
Internet Engineering Task Force M. Smith
Internet-Draft M. Dvorkin
Intended status: Informational Cisco Systems, Inc.
Expires: October 4, 2014 Y. Laribi
 Citrix
 V. Pandey
 IBM
 P. Garg
 Microsoft Corporation
 N. Weidenbacher
 Sungard Availability Services
 April 2, 2014

OpFlex Control Protocol
draft-smith-opflex-00

Abstract

 The OpFlex architecture provides a distributed control system based
 on a declarative policy information model. The policies are defined
 at a logically centralized policy repository (PR) and enforced within
 a set of distributed policy elements (PE). The PR communicates with
 the subordinate PEs using the OpFlex Control protocol. This protocol
 allows for bidirectional communication of policy, events, statistics,
 and faults. This document defines the OpFlex Control Protocol.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on October 4, 2014.

Copyright Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Smith, et al. Expires October 4, 2014 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft OpFlex Control Protocol April 2014

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
1.1. Requirements Language 3
1.2. Terminology . 3

2. Scope . 4
3. System Overview . 4
3.1. Policy Repository . 4
3.1.1. Management Information Model 4
3.1.1.1. Managed Object 5

3.2. Endpoint Registry . 5
3.3. Observer . 6
3.4. Policy Element . 6

4. OpFlex Control Protocol 6
4.1. JSON Usage . 7
4.2. RPC Methods . 8
4.2.1. Identity . 9
4.2.2. Policy Resolution 10
4.2.3. Policy Update . 12
4.2.4. Echo . 13
4.2.5. Policy Trigger . 13
4.2.6. Endpoint Declaration 14
4.2.7. Endpoint Request 15
4.2.8. Endpoint Policy Update 17
4.2.9. State Report . 18

5. IANA Considerations . 19
6. Security Considerations 19
7. Acknowledgements . 19
8. Normative References . 19

 Authors' Addresses . 20

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Smith, et al. Expires October 4, 2014 [Page 2]

Internet-Draft OpFlex Control Protocol April 2014

1. Introduction

 As software development processes merge with IT operations, there is
 an increasing demand for automation and agility within the IT
 infrastructure. Application deployment has been impeded due to the
 existing IT infrastructure operational models. Management at scale
 is a very difficult problem and existing imperative management models
 typically falter when challenged with the heterogeneity of various
 platforms, applications, and releases. In such environments,
 declarative management models have shown to cope quite well. In
 these systems, agents have autonomy of control and provide a
 declaration of intent regarding behavior. Declarative policy is
 rendered locally to provide desired system behavior. The OpFlex
 architecture is founded in these concepts.

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

1.2. Terminology

 AD: Administrative Domain. A logical instantiation of
 the OpFlex system components controlled by a single
 administrative policy.

 EP: Endpoint. A device connected to the system.

 EPR: Endpoint Registry. A logically centralized entity
 containing the endpoint registrations within
 associated administrative domain.

 OB: Observer. A logically centralized entity that serves
 as a repository for statistics, faults, and events.

 PE: Policy Element. A function associated with entities
 comprising the policy administrative domain that is
 responsible for local rendering of policy.

 PR: Policy Repository. A logically centralized entity
 containing the definition of all policies governing
 the behavior of the associated administrative domain.

 OpFlex Device: Entity under the management of a Policy Element.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Smith, et al. Expires October 4, 2014 [Page 3]

Internet-Draft OpFlex Control Protocol April 2014

 JSON: Javascript Object Notation [RFC4627]

 XML: Extensible Markup Language [XML]

2. Scope

 This document defines the OpFlex Control Protocol used between OpFlex
 system components. It does not define the policy object model or the
 policy object model schemas. A System Overview section is provided
 for reference.

3. System Overview

 OpFlex is a policy driven system used to control a large set of
 physical and virtual devices. The OpFlex system architecture
 consists of a number of logical components. These are the Policy
 Repository (PR), Endpoint Registry (EPR), Observer, and the Policy
 Elements (PE). These components and their interactions are described
 in the following subsections.

