Network Working Group J. Smarr Toc

Internet-Draft Plaxo
Intended status: December 03,
Informational 2008

Expires: June 6, 2009

Portable Contacts: A Common Format and Protocol for Accessing Contacts
draft-smarr-vcarddav-portable-contacts-00

Status of this Memo

By submitting this Internet-Draft, each author represents that any
applicable patent or other IPR claims of which he or she is aware have
been or will be disclosed, and any of which he or she becomes aware
will be disclosed, in accordance with Section 6 of BCP 79.
Internet-Drafts are working documents of the Internet Engineering Task
Force (IETF), its areas, and its working groups. Note that other groups
may also distribute working documents as Internet-Drafts.
Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference material
or to cite them other than as “work in progress.”

The list of current Internet-Drafts can be accessed at http://
www.ietf.org/ietf/1id-abstracts. txt.

The 1list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

This Internet-Draft will expire on June 6, 2009.

Abstract

This document specifies Portable Contacts, XML and JSON address book
document formats and an interface for accessing address book and
friends-1list information over HTTP.

Table of Contents

Introduction

1.1. Goals

1.2. Approach

1.3. Feedback

Notational Conventions

Definitions

Workflow Overview

Discovery

Invocation

6.1. Authentication and Authorization

6.1.1. Delegated Authorization

6.1.2. Direct Authorization

6.1.3. Available Authorization Methods
Additional Path Information
Query Parameters

=

bl baibal bt

6.2.
6.3.

http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Filtering
Sorting
Pagination
. Presentation
.5. Declining to honor query parameters
6.4. Response Format

OO0
WWwWw|w
ArIWIN[E

6.5. Error Codes
7. Contact Schema
7.1. Structure
7.2. entry Element
7.2.1. Singular Fields
7.2.2. Plural Fields
7.3. name Element
7.4. address Element
7.5. organization Element
7.6. account Element
8. TIANA Considerations
9. Security Considerations

Appendix A. Example
Appendix B. Compatibility with OpenSocial
10. References

10.1. Normative References

10.2. Informative References

§ Author's Address
§ Intellectual Property and Copyright Statements
1. Introduction TOC

The Portable Contacts specification is designed to make it easier for
developers to give their users a secure way to access the address books
and friends lists they have built up all over the web. Specifically, it
seeks to create a common access pattern and contact schema that any
site can provide, well-specified authentication and access rules,
standard libraries that can work with any site, and absolutely minimal
complexity, with the lightest possible toolchain requirements for
developers.

By far the easiest way to start understanding this spec is to jump to
the example in the Appendix. The format and meaning of the response
should be readily apparent, and the majority of this document is merely
an attempt to formalize the details of what should be relatively clear
from this example.

This API defines a language- and platform- neutral protocol for
Consumers to request address book, profile, and friends-list
information from Service Providers. As a protocol, it is intended to be
easy to understand and implement, either as a Service Provider or
Consumer, using any language or platform of choice. It is also intended
to be implemented by both individuals and small services as well as
large providers, in any case where a service contains data about who a
user knows and wishes to make that information portable, under the
user's control.

While there are currently standards for describing contact info (such
as vCard), these standards do not specify how to discover, access, and
manipulate this information, and they do not capture the full range of
information typically found in modern address book and social

networking applications. Several large companies have also released
their own non-standard APIs for accessing and interacting with contact
information, increasing the burden on developers and Consumers who wish
to support most or all Service Providers. Nor do these APIs inform
other providers as to how they should construct similar APIs. Thus
Portable Contacts is an attempt to specify a complete, modern, and
straight-forward recipe for Service Providers and Consumers of all
sizes to make available and consume contact data in a standardized way.

1.1. Goals TOC

The goal of Portable Contacts is to make it easier for developers to
give their users a secure way to access the address books and friends
lists they have built up all over the web. Specifically, we seek to
create:

*A common access pattern and contact schema that any Service
Provider can implement

*Well-specified authorization and access rules

*Free and open source libraries in many languages for most popular
platforms

*Community-sourced support, documentation, and collaborative tools

*and absolutely minimal complexity, with the lightest possible
toolchain requirements for developers.

A measure of our success will be the elimination of the "password anti-
pattern," by making it far easier to implement Portable Contacts than
to engage in scraping, as well as a dramatic increase in the number of
sites that both provide and consume who-you-know data.

1.2. Approach TOC

Our design is focused around ease of adoption, which means a few
things:

1. First, our emphasis is on simplicity of design and targeted use
cases, keeping our scope intentionally narrow at the outset.
For example, version 1 is simply about access, and defers for
now on the more complex issues around update and sync.

2. Second, we're taking a modern approach to who-you-know data by
unifying traditional contact information and social network
data, in order to properly represent the current diversity of
the social web ecosystem.

3. Third, we're reusing existing standards wherever possible,
including vCard, OpenSocial, XRDS-Simple, OAuth, etc.

4. And lastly, we're designing something that should be easy for
current service providers to adopt. We started with a review of
all the major existing contacts APIs and targeted common
capabilities that they all share and provide. We believe this
pragmatic balance is the best and quickest way to achieve our
intended goal of widespread adoption.

1.3. Feedback TOC

The Portable Contact specification is currently being developed on the
http://groups.google.com/group/portablecontacts mailing list, with
additional feedback coming from the OpenSocial community. Feedback can
be posted to the Portable Contacts list or directly to the author. If
you encounter any problems with joining the list, please contact the
author.

2. Notational Conventions TOC

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [RFC2119] (Bradner, S.,
“Key words for use in RFCs to Indicate Requirement Levels,”

March 1997.).

3. Definitions TOC

Contact: A record describing information about a particular person
or entity, consisting of contact information (e.g. name, e-mail
addresses, phone numbers) and other descriptive information, as
is typically found in address book and social networking
applications.

Service Provider: A web application that provides Contact
information via the Portable Contacts protocol.

Consumer: A website or application that uses the Portable Contacts
protocol to request contacts managed by the Service Provider.

Base URL: The root endpoint URL specified by the Service Provider
during Discovery and used to make requests. Consumers MAY append

additional path information and query string parameters to this
URL as part of the request.

Singular Field: A contact field that can appear at most once per
contact, e.g. displayName or gender.

Plural Field: A contact field that can appear multiple times per
contact, e.g. emails or tags.

Simple Field A Singular Field or Plural Field whose value is a
single string attribute (see Section 7.1 (Structure)).

Complex Field A Singular Field or Plural Field whose value is an
object containing multiple sub-field attributes (see Section 7.1
(Structure)).

Canonical Value: Specified string values for string-valued contact
fields that represent common values in a canonical form, e.g.
"male" and "female" for gender. Service Providers SHOULD conform
to Canonical Values if appropriate, but MAY deviate if they need
to represent additional values.

