to retrieve the session key and use it to generate
 the appropriate authenticators for the subsequent AP-REQ message.

 From this point on, all operations can proceed per normal Kerberos
 procedures.

4.3 Obtaining Service Tickets From a "PK-Aware" TGS

 If the server with whom the client wishes to communicate is not
 capable of handling service ticket requests, the client has to
 resort to sending the request to a Ticket Granting Service (TGS).
 This section describes this scenario, and the appropriate course
 of action to be taken by the client. This escape mechanism will
 help preserve the functionality and integrity of the Kerberos
 Authentication scheme during the transition to PK Kerberos, when
 there can be a hybrid of "PK-aware" and "non-PK-aware" application
 servers.

 The client initially assumes that the server is "PK-aware" and
 sends a SCERT-REQ message to the application server as described in

Section 4.1. From the lack of a timely SCERT-REP, the client can
 either assume that the server is unable to handle a certificate

https://datatracker.ietf.org/doc/html/rfc1510

 request, or that it is not "PK-aware" at all. In the former case,
 the client can choose to resend the SCERT-REQ to the certificate
 authority (CA) and obtain the server's certificate. If the CA is
 unable to return a certificate for S, then the client knows that
 the server is not "PK-aware." Else if the client succesfully
 receives a SCERT-REP from the CA, it can proceed to send a
 PKTGS-REQ to the server.

 Once it is established that the server is not "PK-aware," the
 client will have to communicate with a TGS to get a traditional
 TGT and subsequent service ticket for the destination server.
 This is accomplished by the following 7-step exchange.

 1. client to TGS/CA: SCERT-REQ
 2. TGS/CA to client: SCERT-REP
 3. client to TGS: PKTGS-REQ
 4. TGS to client: PKTGS-REP
 5. client to TGS: TGS-REQ
 6. TGS to client: TGS-REP
 7. client to server: AP-REQ

 The first four steps of the message exchange are identical to those
 of PK Kerberos as described in the beginning of Section 4, except
 that the server being contacted now is a PK-aware TGS. In effect,
 the client is issuing a PKTGS-REQ to the TGS to request for a
 traditional TGT. Then, steps 5-7 are really identical to steps 3-5
 of the traditional Kerberos exchange, where the client uses the TGT
 to request for an actual service ticket.

 It is worth noting that the client will be communicating with the
 TGS for the first six steps of the exchange. Therefore, the
 performance bottleneck associated with a centralized KDC remains.
 However, the centralized database of symmetric keys will be much
 smaller in size, since the clients will now authenticate themselves
 to the TGS using public keys instead. The symmetric keys shared
 between the KDC and the servers are still required.

5. Message Specifications

5.1 SCERT-REQ

 The construction of PKTGS-REQ requires encryption using the
 recipient's (server's) public key. Therefore, the client must
 first obtain the server's public key certificate. This request may
 be serviced by a certificate authority (CA), or the server itself.
 This simple request message can be transmitted over any available
 channel, such as an unsecured remote procedure call.

 SCERT-REQ ::= SEQUENCE{
 pvno INTEGER,

 msg-type INTEGER,
 srealm Realm,
 sname PrincipalName
 }

 pvno This field is included in each message, and specifies the
 protocol version number (version '5' for this document).

 msg-type This field indicates the type of a protocol message, and
 is as described in Section 5.4.1 of [rfc1510].

 srealm This field specifies the realm part of the server's
 principal identifier.

 sname This field specifies the name part of the server's
 principal identifier.

5.2 SCERT-REP

 In response to a certificate request, the server or the CA returns
 the certificate, which contains the public key information. Again,
 this message can be transmitted via an unprotected channel.

 SCERT-REP ::= SEQUENCE{
 pvno INTEGER,
 msg-type INTEGER,
 scert Certificate
 }

 pvno and msg-type These fields are described above in Section 5.1

 scert server's certificate (and public key), as defined in X.509
 or other certificate standards. The X.509 certificate in
 ASN.1 notation can be found in Annex G of [X509]. It is
 excerpted as Appendix B of this document.