3.1. Policy Repository

 Within each administrative domain of the OpFlex system, there is a
 single logical entity referred to as the Policy Repository (PR) that
 serves as the single source of all policies. The PR handles policy
 resolution requests from the Policy Elements within the same
 administrative domain. An example scope of an administrative domain
 would be a datacenter fabric. These policies are configured directly
 by the user via a policy administration interface (API/UI/CLI/etc.)
 or indirectly (implicitly through the application of higher order
 policy constructs). These policies represent a declarative statement
 of desired state. Policies are typically abstracted from the
 underlying implementation.

3.1.1. Management Information Model

 All of the physical and logical components that comprise the
 administrative domain are represented in a hierarchical management
 information model (MIM), also referred to as the management
 information tree (MIT). The hierarchical structure starts at a root
 node and all policies within the system can be reached via parent and
 child containment relationships. Each node has a unique Uniform
 Resource Identifier (URI) [RFC3986] that indicates its place in the
 tree.

https://datatracker.ietf.org/doc/html/rfc4627
https://datatracker.ietf.org/doc/html/rfc3986

Smith, et al. Expires October 4, 2014 [Page 4]

Internet-Draft OpFlex Control Protocol April 2014

3.1.1.1. Managed Object

 Each node in the tree represents a managed object (MO) or group of
 objects and contains its administrative state and operational state.
 An MO can represent a concrete object, such as a switch or adapter,
 or a logical object, such as a policy or fault. An MO consists of
 the following items:

 Properties: A property is a named instance of policy data and
 is interpreted by the Policy Element in local
 rendering of the policy.

 Child Relations: A containment relationship between MOs where the
 children MOs are contained within the parent MO.

 Parent Relation: The inverse of the children relationship. This
 relation is implicit and is implied through the
 hierarchical name of the MO name.

 MO Relations: Relationships with other MOs in the system that are
 not containment relationships. These relationships
 can be unidirectional or bidirectional. The
 relationships can also be 1:1, 1:n, or m:n.

 Statistics: These are child MOs that track statistics relevant
 to the parent MOs. These MOs are reported to the
 Observer.

 Faults: These are child MOs that track faults relevant to
 the parent MOs. These MOs are reported to the
 Observer.

 Health: These are child MOs that track the overall health
 relevant to the parent MOs. This is often
 represented in the form of a health score. These
 MOs are reported to the Observer.

 MOs that contain statistic, fault, or health MOs are said to be
 observable.

3.2. Endpoint Registry

 The Endpoint Registry (EPR) is the component that stores the current
 operational state of the endpoints (EP) within the system. PEs
 register the EPs with the EPR upon EP attachment to the local device
 where the PE is resident. Upon EP detachment, the registration will
 be withdrawn. The EP registration information contains the scope of
 the EP such as the Tenant or logical network as well as location

Smith, et al. Expires October 4, 2014 [Page 5]

Internet-Draft OpFlex Control Protocol April 2014

 information such as the hypervisor where the EP resides. The EPR can
 be used by PEs to query the current EPR registrations as well as
 receive updates when the information changes.

3.3. Observer

 The Observer serves as the monitoring subsystem that provides a
 detailed view of the system operational state and performance. It
 serves as a data repository for information related to trending,
 forensics, and long-term visibility data such as statistics, events,
 and faults. Statistical data is reported to the Observer at
 expiration of reporting intervals and statistics will be rolled up
 for longer-term trend analysis.

3.4. Policy Element

 Policy elements (PEs) are logical functional abstractions of member
 elements within the administrative domain. Policy elements reside on
 physical or virtual devices that are subjected to policy control
 under a given administrative domain. PEs receives policy triggers
 through local triggers or triggers invoked by other PEs. Local
 triggers involve local MO state transitions such as new control node
 additions, removals, or other operational events. Policy triggers
 invoked by other PEs are transmitted using the OpFlex Control
 Protocol. Both types of policy triggers result in policy resolution.
 Policies are resolved with the PR using the OpFlex protocol. This
 protocol allows bidirectional communication, and allows the exchange
 of policy information. Policies are represented as managed object
 "sub-trees". Upon policy resolution, the PE renders the policy to
 the configuration of the underlying subsystem, and continuously
 performs health monitoring of the subsystem. PEs perform local
 corrective actions as needed for the enforcement of policies in its
 scope. Operational transitions can also cause new or additional/
 incremental policy resolutions such as the attachment of new EPs to
 the corresponding device.

