
Internet Engineering Task Force M. Smith
Internet-Draft July 26, 2017
Intended status: Standards Track
Expires: January 27, 2018

Skinny IPv6 in IPv6 Tunnelling
draft-smith-skinny-ipv6-in-ipv6-tunnelling-00

Abstract

 This memo proposes a method of tunnelling IPv6 packets inside IPv6
 packets with a reduced tunnelling overhead.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 27, 2018.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Smith Expires January 27, 2018 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft Skinny IPv6-in-IPv6 Tunnelling July 2017

Table of Contents

1. Introduction . 2
2. Terminology . 4
3. Skinny IPv6-in-IPv6 Virtual Link Characteristics 4
4. Addressing Tunnel Endpoints 4
5. Proxied Inner IPv6 Packet Header Fields 6
6. Non-Proxied Inner IPv6 Packet Header Fields 6
7. Hop Limit Handling . 7
8. Skinny IPv6-in-IPv6 Tunnel Extension Header 8
8.1. Extension Header rather than Destination Option 8
8.2. Extension Header Format 8
8.3. Extension Header Fields 9

9. Encapsulation Procedure 9
9.1. Skinny IPv6-in-IPv6 EH Construction 10
9.2. Outer IPv6 Packet Construction 11

10. Decapsulation Procedure 12
11. Reduction in Overhead . 14
12. IANA Considerations . 14
13. Security Considerations 14
14. Acknowledgements . 14
15. Change Log [RFC Editor please remove] 14
16. Informative References 15

 Author's Address . 17

1. Introduction

 There have been some recent proposals to insert additional
 information via Extension Headers (EHs) into IPv6 packets that are
 currently "in-flight", with in-flight meaning that they have left the
 source host that originated the packet and are on their way across
 the network towards the packet's destination host [I-D.voyer-6man-ext
 ension-header-insertion][I-D.francois-dots-ipv6-signal-option].

 The fundamental drawback of inserting EHs into existing packets is
 that while the inserted EH is present, the IPv6 header's Source
 Address field's semantics are incorrect, as the device with the
 recorded source address is not the source of the inserted EH.

 If the inserted EH causes the packet to trigger a mechanism that
 relies on IPv6 header Source Address semantics, such as Path MTU
 Discovery [RFC1981], the triggered mechanism may fail. This is
 because the mechanism's messages will be sent to the source address
 indicated, rather than the device that inserted the EH. The device
 inserting the EH is not identified in the packet so that messages can
 be sent to it if necessary.

https://datatracker.ietf.org/doc/html/rfc1981

Smith Expires January 27, 2018 [Page 2]

Internet-Draft Skinny IPv6-in-IPv6 Tunnelling July 2017

 Troubleshooting is also impacted, in particular when packets are
 received over long Autonomous System paths across the Internet. If
 an inserted EH is received and causes failures, it isn't possible to
 identify which AS inserted the EH from the received packet.
 Significant time will need to be spent contacting each AS that may
 have inserted the EH, to then inform them that they aren't removing
 the EHs they're inserting.

 The alternative to inserting EHs is to add EHs using IPv6-in-IPv6
 tunnelling e.g., via [RFC2423]. A new IPv6 packet is created with
 the new EH, with the original packet then being the new IPv6 packet's
 payload. As the source of the added EH is now identified in the
 outer IPv6 packet header, mechanisms such as PMTUD will work
 correctly if addition of the EH triggers the mechanism.

 The drawback of conventional IPv6-in-IPv6 tunnelling is the overhead
 of adding another IPv6 header to the original IPv6 packet, a minimum
 of an additional 40 octets. It is likely that insertion of EHs into
 existing in-flight packets was motivated by trying to avoid this
 tunnelling encapsulation overhead.

 From the perspective of the original and inner IPv6 packet, IPv6-in-
 IPv6 tunnelling is treating the outer or underlying IPv6 network as
 though it was a link-layer. The inner IPv6 packet is treated by the
 outer IPv6 packet as a link-layer opaque payload
 [I-D.ietf-intarea-tunnels].

 A property unique to IPv6-in-IPv6 tunnelling, unlike other link-layer
 encapsulations of IPv6 packets, is that all fixed header fields of
 the outer IPv6 "link-layer" packet have the same semantics as all
 fixed header fields of the inner and being carried IPv6 packet.