Primary Sub-Value: The sub-field in a Complex Field that should be
used when sorting or filtering by that field. Unless otherwise
specified, the value sub-field is always the Primary Sub-Field.

4. Workflow Overview TOC

A Consumer wishing to access a user's data via Portable Contacts must
start with an Initial Identifier for the Service Provider containing
the user's data, usually provided by the user. In many cases, this may
be the domain name of the Service Provider's web site, such as
sample.site.org, but may be a more specific URL, such as the OpenID
identifier of the user, if available. Consumers then perform Discovery
on the Initial Identifier to determine where the Portable Contacts
endpoint for this Service Provider resides. If successful, the Consumer
may then attempt to request information from that endpoint. If the
endpoint contains private data, the Service Provider will return an
authorization challenge, and the Consumer must then guide the user
through an appropriate authorization flow to obtain the credentials
necessary to access this private data. Upon successful authorization,
the Consumer may request data from the Portable Contacts endpoint using
these authorization credentials. Whether accessing public or private
data, Consumers may request a specific subset of the user's data using
standard Query Parameters. Upon a successful request, the data is
returned in the response, and the Consumer may then parse the response
data and use it as desired. The following sections detail each of these
steps.

TOC

5. Discovery

Portable Contacts API endpoint is discoverable from the domain root
using [XRDS-Simple] (Hammer-Lahav, E., “XRDS-Simple 1.0,"” .)
(previously known as YADIS). The API is identified by the Service Type
http://portablecontacts.net/spec/1.0 and the corresponding URI is the
Base URL for the API. The Base URL MUST NOT contain any query string,
as additional path information and query string variables MAY be
appended by Consumers as part of forming the request (as described in
detail below).

An example XRDS-Simple document describing the availability and
location of a Portable Contacts endpoint might look like this:

<XRDS xmlns="xri://$xrds">
<XRD xmlns:simple="http://xrds-simple.net/core/1.0"
xmlns="xri://$XRD*($v*2.0)" version="2.0">
<Type>xri://$xrds*simple</Type>
<Service>
<Type>http://portablecontacts.net/spec/1.0</Type>
<URI>http://sample.site.org/path/to/api/</URI>
</Service>
</XRD>
</XRDS>

In addition to discovering the endpoint itself, Service Providers using
OAuth to protect responses MUST also support OAuth Discovery, as
described in Section 6.1 (Authentication and Authorization).

6. Invocation TOC

All requests to the Service Provider are made as HTTP GET operations on
a URL deriving from the Base URL specified in Section 5 (Discovery).
Consumers MAY append additional path information and/or query string
parameters to the Base URL as part of the request, as specified in
Section 6.3 (Query Parameters). Additionally, authentication
information MAY be sent via POST data or additional HTTP headers in the
request, as specified in Section 6.1 (Authentication and
Authorization). Responses are returned in the body of the HTTP
response, formatted as JSON or XML, depending on what is requested.
Response and error codes SHOULD be transmitted via the HTTP status code
of the response (if possible), and SHOULD also be specified in the body
of the response, as described in Section 6.4 (Response Format) and
Section 6.5 (Error Codes). Since the API endpoint is dynamic (and not
serving static content), Consumers MUST NOT interpret any cache headers
in the response as having meaning concerning when the same URL request
might return a different response upon subsequent invocation.

6.1. Authentication and Authorization TOC

The data returned by a Portable Contacts endpoint MAY contain public
data, or it MAY contain private data. If the data returned is public,
no authentication or authorization is required. In most cases however,

the data returned is not public, and Service Providers SHOULD ensure
that the user has given prior consent, either explicitly or implicitly,
for their information to be released by this API. Typically this is
done by Consumers obtaining either Direct Authorization (with raw
credentials, for example the user's username and password) or Delegated
Authorization (with an access token obtained out-of-band by the user,
and given to the Consumer to present as part of the request). Portable
Contacts specifies standard mechanisms for both types of authorization,
so that Consumers may be able to obtain private data on a user's behalf
from Service Providers in an automated and consistent fashion.
Regardless of the Authorization method used, the context of the request
(i.e. the user for whom data is being requested) MUST be inferred by
Service Providers from the Base URL and the authorization credentials
provided. If public data is being accessed (and no authorization is
provided), the Base URL MUST contain enough information for Service
Providers to know which data to return, but if private data is being
accessed (and authorization is provided), the same Base URL MAY return
information for different users depending on the authorization
credentials provided.

6.1.1. Delegated Authorization TOC

Service Providers wishing to provide Delegated Authorization MUST
support [OAuth Core 1.0] (OAuth, OCW., “OAuth Core 1.0,” .) as an OAuth
Service Provider, and MAY also support additional Delegated
Authorization mechanisms, if they choose. Service Providers supporting
OAuth MUST also support [OAuth Discovery] (Eran Hammer-Lahav, E.,
“OAuth Discovery 1.0,” .) to facilitate automatic discovery of
authorization endpoints for Consumers. Service Providers SHOULD provide
a mechanism for Consumers to automatically obtain a Consumer Key and
Consumer Secret, but MAY require this to be done out-of-band.

6.1.2. Direct Authorization TOC

Service Providers wishing to provide Direct Authorization MUST support
HTTP Basic Access Authentication [RFC2617] (Franks, J., Hallam-Baker,
P., Hostetler, J., Lawrence, S., Leach, P., Luotonen, A., and L.
Stewart, “HTTP Authentication: Basic and Digest Access Authentication,”
June 1999.), and MAY also support additional Direct Authorization
mechanisms, if they choose. In addition to being a well-established
mechanism for Direct Authorization, HTTP Basic has the added benefit of
being understood by most Web Browsers, and can prompt users to enter
their credentials as part of accessing a resource protected in this
manner. There are also convenient ways of providing and parsing HTTP
Basic credentials in popular tools and libraries like curl and PHP.

TOC

6.1.3. Available Authorization Methods

Service Providers that provide access to private data MAY choose not to
support either Direct Authorization or Delegated Authorization,
depending on their security requirements, but they MUST support either
OAuth or HTTP Basic auth if they require any Authorization. When
accessing a Portable Contacts endpoint, if sufficient authorization
credentials are not provided, the Service Provider SHOULD return a 401
Unauthorized response, and SHOULD provide the available Authorization
mechanisms available by including Www-Authenticate headers in the
response for each type of Authorization method supported (as defined in
[RFC2616] (Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter,
L., Leach, P., and T. Berners-Lee, “Hypertext Transfer Protocol --
HTTP/1.1,” June 1999.), section 14.47. Consumers will then be able to
recognize that the API is a protected resource and initiate the proper
Authorization process needed to obtain the appropriate credentials. An
example set of WwWw-Authenticate headers returned by a Service Provider
that supports both OAuth and HTTP Basic might look like this. Note that
the realm value is intended to be an opaque string that merely defines
a shared label for resources that share the same authorization
requirements.