5.3 PKTGS-REQ

 PKTGS-REQ is sent to the server directly, rather than to the AS or
 the TGS in the conventional Kerberos protocol. This message
 contains similar information as conventional ticket requests. The
 authorization fields, which includes the proposed one-time random
 key "Kr", is signed with the client's private key and enveloped
 with the server's public key. This is the basic mechanism
 underlying authentication and key exchange without the KDC serving
 as the trusted intermediary.

https://datatracker.ietf.org/doc/html/rfc1510#section-5.4.1

 PKTGS-REQ ::= SEQUENCE {
 pvno INTEGER,
 msg-type INTEGER,
 padata SEQUENCE OF PA-DATA OPTIONAL,
 req-body PKTGS-REQ-BODY
 }

 PKTGS-REQ-BODY ::= SEQUENCE {
 kdc-options KDCOptions,
 srealm Realm,
 sname PrincipalName,
 from KerberosTime OPTIONAL,
 till KerberosTime,
 rtime KerberosTime OPTIONAL,
 authtime KerberosTime,
 etype SEQUENCE OF INTEGER,
 addresses HostAddresses OPTIONAL,
 envelopedContent ContentInfo, -- type 'envelopedData'
 additional-tickets SEQUENCE OF Ticket OPTIONAL
 }

 Other than the following two fields, all the other fields are
 as described for KDC-REQ in Section 5.4.1 of [rfc1510].

 authtime This field indicates the time of initial authentication
 request.

 envelopedContent This field contains the enveloped portions of the
 ticket request message. It is defined to be of type
 'ContentInfo', which is a generic data-type exported from
 RSA Lab's PKCS #7 specification [PKCS7].

 The message format differs from that of KDC-REQ in the following
 four ways:

 First, the encrypted portion of the request body is no longer
 an 'EncryptedData' object as defined in [rfc1510], but rather a
 'ContentInfo' container of type 'envelopedData'. This is because
 public key encryption is used here, using the PKCS specification.

 Second, 'cname' is excluded from the cleartext portion of the
 message. Instead, the client's identity is available in its public
 key certificate, which is transmitted, in encrypted form, within
 'envelopedContent'.

 Third, the 'nonce' field is removed. This is possible because
 its function can be subsumed by the 'randomKey' field in Section

5.3.2. The 'randomKey' can serve the role of a nonce since it is
 also randomly generated by the client, and used only once.

https://datatracker.ietf.org/doc/html/rfc1510#section-5.4.1
https://datatracker.ietf.org/doc/html/rfc1510

 Fourth, the field 'authtime' is added. Since the client generates
 this timestamp, the server will have to verify the time elapsed
 between this timestamp and when it receives this message. By
 refusing to service a ticket request that occurred "too far" in the
 past, i.e., beyond the acceptable clock skew, the server can
 prevent replay attacks. While this field is transmitted in the
 clear, its integrity is assured by its inclusion in the signed
 'auth-data' field.

5.3.1 EnvelopedData

 'ContentInfo' is a generic data-type exported from RSA Lab's PKCS
 #7 specification [PKCS7]. This data type can take on one of
 several content-types as enumerated in PKCS #7. In this instance,
 it takes on the type of 'envelopedData', which is essentially the
 encryption of the content using a randomly generated symmetric key,
 followed by the encryption of the symmetric key using the
 recipient's public key. Syntatically, however, the encrypted key
 preceeds the encrypted content, such that the content can be
 decrypted with one pass of the message stream. The syntax relevant
 to this document is shown below. Appendix C provides a brief
 discussion of the usage of 'ContentInfo', and its ASN.1 notation.
 A complete specification of the 'EnvelopedData' type can be found
 in PKCS #7.

 -- ContentInfo of type 'envelopedData'
 ContentInfo ::= SEQUENCE {
 contentType envelopedData,
 content EnvelopedData }

 EnvelopedData ::= SEQUENCE {
 version Version,
 recipientInfos RecipientInfos,
 encryptedContentInfo EncryptedContentInfo }

 RecipientInfos ::= SET OF RecipientInfo

 RecipientInfo ::= SEQUENCE {
 version Version,
 issuerAndSerialNumber IssuerAndSerialNumber,
 keyEncryptionAlgorithm KeyEncryptionAlgorithmIdentifier,
 encryptedKey EncryptedKey }

 EncryptedContentInfo ::= SEQUENCE {
 contentType ContentType,
 contentEncryptionAlgorithm
 ContentEncryptionAlgorithmIdentifier,
 encryptedContent
 [0] IMPLICIT EncryptedContent OPTIONAL }

 EncryptedKey ::= OCTET STRING -- content encryption key

 EncryptedContent ::= OCTET STRING -- encryption of Protected-body

5.3.2 SignedData

 The authorization fields, encapsulated in 'auth-data', needs to be
 signed by the client before it is ready for envelopment. The
 result of this signing operation is 'Protected-body'. PKCS #7
 provides a framework for signing, which is used here. Therefore,
 we have another instance of 'ContentInfo'; but this time
 it takes on the content-type of 'SignedData'.