 If opaque treatment of the inner IPv6 packet by the outer IPv6 packet
 is compromised, matching inner and outer IPv6 packet field semantics
 provides the opportunity to reduce the IPv6-in-IPv6 tunnelling
 overhead. This can be achieved by partially or fully using a number
 of the outer IPv6 packet's fields as proxies for the inner packet's
 fields while the inner packet is in-flight over the outer IPv6 "link-
 layer". These inner IPv6 packet's fields are removed during link-
 layer encapsulation and then restored during link-layer
 decapsulation, using the values of the fields from the outer IPv6
 packet.

 This memo describes this method of IPv6-in-IPv6 tunnelling, giving it
 the name "Skinny IPv6-in-IPv6 Tunnelling". It preserves source
 address semantics for both the inner and outer packet source
 addresses, allowing mechanisms such as PMTUD to function, while also
 reducing tunnelling overhead.

https://datatracker.ietf.org/doc/html/rfc2423

Smith Expires January 27, 2018 [Page 3]

Internet-Draft Skinny IPv6-in-IPv6 Tunnelling July 2017

 In essence, this memo is a specification for a method of using IPv6
 as a link-layer, adding to others in that set such as [RFC2423].

 A number of the techniques and concepts have been taken from or
 inspired by the previous draft [I-D.smith-enhance-vne-with-ipv6].

2. Terminology

 Terminology used in this memo is from "IP Tunnels in the Internet
 Architecture" [I-D.ietf-intarea-tunnels].

3. Skinny IPv6-in-IPv6 Virtual Link Characteristics

 A virtual link created using this method has the following
 characteristics:

 o Limited to carrying IPv6 packets as link-layer payload. As many
 IPv4 packet fields have similar if not the same semantics as IPv6
 packet fields, a similar method could be used for carrying IPv4 in
 IPv6, however this is out of scope for this memo.

 o Point-to-multipoint transmission via IPv6 multicast. A link node
 (tunnel endpoint) can send a single packet, have it duplicated by
 the link (the underlying IPv6 network) and then have the
 duplicates arrive at multiple destination link nodes. The set of
 destination link nodes or tunnel endpoints are identified by an
 IPv6 multicast address.

 o Can be used to create a single link-layer instance (e.g., a single
 point-to-point connection between two routers, hosts, or a host
 and a router, or a single multi-access link interconnecting a set
 of routers), or as one of a set of component links used to create
 a link-layer instance (i.e., a multi-link link-layer topology,
 where links are bridged together.). In this latter case, a link-
 layer loop prevention mechanism may be needed.

4. Addressing Tunnel Endpoints

 Initially suggested in [I-D.smith-enhance-vne-with-ipv6], Skinny
 IPv6-in-IPv6 tunnelling uses individual /64s to identify individual
 tunnel endpoints, rather than using individual IPv6 addresses (i.e.,
 /128s).

 For Skinny IPv6-in-IPv6 unicast tunnelling to a tunnel endpoint, this
 allows the lower 64 bits of the outer packet's source and destination
 addresses (the Interface Identifier or IID parts) to carry the
 corresponding lower 64 bits of the inner packet's source and
 destination addresses. These two sets of 64 bits are removed from

https://datatracker.ietf.org/doc/html/rfc2423

Smith Expires January 27, 2018 [Page 4]

Internet-Draft Skinny IPv6-in-IPv6 Tunnelling July 2017

 the inner IPv6 packet's addresses, effectively lowering the
 tunnelling overhead by 16 octets.

 Multicast Skinny IPv6-in-IPv6 tunnel endpoints cannot be identified
 by /64s, as IPv6 multicast groups cannot be uniquely created at the
 /64 boundary. When multicast tunnelling towards a multicast group of
 tunnel endpoints, only the inner packet source address lower 64 bits
 are carried in the outer packet's source address lower 64 bits, and
 removed from the inner source address. The inner packet's full 128
 bit destination address is carried in the Skinny IPv6-in-IPv6 tunnel
 header. The removal of the inner packet's source address lower 64
 bits reduces the tunnelling overhead by 8 octets.

 An emergent benefit of this technique of carrying inner packet IIDs
 in the outer packet's addresses between tunnel endpoints is that
 inner packet address entropy useful for load balancing is exposed to
 the network carrying the outer packets.