4. OpFlex Control Protocol

 The OpFlex Control Protocol is used by OpFlex system components to
 communicate policy and operational data. The protocol uses JSON,
 XML, or OpFlex-Binary-RPC as the wire encoding. This document
 describes the JSON format and uses JSON-RPC version 1.0 [JSON-RPC].
 The JSON-RPC transport SHOULD be over TCP. The description of the
 encoding and transport of XML and OpFlex-Binary-RPC are left to later
 revisions of this document.

Smith, et al. Expires October 4, 2014 [Page 6]

Internet-Draft OpFlex Control Protocol April 2014

4.1. JSON Usage

 The descriptions below use the following shorthand notations for JSON
 values. Terminology follows [RFC4627].

 <string>:
 A JSON string. Any Unicode string is allowed.
 Implementations SHOULD disallow null bytes.

 <integer>:
 A JSON number with an integer value, within the range
 -(2**63)...+(2**63)-1.

 <json-value>:
 Any JSON value.

 <nonnull-json-value>:
 Any JSON value except null.

 <URI>:
 A JSON string in the form of a Uniform Resource
 Identifier[RFC3986].

 <status>:
 An enumeration specifying one of the following set of
 strings: "created", "modified", or "deleted".

 <role>:
 An enumeration specifying one of the following set of
 strings: "policy_element", "observer", "policy_repository",
 or "endpoint_registry".

 <mo>:
 A JSON object with the following members:

 "name": <URI>
 "properties": [{"name":<string>, "data": <string>}*]
 "children": [<mo>*]
 "statistics": [<mo>*]
 "from_relations": [<mo>*]
 "to_relations": [<mo>*]
 "faults": [<mo>*]
 "health": [<mo>*]

 All of the members of the JSON object are REQUIRED. However,
 the corresponding value MAY consist of the empty set for all
 members except for "name". It is REQUIRED that the "name" be
 specified.

https://datatracker.ietf.org/doc/html/rfc4627

Smith, et al. Expires October 4, 2014 [Page 7]

Internet-Draft OpFlex Control Protocol April 2014

 The "name" uniquely identifies the managed object within the
 scope of the administrative domain and indicates its location
 within the MIT.

 The "properties" holds a set of named policy data.

 The "children" identifies a set of MOs where each MO is
 considered a child of this particular MO.

 The "statistics" identifies a set of MOs containing statistic
 data maintained by the policy rendered from this particular
 MO.

 The "from_relationships" identifies a set of relationship
 MOs. Each relationship MO has a reference to the MOs that
 have relationship to this particular MO.

 The "to_relationships" identifies a set of relationship MOs.
 Each relationship MO has a reference to the MOs that have
 relationship from this particular MO.

 The "faults" identifies a set of MOs containing fault
 information maintained by the policy rendered from this
 particular MO.

 The "health" identifies a set of MOs containing health
 metrics maintained by the policy rendered from this
 particular MO.

 In the case of MOs used as policies, there will be no
 statistics, faults, or health.

4.2. RPC Methods

 The following subsections describe the RPC methods that are
 supported. As described in the JSON-RPC 1.0 specification, each
 request comprises a string containing the name of the method, a
 (possibly null) array of parameters to pass to the method, and a
 request ID, which can be used to match the response to the request.
 Each response comprises a result object (non-null in the event of a
 successful invocation), an error object (non-null in the event of an
 error), and the ID of the matching request. More details on each
 method, its parameters, and its results are described below.

 A Policy Element is configured with the connectivity information of
 at least one peer OpFlex Control Protocol participant. The
 connectivity information consists of the information necessary to
 establish the initial connection such as the IP address and wire

Smith, et al. Expires October 4, 2014 [Page 8]

Internet-Draft OpFlex Control Protocol April 2014

 encapsulation. A Policy Element MAY be configured with the
 connectivity information for one or more of the OpFlex logical
 components. A Policy Element MUST connect to each of the configured
 OpFlex logical components.