WWw-Authenticate: OAuth realm="sample.site.org"
WwWW-Authenticate: Basic realm="sample.site.org"

If Service Providers wish to make some response data publicly available
and also provide additional info given the proper authorization
credentials, they SHOULD provide a 200 OK response to requests without
authorization with a WwwW-Authenticate header in the response indicating
that additional info is available via the specified authorization
mechanisms.

6.2. Additional Path Information TOC

A request using the Base URL alone MUST yield a result, assuming that
adequate authorization credentials are provided. In addition, Consumers
MAY append additional path information to the Base URL to request more
specific information. Service Providers MUST recognize the following
additional path information when appended to the Base URL, and MUST
return the corresponding data:

*/@me/@all -- Return all contact info (equivalent to providing no
additional path info)

*/@me/@all/{id} -- Only return contact info for the contact whose
id value is equal to the provided {id}, if such a contact exists.
In this case, the response format is the same as when requesting
all contacts, but any contacts not matching the requested ID MUST
be filtered out of the result list by the Service Provider

*/@me/@self -- Return contact info for the owner of this
information, i.e. the user on whose behalf this request is being
made. In this case, the response format is the same as when
requesting all contacts, but any contacts not matching the

requested ID MUST be filtered out of the result list by the
Service Provider.

6.3. Query Parameters TOC

Portable Contacts defines a standard set of operations that can be used
to filter, sort, and paginate response results. The operations are
specified by adding query parameter to the Base URL, either in the
query string or as HTTP POST data. Providers MAY support additional
query parameters not specified here, and Providers SHOULD ignore any
query parameters they don't recognize.

6.3.1. Filtering TOC

Filtering is used to limit the request results to Contacts that match
given criteria. Content filtering is accomplished by combining three
request parameters:

filterBy: Specifies the field name to filter by. If the specified
field is a Plural Field, the Contact SHALL match if any of the
instances of the given field match the specified criterion (e.g.
if a contact has multiple emails values, only one has to match
for the entire Contact to match). If a Simple Field is specified,
its value must match the specified filterValue according to the
specified filterOp. If a Complex Field is specified, its Primary
Sub-Field must match. If the specified field is not a direct
child of the entry element, the full path MUST be specified using
the '.' character as separator. For example, to filter by gender
the parameter value is gender and to filter by first name, the
parameter value is name.givenName.

filterOp: Specifies the comparison method used to evaluate the
field value with the value of the filter criterion. Providers
SHOULD support the following values:

*equals: the two values must be identical strings.

*contains: the entire filterValue must be a substring of the
Contact field value.

*startswith: the entire filterValue must be a substring of
the Contact field value, starting at the beginning of the
field value. This criterion is satisfied if the two strings
are equal.

*present: a Contact matches the criterion if the field
specified by filterBy has a non-empty value, or if it
contains a non-empty node for complex fields.

Providers MAY support additional filter operations if they
choose. Providers MUST decline to filter results if the specified
filter operation is not recognized (as per Section 6.3.5
(Declining to honor query parameters)).

filtervValue: Specifies the value to filter by, using the comparison
method defined by filterOp.

In addition, requests can filter content based on their update
timestamp:

updatedSince: Returns only contacts that have been modified on or
after the given time, specified as an xs:dateTime. The filter is
based on the value of the updated field, and can be used
independently of other filters or combined. It enables a basic
syndication pattern when accessing the same data over time. The
first API call returns all data, which can be stored locally.
Subsequent API calls can specify updatedSince with the time of
the last API call, so that only contacts that have been added or
modified since the last API call will be returned.

Here are a few illustrative examples of filtering matches with
filterBy, filterOp, and filterValue. In each case, assume the following
two contacts would be returned if no filtering parameters were
provided:

{
llid" : lllll,
"displayName": "Chris Messina",
"urls": [
{ "value": "http://factoryjoe.com/blog", "type": "blog" }
]
+
{
llidll: ll2lI,
"displayName": "Joseph Smarr",
"emails": [
{ "value": "joseph@plaxo.com", "type": "work", "primary": "true" },
{ "value": "jsmarr@gmail.com", "type": "home" }
1
}

Given the parameters
filterBy=displayName&filterOp=startswith&filterValue=Chr, only the first
contact (with id=1) would match and be returned. However, with
parameters filterBy=displayName&filterOp=present, both contacts would be
returned. Given the parameters
filterBy=email&filterOp=contains&filterValue=plaxo.com, only the second
contact (with id=2) would match, as would it be the only contact to
match given the parameters filterBy=email&filterOp=present.

If a request specifies a filterValue but no filterBy or filterOp, it is
up to the Provider how to interpret this filter request. Providers MAY
choose to default to filtering by a given field (e.g. displayName);

they MAY choose to implement a custom, Provider-specific query syntax
for filterValue in this case; or they MAY choose to reject requests of
this type. In general, if Consumers want to request specific behavior

from Providers, they should do so by being explicit in their use of
query parameters.

6.3.2. Sorting TOC

Sorting allows requests to specify the order in which contacts are
returned.

sortBy Specifies the field name whose value SHALL be used to order
the returned Contacts. The sort order is determine by the
sortOrder parameter. If sortBy is a Singular Field, contacts are
sorted according to that field's value; if it's a Plural Field,
contacts are sorted by the Value (or Major Value, if it's a
Complex Field, see Section 7 (Contact Schema)) of the field
marked with "primary": "true", if any, or else the first value in
the list, if any, or else they are sorted last if the given
contact has no data for the given field.

sortOrder The order in which the sortBy parameter is applied.
Allowed values are ascending and descending. If a value for
sortBy is provided and no sortOrder is specifies, the sortOrder
SHALL default to ascending. Sort order is expected to be case-
insensitive Unicode alphabetic sort order, with no specific
locale implied.

6.3.3. Pagination TOC

The pagination parameters can be used together to "page through" a
large number of results in manageable chunks:

startIndex: Specifies the offset of the first result to be returned
with respect to the list of contacts that would be returned if no
startIndex were provided. For instance, if in a given request 10
contacts would normally be provided, if startIndex is 7 and no
count is specified, then only the last 3 contacts in that list
would be returned (contacts are zero-indexed). If startIndex is
greater than or equal to the total number of results that would
be returned, no contacts are returned. Value MUST be a non-
negative integer and defaults to @ if no value is specified.

count: If non-zero, specifies the maximum number of contacts the
Consumer would like the Provider to return at a time. Value MUST
be a non-negative integer and defaults to © if no value is
specified. A count of O means that is up to the Provider to
determine how many contacts to return by default (some Providers
may return all contacts by default; others may return a fixed
default number like 10). Providers SHOULD honor a very large
count value, and SHOULD support returning all contacts at once
when presented with a count request that is larger than the
number of contacts the user has, but Providers MAY choose to

never return more than a Provider-determined maximum number of
contacts per request, if returning all contacts is too
burdensome. In all cases, at most count contacts SHALL be
returned, starting at startIndex and counting up from there. In
each of these cases, Providers MUST indicate the total number of
contacts they chose to return in the response using the
itemsPerPage response element (see Section 6.4 (Response
Format)).