 Protected-body ::= SEQUENCE {
 randomKey OCTET STRING,
 contentInfo ContentInfo -- of type 'signedData'
 }

 randomKey A randomly generated one-time key. This key is used
 by the server to encrypt the ciphertext portion of
 PKTGS-REP in section 5.4. This field also serves as
 the nonce for PKTGS-REQ.

 contentInfo This second instance of 'ContentInfo' is used here to
 declare the object 'SignedData', as required by PKCS #7.

 -- ContentInfo of type 'signedData'
 ContentInfo ::= SEQUENCE {
 contentType signedData,
 content SignedData }

 SignedData ::= SEQUENCE {
 version Version,
 digestAlgorithms DigestAlgorithmIdentifiers,
 contentInfo ContentInfo, -- of type 'data'
 certificates
 [0] IMPLICIT ExtendedCertificatesAndCertificates
 OPTIONAL, -- MANDATORY in this context
 crls [1] IMPLICIT CertificateRevocationLists OPTIONAL,
 signerInfos SignerInfos }

 A complete description of 'SignedData' can again be found in
 [PKCS7]. It is worthwhile to note that the actual message digest
 of this signature can be found under the field 'signerInfos'.

 Note that the client's certificate must be included in this

 construct, even though it is defined as an optional field in
 PKCS #7. The client's certificate is mandatory here for the
 signature verification process. Appendix D offers a brief
 discussion of the rationale behind this requirement.

 The input to be signed is a third instance of 'ContentInfo', this
 time simply of type 'data'.

 -- ContentInfo of type 'data'
 ContentInfo ::= SEQUENCE {
 contentType data,
 content auth-data OPTIONAL -- not present
 }

 auth-data ::= SEQUENCE {
 randomKey OCTET STRING,
 etype SEQUENCE OF INTEGER,
 srealm Realm,
 sname PrincipalName,
 sPKeyInfo SubjectPublicKeyInfo,
 from KerberosTime OPTIONAL,
 till KerberosTime,
 rtime KerberosTime OPTIONAL,
 authtime KerberosTime
 }

 The field 'randomKey' is identical to that found earlier in
 'Protected-body'; the fields 'etype', 'srealm', 'sname', 'from',
 'till', 'rtime' and 'authtime' are identical to those fields found
 in the plaintext of PKTGS-REQ. All of the above fields are
 included here for signing purposes only. The only new field is:

 sPKeyInfo the server's public key which is retrieved by the client
 from the server's certificate found in SCERT-REP.

 It is important to note that the 'content' field pointing to
 'auth-data' is actually a null field. PKCS #7 allows this field to
 be not present when the content is supplied through other means. In
 this case, 'etype', 'srealm', 'sname', 'from', 'till', 'rtime',
 'authtime' are available in the plaintext portion of PKTGS-REQ;
 'randomKey' can be retrieved from 'Protected-body'; and the server
 can retrieve 'sPKeyInfo' from its own public-key certificate.

 There is no advantage from the point of view of either security or
 privacy to encrypt the fields 'etype', 'srealm', 'sname', 'from',
 'till', 'rtime' or 'authtime', as long as the integrity of these
 fields are guaranteed by the signature. The 'sname' and 'srealm'
 fields must be in the clear so that the listener process receiving
 the PKTGS-REQ message knows for which principal the message is

 intended in the event that multiple principals are served from the
 same server port. Processing speed is enhanced by limiting the
 enveloped data to the minimum which needs to be protected. The
 client's certificate is encrypted to protect the privacy of the
 client who is attempting to communicate with this server.

5.4 PKTGS-REP

 The server, in its ticket granting service capacity, returns a
 PKTGS-REP message. This message is similar to the TGS-REP message
 of traditional Kerberos, which is defined in Section 5.4.2 of
 [rfc1510].