 Skinny IPv6-in-IPv6 tunnel endpoints are expected to be represented
 as virtual interfaces in routers or hosts, and therefore will have at
 least a Link-Local unicast /128 address per the [RFC4291] interface
 address requirements, and perhaps other individual IPv6 addresses.

 The use of /64s to identify tunnel endpoints means that for other
 non-Skinny IPv6-in-IPv6 traffic originated by or sent to the tunnel
 endpoint, any of the individual IPv6 addresses within the /64 are
 valid as local source or destination addresses for this traffic.
 Examples of other types of traffic originated by or sent to tunnel
 endpoints could be ICMPv6, TCP, or UDP.

 When receiving non-Skinny IPv6-in-IPv6 packets, a tunnel endpoint is
 to consider all destination addresses within its assigned /64 valid
 and local, passing the received packets' payload to the appropriate
 upper layer protocol if supported, or dropping if not and possibly
 emitting an appropriate ICMPv6 message.

 When originating non-Skinny IPv6-in-IPv6 packets from a source
 address within the assigned /64, a common individual address within
 the /64 should be used for all packets, to avoid confusing a receiver
 that does not expect a single device to be assigned an entire /64.
 Alternatively, per connection or per protocol common individual
 source address could be used if useful. Consistent and expected
 source address usage by the sender is the requirement at the receiver
 that needs to be met.

 If the tunnel endpoint exists on a router (more specifically, is a
 forwarding interface), then the source address for tunnel endpoint

https://datatracker.ietf.org/doc/html/rfc4291

Smith Expires January 27, 2018 [Page 5]

Internet-Draft Skinny IPv6-in-IPv6 Tunnelling July 2017

 originated packets could be the Subnet-Router anycast address
 [RFC4291], the endpoint's /64 plus an IID of all zeros.

 Alternatively, if the tunnel endpoint exists on a host (more
 specifically, is a non-forwarding interface), then the source address
 should not be the Subnet-Router anycast address. Some other address
 within the /64, such as a statically configured address, or an
 address generated by the SLAAC procedure [RFC4862][RFC7217][RFC8064]
 should be used. Non-Subnet Router anycast source addresses could
 also be used by tunnel endpoints on routers.

 In any of these cases, source and destination address selection will
 occur per the standard IPv6 default address selection procedure
 [RFC6724], unless a specific source and/or destination address is
 provided.

5. Proxied Inner IPv6 Packet Header Fields

 While the inner IPv6 packet is being tunnelled, the following inner
 packet header fields are proxied by the fields in the outer IPv6
 packet header [RFC2460]:

 o Version

 o Traffic Class

 o Flow Label

 o Source Address lower 64 bits for both unicast and multicast tunnel
 destination endpoints

 o Destination Address lower 64 bits for unicast tunnel destination
 endpoints

6. Non-Proxied Inner IPv6 Packet Header Fields

 While the inner IPv6 packet is being tunnelled, values of the
 following inner packet header fields [RFC2460] are carried in fields
 in the Skinny IPv6-in-IPv6 Extension Header. This allows them to be
 restored upon decapsulation, as the outer packet's header field
 values cannot or may not be used.

 o Payload Length

 o Hop Limit

 o Source Address upper 64 bits

https://datatracker.ietf.org/doc/html/rfc4291
https://datatracker.ietf.org/doc/html/rfc4862
https://datatracker.ietf.org/doc/html/rfc8064
https://datatracker.ietf.org/doc/html/rfc6724
https://datatracker.ietf.org/doc/html/rfc2460
https://datatracker.ietf.org/doc/html/rfc2460

Smith Expires January 27, 2018 [Page 6]

Internet-Draft Skinny IPv6-in-IPv6 Tunnelling July 2017

 o Destination Address upper 64 bits

 o Destination Address lower 64 bits for multicast tunnel destination
 endpoints

7. Hop Limit Handling

 Conventional link-layers commonly do not have a hop count or hop
 limit field in their frames to mitigate the effects of link-layer
 forwarding loops. A separate mechanism or method must be used to
 prevent forwarding loops occurring.

 When IPv6 is being used as a link-layer, the packet's Hop Limit field
 and processing acts as a link-layer forwarding loop mitigation
 mechanism.