For instance, on an initial query, specifying startIndex=0&count=10 will
return only the first 10 results. The total number of possible results
is indicated by the totalResults field of results, so the client knows
how many "pages" of results exist. A subsequent query of
startIndex=10&count=10 will return the next 10 results, and so on.

6.3.4. Presentation TOC

Presentation controls the format, makeup, and delivery mechanism for
returning the requested result set:

fields: 1If non-empty, each contact returned SHALL contain only the
fields explicitly requested. Service Provider MAY return a subset
of the requested fields if they are not supported. This field is
used for efficiency when the client only wishes to access a
subset of the fields normally returned in results. Value is a
comma separated list of top level field names (e.g.
id,name,emails,photos) and defaults to an empty list which means
it's up to the Provider which fields to return. Consumers may
request all available fields to be returned by using the special
value @all.

format: Specifies the format in which the response data is
returned. Service Providers MUST support the values json for JSON
(http://json.org) and xml for XML (http://www.w3.0rg/XML/) and
MAY support additional formats if desired. The format defaults to
json if no format is specified. The data structure returned is
equivalent in both formats; the only difference is in the
encoding of the data. Singular Fields are encoded as string key/
value pairs in JSON and tags with text content in XML, e.g.
"field": "value" and <field>value</field> respectively. Plural
Fields and Plural Bundles are encoded as arrays in JSON and
repeated tags in XML, e.g. "fields": ["valuel", "value2"] and
<fields>valuel</fields><fields>value2</fields> respectively.
Nodes with multiple sub-nodes are represented as objects in JSON
and tags with sub-tags in XML, e.g. "field": { "subfieldl":
"valuel", "subfield2": "value2" } and <field><subfieldl>valuel</
subfieldl><subfield2>value2</subfield2></field> respectively.

TOC

6.3.5. Declining to honor query parameters

Providers SHOULD honor all filtering, sorting, and pagination requests
specified via Query Parameters. However, in some instances it may be
too burdensome to comply with a particular request, e.g. because the
Provider does not have an efficient database index set up for a given
field that is requested for filtering or sorting, and is unable to
efficiently fetch all data and post-process the results to honor the
request before returning the response. In such cases, Providers MAY
decline to honor the request (or specific pieces of the request). If
any part of the request is declined, Providers MUST specify which
part(s) of the request were declined in the response, using "sorted":
false, "filtered": false, and/or "updatedSince": false as appropriate.
For efficiency, Providers SHOULD omit these response fields if that
part of the request was successfully performed, or if no such Query
Parameter was specified in the request.

Note that since all of the filtering, sorting, and pagination
operations are designed to reduce the amount of data returned, it is
possible for Consumers to emulate these operations client-side when a
Provider declines to perform them server-side. For instance, filtering
can be accomplished by iterating through each entry returned and
deleting those that do not match the filtering criteria. Thus Consumers
can request these operations to be performed server-side, and Providers
will honor them if possible, and otherwise indicate to Consumers that
they need to be performed client-side, effectively "splitting the
workload" while maintaining consistent semantics.

6.4. Response Format TOC

The structure of the response object returned from a successful request
is as follows. The root element is response, which is shown explicitly
as the root element in XML format, and is the anonymous root object
returned when the format is JSON (i.e. in JSON, the response returned
is the object value of the response node). The response node MUST
contain the following child nodes, and MAY contain additional nodes
that the Service Provider wishes to add to expose additional data. Note
that startIndex, itemsPerPage, and totalResults are based on
[OpenSearch] (Clinton, D., “OpenSearch 1.1,” .). See the Appendix for a
full example.

*startIndex: the index of the first result returned in this
response, relative to the starting index of all results that
would be returned if no startIndex had been requested. In
general, this will be equal to the value requested by the
startIndex, or 0 if no specific startIndex was requested.

*jitemsPerPage: the number of results returned per page in this
response. In general, this will be equal to the count Query
Parameter, but MAY be less if the Service Provider is unwilling
to return as many results per page as requested, or if there are
less than the requested number of results left to return when
starting at the current startIndex. This field MUST be present if
and only if a value for count is specified in the request.

*totalResults: the total number of contacts that would be returned
if there were no startIndex or count specified. This value tells
the Consumer how many total results to expect, regardless of the
current pagination being used, but taking into account the
current filtering options in the request.

*entry: an array of Contact objects, one for each contact matching
the request, as defined in Section 7.2 (entry Element). For
consistency of parsing, if the request could possibly return
multiple contacts (as is normally the case), this value MUST
always be an array of results, even if there happens to be 0 or 1
matching results. If the request is specifically for a single
contact (e.g. because the request contains Additional Path
Information like /@me/@all/{id} or /@me/@self), then entry MUST be
an object containing the single contact returned (i.e. "entry": [
{ /x first contact *x/ }] and "entry": { /x only contact %/ }
respectively).

6.5. Error Codes TOC

The Service Provider MUST return a response code with every response.
Response codes are numeric and conform to existing HTTP response codes
where possible, as defined below. In addition to the response code,
Service Providers SHOULD also provide a human-readable reason that
explains the reason for the response code. This message SHOULD be
intelligible to developers, but MAY be unsuitable for display to end-
users. Clients SHOULD provide their own appropriate error message to
users when encountering an error response.

Service Providers SHOULD conform to the following response codes to
indicate the following situations. Service Providers MAY return
additional codes to indicate additional information, but are
discouraged from doing so and should instead augment the reason text
with existing codes, if possible.

200: OK (response returned successfully)

400: Bad Request (request was malformed or illegal and cannot be
completed)

401: Unauthorized (authentication headers / parameters were invalid
or missing)

404: Not Found (the request points to an object that does not
exist, e.g. to an unknown contact id; note that Service Providers
MUST return a 200 with an empty array of contacts if the request
has filtering parameters that are valid but have no matches)

500: Internal Server Error (un unexpected error occurred during
processing)

503: Service Unavailable (service is temporarily unavailable; this
may be because the Consumer has exceeded their rate-limit of
requests)

7. Contact Schema TOC

The Contact schema defines the containers and attributes used to
deliver an individual Contact or a list of Contacts as requested by the
Consumer. The traditional contact info fields were taken directly from
the vCard spec where possible [RFC2425] (Howes, T., Smith, M., and F.
Dawson, “A MIME Content-Type for Directory Information,”

September 1998.), though instances of vCard's archaic spellings were
modernized (e.g. addresses instead of adr). Even with the spelling
updates, the field mappings remain equivalent, which means it should be
easy to convert Portable Contacts data to and from vCard. By
convention, Singular Fields have singular spelling (e.g. displayName)
and plural fields have plural spelling (e.g. phoneNumbers) to make it
easy to distinguish them.