4.2.1. Identity

 This method identifies the participant to its peer in the protocol
 exchange and MUST be sent as the first OpFlex protocol method. The
 method indicates the transmitter's role and the administrative domain
 to which it belongs. Upon receiving an Identity message, the
 response will contain the configured connectivity information that
 the participant is using to communicate with each of the OpFlex
 components. If the response receiver is a Policy Element and is not
 configured with connectivity information for certain OpFlex logical
 components, it SHOULD use the peer's connectivity information to
 establish communication with the OpFlex logical components that have
 not been locally configured.

 The Identity request contains the following members:

 o "method": "send_identity"

 o "params": [

 "name": <string>
 "domain": <string>
 ["my_role": <role>]+
]

 o "id": <nonnull-json-value>

 The "name" is an identifier of the OpFlex Control Protocol
 participant that is unique within the administrative domain.

 The "domain" is a globally unique identifier indicating the
 administrative domain that this participant exists.

 The "my_role" states the particular OpFlex component contained within
 this participant. Since a participant may be capable of acting as
 more than 1 type of component, there may be multiple "my_role"
 parameters passed.

 The response object contains the following members:

 o "result": [

Smith, et al. Expires October 4, 2014 [Page 9]

Internet-Draft OpFlex Control Protocol April 2014

 "name": <string>
 ["my_role": <role>]+
 "domain": <string>
 [{"role": <role>
 "connectivity_info": <string>}*]
]

 o "error": null

 o "id": same "id" as request

 The "name" is the identifier of the OpFlex Control Protocol
 participant sending the response.

 The "my_role" states the OpFlex component roles contained within the
 participant sending the response.

 The "domain" is a globally unique identifier indicating the
 administrative domain that the participant sending the response
 exists.

 The "role" and associated "connectivity_info" give the reachability
 information (i.e. IP address or DNS name) and the role of the entity
 that the participant is communicating using the OpFlex Control
 Protocol. This information MAY be gleaned by a receiving participant
 to resolve reachability for various OpFlex components.

 In the event that the administrative domains do not match, an error
 response of the following form:

 o "result": null

 o "error": "Domain mismatch"

 o "id": same "id" as request

4.2.2. Policy Resolution

 This method retrieves the policy associated with the given policy
 name. The policy is returned as a set of managed objects. This
 method is typically sent by the PE to the PR.

 The request object contains the following members:

 o "method": "resolve_policy"

 o "params": [

Smith, et al. Expires October 4, 2014 [Page 10]

Internet-Draft OpFlex Control Protocol April 2014

 "subject": <string>
 "context": <string>
 "policy_name": <string>
 "on_behalf_of": <URI>
 "data": <string>
]

 o "id": <nonnull-json-value>

 The "subject" provides the class of entity for which the policy is
 being resolved. The applicable object classes are dependent on the
 particular MIT.

 The "context" is used to scope the policy resolution request. Common
 examples would be scoping within a particular tenant name.

 The "policy_name" is the name of the policy needs to be resolved.

 The "on_behalf_of" indicates the MO that triggered this policy
 resolution.

 The "data" provides additional opaque data that may be used to assist
 in the policy resolution.

 Upon successful policy resolution, the response object contains the
 following members:

 o "result": [

 "policy": <mo>+,
 "prr": <integer>]

 o "error": null

 o "id": same "id" as request

 The "policy" parameter contains the managed objects that represent
 the resolved policy. These objects are used by the Policy Element to
 render and apply the local policy. The application of the local
 policy may cause the local PE to deliver policy triggers to other PEs
 in the system.

 The "prr" or Policy Refresh Rate provides the amount of time that a
 PE should use the policy as provided in the request. The <integer>
 indicates the time in seconds that the policy should be kept by the
 PE. A PE SHOULD issue another policy resolution request before the
 expiration of the prr timer if the PE still requires the policy. If
 the PE is unable to subsequently resolve the policy after the prr

Smith, et al. Expires October 4, 2014 [Page 11]

Internet-Draft OpFlex Control Protocol April 2014

 timer expires, the PE MAY continue to use the resolved policy. The
 PE SHOULD raise an alarm if the policy cannot be resolved after
 multiple attempts.