 This message, like the TGS-REP, consists of the ticket and an
 encrypted part, the latter of which includes the session key 'key'
 which will be used by the client to generate the authenticator in
 AP-REQ.

 The fields 'crealm' and 'cname' are moved from the plaintext
 portion of the message into the encrypted part to protect client
 privacy. Discussion of the merits of this change is warranted.
 On the one hand, except for multi-user hosts, client identity can
 often be inferred from the IP address. Moreover, encrypting
 'cname' requires the use of the client port address to match the
 returning PKTGS-REP to the correct PKTGS-REQ. On the other hand,
 this change does prevent a network observer from being able to
 track session requests between identifiable client and server
 pairs, as is the case with Kerberos V5.

 PKTGS-REP ::= SEQUENCE {
 pvno INTEGER,
 msg-type INTEGER,
 padata SEQUENCE OF PA-DATA OPTIONAL,
 ticket Ticket,
 enc-part EncryptedData
 -- of instance 'PKTGS-EncPart'
 }

 All of the fields are as described in Section 5.4.2 of [rfc1510].

 enc-part This field is a place holder for the ciphertext and
 related information that forms the encrypted part of a
 message. The description of the encrypted part of the
 message follows each appearance of this field. The
 encrypted part is encoded as described in section 6.1 of
 [rfc1510]. The key used to encrypt this part is
 'randomKey' "Kr" extracted from PKTGS-REQ.

https://datatracker.ietf.org/doc/html/rfc1510#section-5.4.2
https://datatracker.ietf.org/doc/html/rfc1510#section-5.4.2
https://datatracker.ietf.org/doc/html/rfc1510#section-5.4.2
https://datatracker.ietf.org/doc/html/rfc1510#section-6.1
https://datatracker.ietf.org/doc/html/rfc1510#section-6.1

 PKTGS-EncPart ::= SEQUENCE {
 key EncryptionKey,
 last-req LastReq,
 randomKey OCTET STRING OPTIONAL,
 key-expiration KerberosTime OPTIONAL,
 flags TicketFlags,
 authtime KerberosTime,
 starttime KerberosTime OPTIONAL,
 endtime KerberosTime,
 renew-till KerberosTime OPTIONAL,
 srealm Realm,
 sname PrincipalName,
 caddr HostAddresses OPTIONAL,
 crealm Realm,
 cname PrincipalName
 }

 All of the fields above are as described in Section 5.4.2 of
 [rfc1510].

 The 'nonce' field found in KDC-REP is substituted by the
 'randomKey' field here, which serves the same function. In
 reality, this field is redundant since the entire PKTGS-EncPart is
 already encrypted using this one-time 'randomKey'.

 From this point on, all operations can proceed per normal Kerberos
 procedures.

6. Definition of New Message Types

 New and appropriate application numbers need to be assigned to the
 new message types described in this document, namely SCERT-REQ,
 SCERT-REP, PKTGS-REQ and PKTGS-REP.

7. References

 [Bra96] S.H. Brackin: An Interface Specification Language for
 Cryptographic Protocols and Its Translation into HOL.
 Submitted to the New Security Paradigm Workshop, Lake
 Arrowhead, CA, September 16-19, 1996.

 [CTS95] B. Cox, J.D. Tygar, M. Sirbu: NetBill Security and
 Transaction Protocol. Proceedings of the USENIX
 Workshop on Electronic Commerce, July 1995.

 [PKCS7] RSA Laboratories. PKCS #7: Cryptographic Message Syntax
 Standard. Version 1.5, November 1993.

 [rfc1510] J. Kohl, C. Neuman. RFC 1510: The Kerberos

https://datatracker.ietf.org/doc/html/rfc1510#section-5.4.2
https://datatracker.ietf.org/doc/html/rfc1510#section-5.4.2
https://datatracker.ietf.org/doc/html/rfc1510

 Authentication Service (v5). September 1993.

 [Sch95] B. Schneier, Applied Cryptography, 2nd Ed. 1995.

 [X509] CCITT. Recommendation X.509: The Directory
 Authentication Framework. 1988.

8. Security Concerns

 Security issues are discussed throughout this document.

9. Expiration

 This Internet-Draft expires on November 11, 1996.