Each contact returned MUST include the id and displayName fields with
non-empty values, but all other fields are optional, and it is
recognized that not all Service Providers will be able to provide data
for all the supported fields. The field list below is broad so that,
for Service Providers that do support any of these fields, there is a
standard field name available.

7.1. Structure TOC

Each field is defined as either a Singular Field, in which case there
MUST NOT be more than one instance of that field per contact, or as a
Plural Field, in which case any number of instances of that field MAY
be present per contact.

Contact information is formatted using labeled attributes with either
structured or unstructured string data. Each attribute value consists
of one of the following types:

Simple: A single string attribute which MAY specify a REQUIRED data
format or allow any string. A simple field MAY contain Canonical
Values specified, in which case Service Providers SHOULD try to
conform to those values if appropriate, but MAY provide alternate
string values to represent additional values.

Boolean: A special case of a Simple Field with two legal values:
true and false. Values are case-sensitive.

Complex: A multi-value attribute containing any combination of
other attributes. Complex attributes are defined by listing the
child attributes and their types. For most Complex Fields, the
value sub-field contains the Major Value of that field (i.e. the
primary piece of contact information described by that field),
and the other fields provide additional meta-data.

7.2. entry Element TOC

Unless otherwise specified, all fields are optional and of type
xs:string. Also, unless specified, all field values MUST NOT contain
any newline characters (\r or \n).

7.2.1. Singular Fields TOC

id: Unique identifier for the Contact. Each Contact returned MUST
include a non-empty id value. This identifier MUST be unique
across this user's entire set of Contacts, but MAY not be unique
across multiple users' data. It MUST be a stable ID that does not
change when the same contact is returned in subsequent requests.
For instance, an e-mail address is not a good id, because the
same person may use a different e-mail address in the future.
Usually, in internal database ID will be the right choice here,
e.g. "12345",

displayName: The name of this Contact, suitable for display to end-
users. Each Contact returned MUST include a non-empty displayName
value. The name SHOULD be the full name of the Contact being
described if known (e.g. Joseph Smarr or Mr. Joseph Robert Smarr,
Esqg.), but MAY be a username or handle, if that is all that is
available (e.g. jsmarr). The value provided SHOULD be the primary
textual label by which this Contact is normally displayed by the
Service Provider when presenting it to end-users.

name: The broken-out components and fully formatted version of the
contact's real name, as described in Section 7.3 (name Element).

nickname: The casual way to address this Contact in real life, e.g.
"Bob" or "Bobby" instead of "Robert". This field SHOULD NOT be
used to represent a user's username (e.g. jsmarr or daveman692);
the latter should be represented by the preferredUsername field.

published: The date this Contact was first added to the user's
address book or friends list (i.e. the creation date of this
entry). The value MUST be a valid xs:dateTime (e.g.
2008-01-23T04:56:227).

updated: The most recent date the details of this Contact were
updated (i.e. the modified date of this entry). The value MUST be
a valid xd:dateTime (e.g. 2008-01-23T04:56:22Z). If this Contact
has never been modified since its initial creation, the value
MUST be the same as the value of published. Note the updatedSince
Query Parameter described in Section 6.3 (Query Parameters) can
be used to select only contacts whose updated value is equal to
or more recent than a given xs:dateTime. This enables Consumers

to repeatedly access a user's data and only request newly added
or updated contacts since the last access time.

birthday: The birthday of this contact. The value MUST be a valid
xs:date (e.g. 1975-02-14. The year value MAY be set to 0000 when
the age of the Contact is private or the year is not available.

anniversary: The wedding anniversary of this contact. The value
MUST be a valid xs:date (e.g. 1975-02-14. The year value MAY be
set to 0000 when the year is not available.

gender: The gender of this contact. Service Providers SHOULD return
one of the following Canonical Values, if appropriate: male,
female, or undisclosed, and MAY return a different value if it is
not covered by one of these Canonical Values.

note: Notes about this contact, with an unspecified meaning or
usage (normally contact notes by the user about this contact).
This field MAY contain newlines.

preferredUsername: The preferred username of this contact on sites
that ask for a username (e.g. jsmarr or daveman692). This field
may be more useful for describing the owner (i.e. the value when
/@me/@self is requested) than the user's contacts, e.g. Consumers
MAY wish to use this value to pre-populate a username for this
user when signing up for a new service.

utcOffset: The offset from UTC of this Contact's current time zone,
as of the time this response was returned. The value MUST conform
to the offset portion of xs:dateTime, e.g. -08:00. Note that this
value MAY change over time due to daylight saving time, and is
thus meant to signify only the current value of the user's
timezone offset.

connected: Boolean value indicating whether the user and this
Contact have established a bi-directionally asserted connection
of some kind on the Service Provider's service. The value MUST be
either true or false. The value MUST be true if and only if there
is at least one value for the relationship field, described
below, and is thus intended as a summary value indicating that
some type of bi-directional relationship exists, for Consumers
that aren't interested in the specific nature of that
relationship. For traditional address books, in which a user
stores information about other contacts without their explicit
acknowledgment, or for services in which users choose to "follow"
other users without requiring mutual consent, this value will
always be false.

The following additional Singular Fields are defined, based on their
specification in OpenSocial [OpenSocial] (Panzer, J., “OpenSocial 0.8.1
RESTful Protocol Specification,” .): aboutMe, bodyType, currentLocation,

drinker, ethnicity, fashion, happiestWhen, humor, livingArrangement,
lookingFor, profileSong, profileVideo, relationshipStatus, religion,
romance, scaredOf, sexualOrientation, smoker, and status.

7.2.2.