 It could be useful to have the number of hops the outer packet took
 included in the inner packet's recorded Hop Limit after the inner
 packet has traversed the tunnel. This would expose the outer IPv6
 packet hops that occurred during tunnelling to the inner IPv6
 packet's network. This may be useful for troubleshooting, or
 mitigating forwarding loops sooner.

 Alternatively, the number of hops the outer IPv6 packet took could be
 hidden from the inner IPv6 packet's network, by restoring the Hop
 Limit value from the Hop Limit field value in the Skinny IPv6-in-IPv6
 Extension Header. Restoring the inner packet's pre-Skinny Ipv6-in-
 IPv6 Hop Limit value is critical when the Neighbor Discovery protocol
 [RFC4861] is used across the Skinny IPv6-in-IPv6 virtual link. This
 is necessary as to ensure these ND packets have not come from an off-
 link source, their Hop Limit is set to 255 upon transmission and the
 recipient will only accept ND packets that arrive with a Hop Limit
 value of 255.

 Whether to use the outer packet's Hop Limit value or to use the inner
 Skinny IPv6-in-IPv6 EH preserved Hop Limit value during inner IPv6
 packet header reconstruction is indicated by the value of the Skinny
 IPv6-in-IPv6 EH preserved Hop Limit field value when it arrives at
 the destination tunnel endpoint. If the value is 0, the outer IPv6
 packet header's current Hop Limit value is used during
 reconstruction, where as if the value is non-zero (e.g., 255 for ND
 packets), then that value is used during inner IPv6 packet
 reconstruction.

https://datatracker.ietf.org/doc/html/rfc4861

Smith Expires January 27, 2018 [Page 7]

Internet-Draft Skinny IPv6-in-IPv6 Tunnelling July 2017

8. Skinny IPv6-in-IPv6 Tunnel Extension Header

 While the original IPv6 packet is being tunnelled, the Skinny IPv6
 Extension Header carries the particles of the original inner IPv6
 packet's header that are or may not be being proxied in the outer
 IPv6 packet header.

8.1. Extension Header rather than Destination Option

 [RFC6564] requires justification for the creation of a new Extension
 Header rather than the creation of a new Destinations Options Header
 option.

 The creation of a Skinny IPv6-in-IPv6 Extension Header is requested
 for the following reasons:

 o Simplified header processing, which will be beneficial at high
 packet per second rates. The receiving device will only need to
 look up a single Next Header value in either the outer IPv6 header
 or the previous Extension Header to determine that a Skinny IPv6-
 in-IPv6 EH follows. This is in comparison to a two stage lookup
 to process a Destination Option in a Destination Option EH.

 o Consistent with other IPv6-in-IPv6 tunnelling encapsulations that
 use Extension Headers such as conventional IPv6-in-IPv6 [RFC2423]
 and GRE [RFC7676].

8.2. Extension Header Format

 (ASCII art to come!)

 o Next Header - 8 bits.

 o Hdr Ext Len - 8 bits.

 o Reserved - 24 bits.

 o Inner Payload Length - 16 bits.

 o Inner Hop Limit - 8 bits.

 o Inner SA 64 bit Prefix - 64 bits / 8 octets.

 o Inner DA 64 bit Prefix - 64 bits / 8 octets.

 o Inner DA 64 bit IID - 64 bits / 8 octets.

https://datatracker.ietf.org/doc/html/rfc2423
https://datatracker.ietf.org/doc/html/rfc7676

Smith Expires January 27, 2018 [Page 8]

Internet-Draft Skinny IPv6-in-IPv6 Tunnelling July 2017

8.3. Extension Header Fields

 o Next Header - 8 bits field, specifying the header type of the
 header that immediately followed the inner IPv6 packet's original
 IPv6 fixed header. May be another extension header value, or an
 upper layer protocol value such as UDP or TCP.

 o Hdr Ext Len - 8 bit field, specifying the length of this Skinny
 IPv6-in-IPv6 extension header in units of 8 octets, minus the
 first unit of 8 octets. The valid values are 2 or 3.

 o Reserved - 24 bits field reserved for future use, to 8 octet align
 the extension header. Set to zero upon transmission, ignored upon
 receipt. A possible future use of one or more of these octets is
 as a flag field.

 o Inner Payload Length - 16 bits Payload Length field value from the
 inner IPv6 packet before Skinny IPv6-in-IPv6 encapsulation
 occurred.