10. Authors' Addresses

 Marvin Sirbu
 Information Networking Institute
 Carnegie Mellon University
 Pittsburgh, PA 15213-3890
 (412)268-3436
 Email: sirbu@cmu.edu

 John Chung-I Chuang
 Carnegie Mellon University
 Pittsburgh, PA 15213-3890
 (412)268-5618
 Email: chuang+@cmu.edu

Appendix A: Sample ISL Specification for PK Kerberos Protocol
 (simplified)

 DEFINITIONS:
 PRINCIPALS: C, S, CA;
 SYMMETRIC KEYS: Kr, Kcs, Ks;
 PUBLIC KEYS: PKC, PKS, PKCA;
 PRIVATE KEYS: ^PKC, ^PKS, ^PKCA;
 OTHER: Ts1, Ts2, Ts3, Tsc, Tss;
 ENCRYPT FUNCTIONS: des, rsa;
 HASH FUNCTIONS: MD5;
 des WITH ANYKEY HASINVERSE des WITH ANYKEY;
 rsa WITH ^PKCA HASINVERSE rsa WITH PKCA;
 rsa WITH ^PKC HASINVERSE rsa WITH PKC;
 rsa WITH ^PKS HASINVERSE rsa WITH PKS;
 rsa WITH PKCA HASINVERSE rsa WITH ^PKCA;
 rsa WITH PKC HASINVERSE rsa WITH ^PKC;
 rsa WITH PKS HASINVERSE rsa WITH ^PKS;

 INITIALCONDITIONS:
 CA Received C, S, CA, Tsc, Tss, PKC, PKS, ^PKCA, PKCA, rsa, MD5;
 CA Believes (PublicKey CA rsa PKCA; PrivateKey CA rsa ^PKCA;
 PublicKey S rsa PKS; PublicKey C rsa PKC;
 Fresh Tss; Fresh Tsc
);
 C Received C, S, CA, Kr, Ts1, Ts3, ^PKC, PKCA, rsa, des, MD5;
 C Received [CA, Tsc, C, PKC](MD5,rsa)(^PKCA) ||
 (PublicKey C rsa PKC) From CA;
 C Believes (PublicKey CA rsa PKCA; PublicKey C rsa PKC;
 PrivateKey C rsa ^PKC; SharedSecret C S Kr;
 Fresh Ts1; Fresh Ts2; Fresh Ts3; Fresh Tsb;
 C Recognizes C; C Recognizes S; C Recognizes CA;
 Trustworthy CA; Trustworthy S
);
 S Received S, Ks, Kcs, Ts2, PKCA, ^PKS, rsa, des, MD5;
 S Received [CA, Tss, S, PKS](MD5,rsa)(^PKCA) ||
 (PublicKey S rsa PKS) From CA;
 S Believes (PublicKey S rsa PKS; PrivateKey S rsa ^PKS;
 PublicKey CA rsa PKCA;
 SharedSecret S S Ks; SharedSecret C S Kcs;
 Fresh Ts1; Fresh Ts2; Fresh Ts3; Fresh Tsc;
 S Recognizes C; S Recognizes S; S Recognizes CA;
 Trustworthy CA; Trustworthy C
);

 PROTOCOL:
 1. C -> CA: S;
 2. CA -> C: [CA,Tss,S,PKS](MD5,rsa)(^PKCA)||(PublicKey S rsa PKS);
 3. C -> S: S, Ts1,
 {Kr, C,
 [CA,Tsc,C,PKC](MD5,rsa)(^PKCA)||(PublicKey C rsa PKC),
 {S, Ts1, Kr,
 [CA,Tss,S,PKS](MD5,rsa)(^PKCA)||(PublicKey S rsa PKS)
 }(MD5,rsa)(^PKC)
 }rsa(PKS)||(SharedSecret C S Kr);
 4. S -> C: S, {Kcs,C,Ts2}des(Ks), {C,S,Kr,Kcs,Ts2}des(Kr)||
 (SharedSecret C S Kcs);
 5. C -> S: S, {Kcs,C,Ts2}des(Ks), {C,Ts3}des(Kcs)||
 (SharedSecret C S Kcs);

 GOALS:
 1. C Believes (PublicKey S rsa PKS);
 2. S Believes (PublicKey C rsa PKC);
 3. S Possesses Kr;
 S Believes (SharedSecret C S Kr);
 S Believes (C Possesses Kr);
 S Believes (C Believes (SharedSecret C S Kr));
 4. C Possesses Kcs;
 C Believes (SharedSecret C S Kcs);

 C Believes (S Possesses Kcs);
 C Believes (S Believes (SharedSecret C S Kcs));
 5. S Believes (C Possesses Kcs);
 S Believes (C Believes (SharedSecret C S Kcs));

Appendix B: ASN.1 Notation for 'Certificate' as specified in Annex G
 of X.509.