 In the event that the policy named in the resolution request does not
 exist, an error response of the following form:

 o "result": null

 o "error": "unknown policy name"

 o "id": same "id" as request

4.2.3. Policy Update

 This method is sent to Policy Elements when there has been a change
 of policy definition for policies which the Policy Element has
 requested resolution. Policy Updates will only be sent to Policy
 Element for which the policy refresh rate timer has not expired.

 The Policy Update contains the following members:

 o "method": "update_policy"

 o "params": [

 "context": <named_tlv>
 ["subtree": <mo>+]+
 "prr": <integer>
]

 o "id": <nonnull-json-value>

 The "context" is used to indicate the scope of the policy. This is
 typically the same as the context in the original policy resolution
 request but it may be different.

 The "subtree" contains one or more subtrees of the MIT. Each subtree
 is a collection of MOs that represent the changed policy.

 The "prr" or Policy Refresh Rate provides the amount of time that a
 PE should use the policy as provided in the request. The <integer>
 indicates the time in seconds that the policy should be kept by the
 PE. A PE SHOULD issue another policy resolution request before the
 expiration of the prr timer if the PE still requires the policy. If
 the PE is unable to subsequently resolve the policy after the prr
 timer expires, the PE MAY continue to use the resolved policy. The
 PE SHOULD raise an alarm if the policy cannot be resolved after

Smith, et al. Expires October 4, 2014 [Page 12]

Internet-Draft OpFlex Control Protocol April 2014

 multiple attempts.

 The response object contains the following members:

 o "result": {}

 o "error": null

 o "id": same "id" as request

4.2.4. Echo

 The "echo" method can be used by OpFlex Control Protocol peers to
 verify the liveness of a connection. It MUST be implemented by all
 participants. The members of the request are:

 o "method": "echo"

 o "params": JSON array with any contents

 o "id": <nonnull-json-value>

 The response object has the following members:

 o "result": same as "params"

 o "error": null

 o "id": same "id" as request

4.2.5. Policy Trigger

 A policy trigger is issued from one Policy Element to a peer Policy
 Element in order to trigger a policy resolution on the peer. It is
 typically done to indicate a attachment state change or a change in
 the consumption of the peer resources. For example, a Policy Element
 in a switch may cause a policy trigger in the upstream switch to
 enable a particular VLAN on the peer's interface. It may also be
 issued upon receiving a Policy Update or Policy Resolution response.

 The Policy Trigger contains the following members:

 o "method": "trigger_policy"

 o "params": [

Smith, et al. Expires October 4, 2014 [Page 13]

Internet-Draft OpFlex Control Protocol April 2014

 "policy_type": <string>
 "context": <string>
 "policy_name": <string>
 "prr": <integer>
]

 o "id": <nonnull-json-value>

 The response object contains the following members:

 o "result": {}

 o "error": null

 o "id": same "id" as request

4.2.6. Endpoint Declaration

 This method is used to indicate the attachment and detachment of an
 endpoint. It is sent from the Policy Element to the Endpoint
 Registry.

 The Endpoint Declaration contains the following members:

 o "method": "endpoint_declaration"

 o "params": [

 "subject": <string>
 "context": <string>
 "policy_name": <string>
 "location": <URI>
 ["identifier": <string>]+
 ["data": <string>]*
 "status": <status>
 "prr": <integer>
]

 o "id": <nonnull-json-value>

 The "subject" provides the class of entity for which the declaration
 applies. This will typically be the class representing the endpoint.
 The applicable object classes are dependent on the particular MIT.

 The "context" is used to scope the endpoint declaration.

 The "policy_name" is used to identify the policy that must be
 resolved and applied when this endpoint attaches, detaches, or is

Smith, et al. Expires October 4, 2014 [Page 14]

Internet-Draft OpFlex Control Protocol April 2014

 otherwise modified.