 o Inner Hop Limit - 8 bits Hop Limit field value from inner IPv6
 packet before Skinny IPv6-in-IPv6 encapsulation occurred, or zero.

 o Inner SA 64 bit Prefix - upper 64 bits / 8 octets of the inner
 IPv6 packet's source address, prior to Skinny IPv6-in-IPv6
 encapsulation.

 o Inner DA 64 bit Prefix - upper 64 bits / 8 octets of the inner
 IPv6 packet's destination address, prior to Skinny IPv6-in-IPv6
 encapsulation.

 o Inner DA 64 bit IID - optional lower 64 bits / 8 octets of the
 inner IPv6 packet's destination address when the outer Skinny
 IPv6-in-IPv6 packet's destination is a multicast group of tunnel
 endpoints.

9. Encapsulation Procedure

 The following steps describe the encapsulation procedure performed by
 the ingress Skinny IPv6-in-IPv6 tunnel endpoint upon a IPv6 packet
 that is being tunnelled. Note that it is a functional description,
 meaning that implementations may perform different and more
 performance oriented steps that achieve the same functional outcome.

 After receiving the packet to be Skinny IPv6-in-IPv6 tunnelled from
 the upper IPv6 network layer:

Smith Expires January 27, 2018 [Page 9]

Internet-Draft Skinny IPv6-in-IPv6 Tunnelling July 2017

9.1. Skinny IPv6-in-IPv6 EH Construction

 1. Create a new instance of the Skinny IPv6-in-IPv6 Extension
 Header. If the destination tunnel endpoint is a multicast
 destination, the new EH instance will need to provide the
 optional Inner DA 64 bit IID field.

 2. Set the new EH's Next Header value to the Next Header value in
 the original IPv6 packet header's Next Header field value.

 3. If the destination Skinny-IPv6-in-IPv6 tunnel endpoint is an
 individual /64, set the new EH's Hdr Ext Len field value to 2.
 If the destination Skinny-IPv6-in-IPv6 tunnel endpoint is a
 multicast address, set the new EH's Hdr Ext Len field value to
 3.

 4. Set the new EH's Reserved field bits all to zeros.

 5. Set the new EH's Inner Payload Length field to the original IPv6
 packet header's Payload Length field value.

 6. If the tunnel endpoint is configured to use the outer IPv6
 packet header's Hop Limit value after tunnelling when
 reconstructing the inner IPv6 packet during decapsulation, set
 the new EH's Inner Hop Limit field value to zero.

 7. If the tunnel endpoint is not configured to use the original
 IPv6 packet header's Hop Limit value after tunnelling, the
 default configuration, set the new EH's Inner Hop Limit field
 value to the original inner IPv6 packet's Hop Limit value (note
 that this will be after the Hop Limit has been decremented if
 the IPv6 packet is being forwarded per [RFC2460]).

 8. Set the new EH's Inner SA 64 bit Prefix field to the high order
 8 octets of the original IPv6 packet header's source address
 high order 8 octets.

 9. Set the new EH's Inner DA 64 bit Prefix field to the high order
 8 octets of the original IPv6 packet header's destination
 address high order 8 octets.

 10. If the destination Skinny-IPv6-in-IPv6 tunnel endpoint is a
 multicast address, set the new EH's Inner DA 64 bit IID field to
 the low order 8 octets of the original IPv6 packet header's
 destination address low order 8 octets.

https://datatracker.ietf.org/doc/html/rfc2460

Smith Expires January 27, 2018 [Page 10]

Internet-Draft Skinny IPv6-in-IPv6 Tunnelling July 2017

9.2. Outer IPv6 Packet Construction

 1. Create a new instance of an IPv6 packet header, and set its
 Version field value to 6.

 2. Set the new IPv6 packet header's Traffic Class field value to
 the original IPv6 packet header's Traffic Class field value.

 3. Set the new IPv6 packet header's Flow Label field value to the
 original IPv6 packet header's Flow Label field value.

 4. If the tunnel endpoint is configured to use the outer IPv6
 packet header's Hop Limit value after tunnelling when
 reconstructing the inner IPv6 packet during decapsulation, set
 the new IPv6 packet header's Hop Limit to the original inner
 IPv6 packet header's Hop Limit field value.