 Certificate :: = SIGNED SEQUENCE{
 version[0] Version DEFAULT 1988,
 serialNumber SerialNumber,
 signature AlgorithmIdentifier,
 issuer Name,
 validity Validity,
 subject Name,
 subjectPublicKeyInfo SubjectPublicKeyInfo
 }

 Version ::= INTEGER {1988(0)}

 SerialNumber ::= INTEGER

 Validity ::= SEQUENCE{
 notBefore UTCTime
 notAfter UTCTime
 }

 SubjectPublicKeyInfo ::= SEQUENCE{
 algorithm AlgorithmIdentifier
 subjectPublicKey BIT STRING
 }

 AlgorithmIdentifier ::= SEQUENCE{
 algorithm OBJECT IDENTIFIER,
 parameters ANY DEFINED BY algorithm OPTIONAL
 }

 SIGNED MACRO :: =
 BEGIN
 TYPE NOTATION ::= type (ToBeSigned)
 VALUE NOTATION ::= value(VALUE
 SEQUENCE{
 ToBeSigned,
 AlgorithmIdentifier,
 -- of the algorithm used to generate the signature
 ENCRYPTED OCTET STRING
 -- where the octet string is the result
 -- of the hashing of the value of
 -- "ToBeSigned"--
 }

)
 END -- of SIGNED

Appendix C: PKCS #7 Definition for 'ContentInfo'

 'ContentInfo' is a general data type defined in, and exported by
 PKCS #7 for use in conjunction with operations such as enveloping
 and signing. It is used as a "wrapper" for calling specific data
 types such as 'signedData' and 'envelopedData', which themselves
 are not exported from PKCS #7. Nesting is permitted explicitly by
 the recursive nature of the 'ContentInfo' syntax.

 ContentInfo ::= SEQUENCE{
 caddr[11] HostAddresses OPTIONAL
 contentType ContentType,
 content[0] EXPLICIT ANY DEFINED BY contentType OPTIONAL
 }

 contentType
 an object identifier, with six content types defined
 in PKCS #7, Section 14: data, signedData, envelopedData,
 signedAndEnvelopedData, digestedData, and encryptedData.

 content
 the content field is optional, and if the field is
 not present, its intended value must be supplied by other
 means. Its type is defined along with the object identifier
 for contentType.

Appendix D: Discussion on Mandatory Inclusion of 'ccert' in PKTGS-REQ

 In this proposal, inclusion of the client's certificate, ccert, is
 mandatory. However there are several situations where inclusion of
 the client certificate might be superfluous.

 1. the server intends to check with the CA every time to assure
 the certificate is fresh and not revoked.
 2. the intended server is the CA.

 Thus, one could consider making the inclusion of ccert in the
 PKTGS-REQ optional. If the inclusion of ccert is optional, three
 additional changes to the protocol are required.

 1. Inclusion of a TGS-REP message which says, in effect, "please
 resubmit this request including the certificate.

 2. The inclusion of a flag in the SCERT-REP message indicating the
 server's preference for receiving or not receiving the
 certificate. The use of such a flag can dramatically reduce

 the number of rejected PKTGS-REQ messages due to failure to
 include ccert.

 3. If ccert is not included in the PKTGS-REQ, than the following
 fields must be included in its place so that the server can
 obtain the correct certificate:
 - cname and crealm
 - issuer of the client's certificate
 - serial number of the client's certificate.

 Actually, cname and crealm are redundant.

 Both for simplicity and because we believe that the costs of
 sending a superfluous certificate on occasion are outweighed by the
 costs likely to be incurred due to retransmission of PKTGS-REQ
 messages because a certificate was not originally included, we have
 chosen to make inclusion of ccert mandatory. We welcome further
 discussion on this issue.