 The "location" is used to identify the managed object indicating the
 point where the endpoint connects to the system. An example would be
 a managed object representing a certain physical port on a ethernet
 switch.

 The "identifier" is a label that is used in identifying the
 particular instance of the endpoint. Some examples of an identifier
 would be a MAC address, VLAN, and IP address.

 The "data" are used along with the context, endpoint class, endpoint
 MO, and the policy_name to select the policy that will be applied to
 the particular endpoint. These are typically labels used in
 identifying particular endpoint or endpoint location characteristics.
 Some examples would include trusted, untrusted, production, test,
 etc.

 The "status" indicates whether this declaration is an endpoint
 attachment, detachment, or modification.

 The "prr" or Policy Refresh Rate provides provides the amount of time
 that the endpoint declaration will remain valid. The <integer>
 indicates the time in seconds that the endpoint declaration should be
 kept by the EPR. A PE SHOULD issue another endpoint declaration
 before the expiration of the prr timer if the endpoint is to continue
 existing within the system.

 The response object contains the following members:

 o "result": {}

 o "error": null

 o "id": same "id" as request

4.2.7. Endpoint Request

 This method queries the EPR for the registration of a particular EP.
 The request is made using the identifiers of the endpoint. Since
 multiple identifiers may be used to uniquely identify a particular
 endpoint, there may be more than 1 endpoint returned in the reply if
 the identifiers presented do not uniquely specify the endpoint.

 The Endpoint Request contains the following members:

Smith, et al. Expires October 4, 2014 [Page 15]

Internet-Draft OpFlex Control Protocol April 2014

 o "method": "endpoint_request"

 o "params": [

 "subject": <string>
 "context": <string>
 ["identifier": <string>]+
]

 o "id": <nonnull-json-value>

 The "subject" provides the class of entity for which the request
 applies. This will typically be the class representing the endpoint.
 The applicable object classes are dependent on the particular MIT.

 The "context" is used to scope the endpoint resolution.

 The "identifier" is a label that is used in identifying the
 particular instance of the endpoint. Some examples of an identifier
 would be a MAC address, VLAN, and IP address.

 The "prr" or Policy Refresh Rate provides provides the amount of time
 that the endpoint information will remain valid. The <integer>
 indicates the time in seconds that the endpoint information should be
 kept by the PE. A PE SHOULD issue another endpoint request before
 the expiration of the prr timer if the communication is still
 required with the endpoint.

 The response object contains the registrations of one or more
 endpoints. Each endpoint contains the same information that was
 present in the original registration. The following members are
 present in the response:

 o "result": {

 [endpoint :
 {"subject": <string>
 "context": <string>
 "policy_name": <string>
 "location": <URI>
 ["identifier": <string>]+
 ["data": <string>]*
 "status": <status>
 "prr": <integer>
 }]+
 }

Smith, et al. Expires October 4, 2014 [Page 16]

Internet-Draft OpFlex Control Protocol April 2014

 o "error": null

 o "id": same "id" as request

 The following error response object is returned if no endpoints match
 the identifiers presented in the request:

 o "result": {}

 o "error": "No endpoints found."

 o "id": same "id" as request

4.2.8. Endpoint Policy Update

 This method is sent to Policy Elements by the EPR when there has been
 a change relating to the EP Declaration for an Endpoint that the
 Policy Element has requested. Policy Updates will only be sent to
 Policy Elements for which the Policy Refresh Rate timer timer for the
 Endpoint Request has not expired.

 The Endpoint Policy Update contains the following members:

 o "method": "endpoint_update_policy"

 o "params": [

 "subject": <string>
 "context": <string>
 "policy_name": <string>
 "location": <URI>
 ["identifier": <string>]+
 ["data": <string>]*
 "status": <status>
 "ttl": <integer>
]

 o "id": <nonnull-json-value>

 All of the "params" contain identical information to the descriptions
 given as part of the Endpoint Declaration.