Plural Fields TOC

Unless specified otherwise, all Plural Fields have the same three
standard sub-fields:

value: The primary value of this field, e.g. the actual e-mail

address, phone number, or URL. When specifying a sortBy field in
the Query Parameters for a Plural Field, the default meaning is
to sort based on this value sub-field. Each non-empty Plural
Field value MUST contain at least the value sub-field, but all
other sub-fields are optional.

type: The type of field for this instance, usually used to label

the preferred function of the given contact information. Unless
otherwise specified, this string value specifies Canonical Values
of work, home, and other.

primary: A Boolean value indicating whether this instance of the

When r
value
Provid
(e.qg.
NOT re
Field,

Plural Field is the primary or preferred value of for this field,
e.g. the preferred mailing address or primary e-mail address.
Service Providers MUST NOT mark more than one instance of the
same Plural Field as primary="true", and MAY choose not to mark
any fields as primary, if this information is not available. For
efficiency, Service Providers SHOULD NOT mark all non-primary
fields with primary="false", but should instead omit this sub-
field for all non-primary instances.

eturning Plural Fields, Service Providers SHOULD canonicalize the
returned, if appropriate (e.g. for e-mail addresses and URLS).
ers MAY return the same value more than once with different types
the same e-mail address may used for work and home), but SHOULD
turn the same (type, value) combination more than once per Plural
as this complicates processing by the Consumer.

emails: E-mail address for this Contact. The value SHOULD be

canonicalized by the Service Provider, e.g. joseph@plaxo.com
instead of joseph@PLAXO.COM.

urls: URL of a web page relating to this Contact. The value SHOULD

be canonicalized by the Service Provider, e.g. http://
josephsmarr.com/about/ instead of JOSEPHSMARR.COM/about/. In
addition to the standard Canonical Values for type, this field
also defines the additional Canonical Values blog and profile.

phoneNumbers: Phone number for this Contact. No canonical value is

ims:

assumed here. In addition to the standard Canonical Values for
type, this field also defines the additional Canonical Values
mobile, fax, and pager.

Instant messaging address for this Contact. No official
canonicalization rules exist for all instant messaging addresses,
but Service Providers SHOULD remove all whitespace and convert
the address to lowercase, if this is appropriate for the service
this IM address is used for. Instead of the standard Canonical
Values for type, this field defines the following Canonical

Values to represent currently popular IM services: aim, gtalk,
icq, xmpp, msn, skype, qq, and yahoo.

photos: URL of a photo of this contact. The value SHOULD be a
canonicalized URL, and MUST point to an actual image file (e.g. a
GIF, JPEG, or PNG image file) rather than to a web page
containing an image. Service Providers MAY return the same image
at different sizes, though it is recognized that no standard for
describing images of various sizes currently exists. Note that
this field SHOULD NOT be used to send down arbitrary photos taken
by this user, but specifically profile photos of the contact
suitable for display when describing the contact.

tags: A user-defined category or label for this contact, e.g.
"favorite" or "web20". These values SHOULD be case-insensitive,
and there SHOULD NOT be multiple tags provided for a given
contact that differ only in case. Note that this field is a
Simple Field, meaning each instance consists only of a string
value.

relationships: A bi-directionally asserted relationship type that
was established between the user and this contact by the Service
Provider. The value SHOULD conform to one of the XFN relationship
values (e.g. kin, friend, contact, etc.) if appropriate, but MAY
be an alternative value if needed. Note this field is a parallel
set of category labels to the tags field, but relationships MUST
have been bi-directionally confirmed, whereas tags are asserted
by the user without acknowledgment by this Contact. Note that
this field is a Simple Field, meaning each instance consists only
of a string value.

addresses: A physical mailing address for this Contact, as
described in Section 7.4 (address Element).

organizations: A current or past organizational affiliation of this
Contact, as described in Section 7.5 (organization Element).

accounts: An online account held by this Contact, as described in
Section 7.6 (account Element).

The following additional Plural Fields are defined, based on their
specification in OpenSocial: activities, books, cars, children, food,
heroes, -interests, jobInterests, languages, languagesSpoken, movies,
music, pets, politicalViews, quotes, sports, turnOffs, turnOns, and
tvShows.

7.3. name Element TOC

The components of the contact's real name. Providers MAY return just
the full name as a single string in the formatted sub-field, or they
MAY return just the individual component fields using the other sub-
fields, or they MAY return both. If both variants are returned, they
SHOULD be describing the same name, with the formatted name indicating
how the component fields should be combined.

formatted:
The full name, including all middle names, titles, and suffixes
as appropriate, formatted for display (e.g. Mr. Joseph Robert
Smarr, Esq.). This is the Primary Sub-Field for this field, for
the purposes of sorting and filtering.

familyName: The family name of this Contact, or "Last Name" in most
Western languages (e.g. Smarr given the full name Mr. Joseph
Robert Smarr, Esq.).

givenName: The given name of this Contact, or "First Name" in most
Western languages (e.g. Joseph given the full name Mr. Joseph
Robert Smarr, Esq.).

middleName: The middle name(s) of this Contact (e.g. Robert given
the full name Mr. Joseph Robert Smarr, Esq.).

honorificPrefix: The honorific prefix(es) of this Contact, or
"Title" in most Western languages (e.g. Mr. given the full name
Mr. Joseph Robert Smarr, Esq.).

honorificSuffix: The honorifix suffix(es) of this Contact, or
"Suffix" in most Western languages (e.g. Esq. given the full name
Mr. Joseph Robert Smarr, Esq.).

7.4. address Element TOC

The components of a physical mailing address. Service Providers MAY
return just the full address as a single string in the formatted sub-
field, or they MAY return just the individual component fields using
the other sub-fields, or they MAY return both. If both variants are
returned, they SHOULD be describing the same address, with the
formatted address indicating how the component fields should be
combined.

formatted: The full mailing address, formatted for display or use
with a mailing label. This field MAY contain newlines. This is
the Primary Sub-Field for this field, for the purposes of sorting
and filtering.

streetAddress: The full street address component, which may include
house number, street name, PO BOX, and multi-line extended street
address information. This field MAY contain newlines.

locality: The city or locality component.

region: The state or region component.

postalCode: The zipcode or postal code component.

country: The country name component.

7.5. organization Element TOC

Describes a current or past organizational affiliation of this contact.
Service Providers that support only a single Company Name and Job Title
field should represent them with a single organization element with
name and title properties, respectively.

name: The name of the organization (e.g. company, school, or other
organization). This field MUST have a non-empty value for each
organization returned. This is the Primary Sub-Field for this
field, for the purposes of sorting and filtering.

department: The department within this organization.
title: The job title or role within this organization.

type: The type of organization, with Canonical Values job and
school.

startDate: The date this Contact joined this organization. This
value SHOULD be a valid xs:date if possible, but MAY be an
unformatted string, since it is recognized that this field is
often presented as free-text.

endDate: The date this Contact left this organization or the role
specified by title within this organization. This value SHOULD be
a valid xs:date if possible, but MAY be an unformatted string,
since it is recognized that this field is often presented as
free-text.

location: The physical location of this organization. This may be a
complete address, or an abbreviated location like "San
Francisco".

description: A textual description of the role this Contact played
in this organization. This field MAY contain newlines.