 5. If the tunnel endpoint is not configured to use the original
 IPv6 packet header's Hop Limit value after tunnelling, the
 default configuration, set the new IPv6 packet header's Hop
 Limit field value to the device's current Hop Limit default
 value when originating packets.

 6. Set the new IPv6 packet header's Source Address high order 8
 octets/64 bits to the tunnel endpoint's /64 value.

 7. Set the new IPv6 packet header's Source Address low order 8
 octets/64 bits to the original IPv6 packet's Source Address low
 order 8 octets.

 8. Set the new IPv6 packet header's Destination Address high order
 8 octets/64 bits to the destination tunnel endpoint's /64 value,
 or for a multicast tunnel destination, the high order 8 octets
 of the destination multicast address.

 9. Set the new IPv6 packet header's Destination Address low order 8
 octets/64 bits to the original IPv6 packet's Destination Address
 lower order 8 octets, or for a multicast tunnel destination, the
 low order 8 octets of the destination multicast address.

 10. Append any additional tunnel endpoint specific EHs to the new
 IPv6 packet header.

 11. Set the new IPv6 packet header's Next Header field value to the
 first of the tunnel endpoint specific EHs selector value.

 12. Append the Skinny IPv6-in-IPv6 EH to the end of the existing set
 of EHs.

Smith Expires January 27, 2018 [Page 11]

Internet-Draft Skinny IPv6-in-IPv6 Tunnelling July 2017

 13. Append the original IPv6 packet's set of EHs after the Skinny
 IPv6-in-IPv6 EH, if any exist.

 14. Append the original IPv6 packet's payload.

 15. Set the new IPv6 packet header's Payload Length value based on
 the tunnel endpoint specific EHs, the Skinny IPv6-in-IPv6 EH and
 the original IPv6 packet's payload.

 16. Discard the original IPv6 packet, as it has now been fully
 Skinny IPv6-in-IPv6 encapsulated.

 17. Send the new IPv6 Skinny IPv6-in-IPv6 packet.

10. Decapsulation Procedure

 The following steps describe the decapsulation procedure performed by
 the egress Skinny IPv6-in-IPv6 tunnel endpoint upon a IPv6 packet
 that has been tunnelled. Note that it is a functional description,
 meaning that implementations may perform different and more
 performance oriented steps that achieve the same functional outcome.
 (An obvious optimisation is to utilise the received packet header
 when reconstructing the original Skinny IPv6-in-IPv6 tunnelled
 packet's header, avoiding a number of copy operations among other
 things.)

 After receiving the Skinny IPv6-in-IPv6 packet from the network:

 1. Perform any Extension Header processing for the EHs that reside
 after the received fixed IPv6 header and before the Skinny IPv6-
 in-IPv6 Extension Header.

 2. Create a new instance of an IPv6 packet header, and set its
 Version field value to 6. This is the IPv6 packet header that
 is being used to reconstruct the original inner IPv6 packet.

 3. From the received Skinny IPv6-in-IPv6 outer packet header, copy
 the Traffic Class field value into the new IPv6 header's Traffic
 Class field.

 4. From the received Skinny IPv6-in-IPv6 outer packet header, copy
 the Flow Label field value into the new IPv6 header's Flow Label
 field.

 5. From the Skinny IPv6-in-IPv6 Extension Header, copy the Inner
 Payload Length field value into the new IPv6 header's Payload
 Length field.

Smith Expires January 27, 2018 [Page 12]

Internet-Draft Skinny IPv6-in-IPv6 Tunnelling July 2017

 6. From the Skinny IPv6-in-IPv6 Extension Header, copy the Next
 Header field value into the new IPv6 header's Next Header field.

 7. If the Skinny IPv6-in-IPv6 Extension Header's Inner Hop Limit
 field value is 0, copy the received Skinny IPv6-in-IPv6 outer
 packet header's Hop Limit field value into the new IPv6 header's
 Hop Limit field.

 8. If the Skinny IPv6-in-IPv6 Extension Header's Inner Hop Limit
 field value is not 0, copy the Skinny IPv6-in-IPv6 Extension
 Header's Inner Hop Limit field value into the new IPv6 header's
 Hop Limit field.

 9. From the Skinny IPv6-in-IPv6 Extension Header, copy the SA 64
 bit Prefix into the high order 64 bits of the new IPv6 header's
 Source Address field.