 The response object contains the following members:

 o "result": {}

 o "error": null

Smith, et al. Expires October 4, 2014 [Page 17]

Internet-Draft OpFlex Control Protocol April 2014

 o "id": same "id" as request

4.2.9. State Report

 This method is sent by the Policy Element to the Observer. It
 provides fault, event, statistics, and health information in the form
 of managed objects.

 The State Report contains the following members:

 o "method": "report_state"

 o "params": [

 "subject": <URI>
 "context": <string>
 "object": <mo>
 ["fault": <mo>]*
 ["event": <mo>]*
 ["statistics": <mo>]*
 ["health": <mo>]*
]

 o "id": <nonnull-json-value>

 The "subject" provides the class of entity for which the State Report
 applies. The applicable object classes are dependent on the
 particular MIT.

 The "context" is used to scope the subject.

 The "object" is the specific managed object that the faults, events,
 statistics, and health reports in this method apply.

 The "fault" is an optional field that contains one or more managed
 objects representing faults.

 The "events" is an optional field that contains one or more managed
 objects representing events.

 The "statistics" is an optional field that contains one or more
 managed objects representing statistics.

 The "health" is an optional field that contains one or more managed
 objects representing health statistics applicable.

 The response object contains the following members:

Smith, et al. Expires October 4, 2014 [Page 18]

Internet-Draft OpFlex Control Protocol April 2014

 o "result": {}

 o "error": null

 o "id": same "id" as request

5. IANA Considerations

 A TCP port will be requested from IANA for the OpFlex Control
 Protocol.

6. Security Considerations

 The OpFlex Control Protocol itself does not address authentication,
 integrity, and privacy of the communication between the various
 OpFlex components. In order to protect the communication, the OpFlex
 Control Protocol SHOULD be secured using Transport Layer Security
 (TLS) [RFC5246]. The distribution of credentials will vary depending
 on the deployment. In some deployments, existing secure channels can
 be used to distribute the credentials.

7. Acknowledgements

 The authors would like to thank Vijay Chander, Mike Cohen, and Brad
 McConnell for their comments and contributions.

8. Normative References

 [JSON-RPC]
 "JSON-RPC Specification, Version 1.0",
 <http://json-rpc.org/wiki/specification>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,

RFC 3986, January 2005.

 [RFC4627] Crockford, D., "The application/json Media Type for
 JavaScript Object Notation (JSON)", RFC 4627, July 2006.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008.

https://datatracker.ietf.org/doc/html/rfc5246
http://json-rpc.org/wiki/specification
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc4627
https://datatracker.ietf.org/doc/html/rfc5246

Smith, et al. Expires October 4, 2014 [Page 19]

Internet-Draft OpFlex Control Protocol April 2014

 [XML] Bray, T., Jean Paoli, Sperberg-McQueen, C., and E. Maler,
 Ed., "Extensible Markup Language (XML) 1.0 (Second
 Edition)", October 2000, <http://www.w3.org/TR/REC-xml>.

Authors' Addresses

 Michael Smith
 Cisco Systems, Inc.
 170 West Tasman Drive
 San Jose, California 95134
 USA

 Email: michsmit@cisco.com

 Mike Dvorkin
 Cisco Systems, Inc.
 170 West Tasman Drive
 San Jose, California 95134
 USA

 Email: midvorki@cisco.com

 Youcef Laribi
 Citrix
 4988 Great America Parkway
 Santa Clara, California 95054
 USA

 Email: Youcef.Laribi@citrix.com

 Vijoy Pandey
 IBM
 4400 N First Street
 San Jose, California 95134
 USA

 Email: vijoy.pandey@us.ibm.com

http://www.w3.org/TR/REC-xml

Smith, et al. Expires October 4, 2014 [Page 20]

Internet-Draft OpFlex Control Protocol April 2014

 Pankaj Garg
 Microsoft Corporation
 1 Microsoft Way
 Redmond, Washington 98052
 USA

 Email: pankajg@microsoft.com

 Nik Weidenbacher
 Sungard Availability Services
 Philadelphia, Pennsylvania
 USA

 Email: nik.weidenbacher@sungard.com

Smith, et al. Expires October 4, 2014 [Page 21]