7.6. account Element TOC

Describes an account held by this Contact, which MAY be on the Service
Provider's service, or MAY be on a different service. Consumers SHOULD
NOT assume that this account has been verified by the Service Provider
to actually belong to this Contact. For each account, the domain is the
top-most authoritative domain for this account, e.g. yahoo.com or
reader.google.com, and MUST be non-empty. Each account must also contain
a non-empty value for either username or userid, and MAY contain both,
in which case the two values MUST be for the same account. These
accounts can be used to determine if a user on one service is also
known to be the same person on a different service, to facilitate
connecting to people the user already knows on different services. If
Consumers want to turn these accounts into profile URLs, they can use

an open-source library like [google-sgnodemapper] (Fitzpatrick, B.,
“Social Graph Node Mapper,” .).

domain: The top-most authoritative domain for this account, e.g.
"twitter.com". This is the Primary Sub-Field for this field, for
the purposes of sorting and filtering.

username: An alphanumeric user name, usually chosen by the user,
e.g. "jsmarr".

userid: A user ID number, usually chosen automatically, and usually
numeric but sometimes alphanumeric, e.g. "12345" or "1Z425A".

8. IANA Considerations TOC

This memo includes no request to IANA at this time. [[Future drafts are
likely to request registration for the XML and JSON content types.]]

9. Security Considerations TOC

This memo abides by the security considerations of HTTP Basic Auth
[RFC2617] (Franks, J., Hallam-Baker, P., Hostetler, J., Lawrence, S.,
Leach, P., Luotonen, A., and L. Stewart, “HTTP Authentication: Basic
and Digest Access Authentication,” June 1999.) and the OAuth protocol
[OAuth Core 1.0] (OAuth, OCW., “OAuth Core 1.0,” .).

Appendix A. Example TOC

Here is a sample request and response that illustrates much of Portable
Contacts. For simplicity, authorization information is not shown in the
request.

Sample request (via HTTP GET):

http://sample.site.org/path/to/api/@me/@all?startIndex=10
&count=10&sortBy=displayName

Sample response (JSON):

"startIndex": 10,
"itemsPerPage": 10,
"totalResults": 12,

"entry": [
{
llidll : ||123",
"displayName": "Minimal Contact"
3
{
"id": "703887",
"displayName": "Mork Hashimoto",
"name": {
"familyName": "Hashimoto",
"givenName": "Mork"
I
"birthday": "0000-01-16",
"gender": "male",
"drinker": "heavily",
"tags": [
"plaxo guy"
1,
"emails": [
{
"value": "mhashimoto-04@plaxo.com",
lltypell : "WOrk",
"primary": "true"
3
{
"value": "mhashimoto-04@plaxo.com",
Iltypeﬂ : Ilhomeﬂ
iy
{
"value": "mhashimoto@plaxo.com",
Iltypeﬂ : Ilhomeﬂ
}
1,
"urls": [
{
"value": "http://www.seeyellow.com",
lltypell : llworkll
3
{
"value": "http://www.angryalien.com",
lltypell : llhomell
}
1,
"phoneNumbers": [
{
"value": "KLONDIKE5",
Iltypeﬂ : "\I\IOI’k"
3
{
"value": "650-123-4567",
"type": "mobile"
}

1

"photos": [

{
"value": "http://sample.site.org/photos/12345.jpg",
"type": "thumbnail"
}
1
"ims": [
{
"value": "plaxodev8",
lltypell : Ilaimll
}
1
"addresses": [
{
lltypell : "home",
"streetAddress": "742 Evergreen Terrace\nSuite 123",
"locality": "Springfield",
"region": "VvT",
"postalCode": "12345",
"country": "USA",
"formatted":
"742 Evergreen Terrace\nSuite 123\nSpringfield, VT 12345 USA"
}
1
"organizations": [
{
"name": "Burns Worldwide",
"title": "Head Bee Guy"
}
1
"accounts": [
{
"domain": "plaxo.com",
"userid": "2706"
}
1

Sample response (XML):

<response>

<startIndex>10</startIndex>

<itemsPerPage>10</itemsPerPage>

<totalResults>12</totalResults>

<entry>

<id>123</id>

<displayName>Minimal Contact</displayName>

</entry>

<entry>

<id>703887</id>

<displayName>Mork Hashimoto</displayName>
<name>
<familyName>Hashimoto</familyName>
<givenName>Mork</givenName>

</name>

<birthday>0000-01-16</birthday>
<gender>male</gender>
<drinker>heavily</drinker>

<tags>plaxo guy</tags>

<emails>
<value>mhashimoto-04@plaxo.com</value>
<type>work</type>
<primary>true</primary>

</emails>

<emails>
<value>mhashimoto-04@plaxo.com</value>
<type>home</type>

</emails>

<emails>
<value>mhashimoto@plaxo.com</value>
<type>home</type>

</emails>

<urls>
<value>http://www.seeyellow.com</value>
<type>work</type>

</urls>

<urls>
<value>http://www.angryalien.com</value>
<type>home</type>

</urls>

<phoneNumbers>
<value>KLONDIKE5</value>
<type>work</type>

</phoneNumbers>

<phoneNumbers>
<value>650-123-4567</value>
<type>mobile</type>

</phoneNumbers>

<photos>
<value>http://sample.site.org/photos/12345. jpg</value>
<type>thumbnail</type>

</photos>

<ims>
<value>plaxodev8</value>
<type>aim</type>

</ims>

<addresses>

<type>home</type>
<streetAddress><![CDATA[742 Evergreen Terrace
Suite 123]]></streetAddress>
<locality>Springfield</locality>
<region>VT</region>
<postalCode>12345</postalCode>
<country>USA</country>
<formatted><![CDATA[742 Evergreen Terrace
Suite 123
Springfield, VT 12345 USA]]></formatted>
</addresses>
<organizations>
<name>Burns Worldwide</name>
<title>Head Bee Guy</title>
</organizations>
<accounts>
<domain>plaxo.com</domain>
<userid>2706</userid>
</accounts>
</entry>
</response>

Appendix B. Compatibility with OpenSocial TOC

This version of the Portable Contacts specification is currently wire-
compatible with the overlapping portion of the OpenSocial RESTful
Protocol version 0.8.1 [OpenSocial] (Panzer, J., “OpenSocial 0.8.1
RESTful Protocol Specification,” .). Specifically, any compliant
OpenSocial RESTful Protocol 0.8.1 Provider is also a compliant Portable
Contacts Provider, because they are specified to use the same
Authorization methods (OAuth), Additional Path Information, Query
Parameters, and Contact Schema. The OpenSocial and Portable Contacts
communities chose to wire-align our respective specs in order to
maximize widespread adoption of a single API for accessing people data.
It is our intention to maintain this compatibility going forward, so
long as it is feasible, and so long as the changes required are
compatible with the Goals and Approach of this spec. Although Portable
Contacts is an independent spec, with a more limited scope than
OpenSocial, any proposed changes to either this Portable Contacts spec
or the OpenSocial RESTful Protocol should be considered in the context
of both communities, and we should strive not to break compatibility
unless it is truly necessary, e.g. if the goals of the two communities
diverge significantly in the future.

10. References TOC

10.1. Normative References TOC

[RFC2119] | Bradner, S., “Key words for use in RFCs to Indicate
Requirement Levels,” BCP 14, RFC 2119, March 1997 (TXT,
HTML, XML).

[RFC2425] | Howes, T., Smith, M., and F. Dawson, “A MIME Content-Type
for Directory Information,” RFC 2425, September 1998
(TXT, HTML, XML).

[RFC2616] | Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
Masinter, L., Leach, P., and T. Berners-Lee, “Hypertext
Transfer Protocol -- HTTP/1.1,” RFC 2616, June 1999 (TXT,
PS, PDF, HTML, XML).

[RFC2617] | Franks, J., Hallam-Baker, P., Hostetler, J., Lawrence,
S., Leach, P., Luotonen, A., and L. Stewart, “HTTP
Authentication: Basic and Digest Access Authentication,”
RFC 2617, June 1999 (TXT, HTML, XML).

10.2. Informative References

TOC
[OAuth Core 1.0] OAuth, OCW., “OAuth Core 1.0.”
[OAuth Discovery] Eran Hammer-Lahav, E., “OAuth Discovery 1.0.”"
[OpenSearch] Clinton, D., “OpenSearch 1.1."
[OpenSocial] Panzer, J., “OpenSocial 0.8.1 RESTful Protocol

Specification.”

[XRDS-Simple] Hammer-Lahav, E., “XRDS-Simple 1.0.”
gggggiﬁépper] Fitzpatrick, B., “Social Graph Node Mapper.”

Author's Address

TOC
Joseph Smarr
Plaxo
Email: |joseph@plaxo.com
URI: |http://josephsmarr.com/
Full Copyright Statement
TOC

Copyright © The IETF Trust (2008).

This document is subject to the rights, licenses and restrictions
contained in BCP 78, and except as set forth therein, the authors
retain all their rights.

This document and the information contained herein are provided on an
“AS IS” basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

mailto:sob@harvard.edu
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc2119
http://www.rfc-editor.org/rfc/rfc2119.txt
http://xml.resource.org/public/rfc/html/rfc2119.html
http://xml.resource.org/public/rfc/xml/rfc2119.xml
mailto:howes@netscape.com
mailto:mcs@netscape.com
mailto:frank_dawson@lotus.com
http://tools.ietf.org/html/rfc2425
http://tools.ietf.org/html/rfc2425
http://www.rfc-editor.org/rfc/rfc2425.txt
http://xml.resource.org/public/rfc/html/rfc2425.html
http://xml.resource.org/public/rfc/xml/rfc2425.xml
mailto:fielding@ics.uci.edu
mailto:jg@w3.org
mailto:mogul@wrl.dec.com
mailto:frystyk@w3.org
mailto:masinter@parc.xerox.com
mailto:paulle@microsoft.com
mailto:timbl@w3.org
http://tools.ietf.org/html/rfc2616
http://tools.ietf.org/html/rfc2616
http://www.rfc-editor.org/rfc/rfc2616.txt
http://www.rfc-editor.org/rfc/rfc2616.ps
http://www.rfc-editor.org/rfc/rfc2616.pdf
http://xml.resource.org/public/rfc/html/rfc2616.html
http://xml.resource.org/public/rfc/xml/rfc2616.xml
mailto:john@math.nwu.edu
mailto:pbaker@verisign.com
mailto:jeff@AbiSource.com
mailto:lawrence@agranat.com
mailto:lawrence@agranat.com
mailto:paulle@microsoft.com
mailto:stewart@OpenMarket.com
http://tools.ietf.org/html/rfc2617
http://tools.ietf.org/html/rfc2617
http://www.rfc-editor.org/rfc/rfc2617.txt
http://xml.resource.org/public/rfc/html/rfc2617.html
http://xml.resource.org/public/rfc/xml/rfc2617.xml
http://oauth.net/core/1.0
http://oauth.net/discovery/%20
http://www.opensearch.org/Specifications/OpenSearch/1.1/Draft_3
http://www.opensocial.org/Technical-Resources/opensocial-spec-v081/restful-protocol
http://www.opensocial.org/Technical-Resources/opensocial-spec-v081/restful-protocol
http://xrds-simple.net/core/1.0/
http://code.google.com/p/google-sgnodemapper/
mailto:joseph@plaxo.com
http://josephsmarr.com/

Intellectual Property

The IETF takes no position regarding the validity or scope of any
Intellectual Property Rights or other rights that might be claimed to
pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights
might or might not be available; nor does it represent that it has made
any independent effort to identify any such rights. Information on the
procedures with respect to rights in RFC documents can be found in

BCP 78 and BCP 79.

Copies of IPR disclosures made to the IETF Secretariat and any
assurances of licenses to be made available, or the result of an
attempt made to obtain a general license or permission for the use of
such proprietary rights by implementers or users of this specification
can be obtained from the IETF on-line IPR repository at http://
www.ietf.org/ipr.

The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary rights
that may cover technology that may be required to implement this
standard. Please address the information to the IETF at ietf-
ipr@ietf.org.

http://www.ietf.org/ipr
http://www.ietf.org/ipr
mailto:ietf-ipr@ietf.org
mailto:ietf-ipr@ietf.org

	Portable Contacts: A Common Format and Protocol for Accessing Contactsdraft-smarr-vcarddav-portable-contacts-00
	Status of this Memo
	Abstract
	Table of Contents
	1. Introduction
	1.1. Goals
	1.2. Approach
	1.3. Feedback
	2. Notational Conventions
	3. Definitions
	4. Workflow Overview
	5. Discovery
	6. Invocation
	6.1. Authentication and Authorization
	6.1.1. Delegated Authorization
	6.1.2. Direct Authorization
	6.1.3. Available Authorization Methods
	6.2. Additional Path Information
	6.3. Query Parameters
	6.3.1. Filtering
	6.3.2. Sorting
	6.3.3. Pagination
	6.3.4. Presentation
	6.3.5. Declining to honor query parameters
	6.4. Response Format
	6.5. Error Codes
	7. Contact Schema
	7.1. Structure
	7.2. entry Element
	7.2.1. Singular Fields
	7.2.2. Plural Fields
	7.3. name Element
	7.4. address Element
	7.5. organization Element
	7.6. account Element
	8. IANA Considerations
	9. Security Considerations
	Appendix A. Example
	Appendix B. Compatibility with OpenSocial
	10. References
	10.1. Normative References
	10.2. Informative References
	Author's Address
	Full Copyright Statement
	Intellectual Property