 10. From the received Skinny IPv6-in-IPv6 outer packet header, copy
 the low order 64 bits of the Source Address into the low order
 64 bits of the the new IPv6 header's Source Address field.

 11. From the Skinny IPv6-in-IPv6 Extension Header, copy the DA 64
 bit Prefix into the high order 64 bits of the new IPv6 header's
 Destination Address field.

 12. If the Skinny IPv6-in-IPv6 Extension Header's Hdr Ext Len field
 value is 2, copy the low order 64 bits of the Destination
 Address from the received Skinny IPv6-in-IPv6 outer packet
 header into the low order 64 bits of the new IPv6 header's
 Destination Address field.

 13. If the Skinny IPv6-in-IPv6 Extension Header's Hdr Ext Len field
 value is 3, copy the Skinny IPv6-in-IPv6 Extension Header's
 Inner DA 64 bit IID field value into the low order 64 bits of
 the new IPv6 header's Destination Address field.

 14. If the Skinny IPv6-in-IPv6 Extension Header's Hdr Ext Len field
 value is not 2 or 3, discard the new IPv6 packet header and the
 received Skinny IPv6-in-IPv6 packet; if required, record them as
 discarded (e.g., in a tunnel interface discarded packet
 counter); and abort the decapsulation procedure.

 15. Append any Extension Headers that followed the Skinny IPv6-in-
 IPv6 Extension Header to the new IPv6 header.

 16. Append the Skinny IPv6-in-IPv6's packet's payload to the new
 IPv6 packet, after the appended Extension Headers.

Smith Expires January 27, 2018 [Page 13]

Internet-Draft Skinny IPv6-in-IPv6 Tunnelling July 2017

 17. Discard the received Skinny IPv6-in-IPv6 packet.

 18. Submit the new IPv6 packet to the device's upper IPv6 layer for
 further processing (such as forwarding or local processing based
 on the destination address).

11. Reduction in Overhead

 Conventional IPv6 tunnelling described in [RFC2423] adds at least
 another 40 octets to the original packet being tunnelled, as that is
 the size of the fixed IPv6 header.

 Using the method described in this memo, for packets destined to a
 single (unicast) tunnel endpoint, this 40 octet overhead is reduced
 to 24 octets, a saving of 16 octets. This is a 40 percent saving.

 Using the method described in this memo, for packets destined to
 multiple tunnel endpoint identified by an IPv6 multicast address,
 this 40 octet overhead is reduced to 32 octets, a saving of 8 octets.
 This is a 20 percent saving.

12. IANA Considerations

 IANA are requested to allocate an IPv6 Next Header value for use by
 the Skinny IPv6-in-IPv6 Extension header, per [RFC5237].

13. Security Considerations

 There are no security considerations specific to Skinny IPv6-in-IPv6
 tunnelling. General tunnelling security considerations apply
 [RFC6169].

14. Acknowledgements

 Review and comments were provided by YOUR NAME HERE!

 This memo was prepared using the xml2rfc tool.

15. Change Log [RFC Editor please remove]

draft-smith-skinny-ipv6-in-ipv6-tunnelling-00, initial version,
 2017-07-13

draft-smith-skinny-ipv6-in-ipv6-tunnelling-01, first revision,
 2017-07-13

 o Forgot Abstract in 00. Facepalm!

https://datatracker.ietf.org/doc/html/rfc2423
https://datatracker.ietf.org/doc/html/rfc5237
https://datatracker.ietf.org/doc/html/rfc6169
https://datatracker.ietf.org/doc/html/draft-smith-skinny-ipv6-in-ipv6-tunnelling-00
https://datatracker.ietf.org/doc/html/draft-smith-skinny-ipv6-in-ipv6-tunnelling-01

Smith Expires January 27, 2018 [Page 14]

Internet-Draft Skinny IPv6-in-IPv6 Tunnelling July 2017

draft-smith-skinny-ipv6-in-ipv6-tunnelling-02, second revision,
 2017-07-13

 o Typo in Abstract. Facepalm again!

draft-smith-skinny-ipv6-in-ipv6-tunnelling-01, third revision, 2017-
 0x-xx

 o Revert revision back to 00, as IETF ID submission tool complains.
 Previous were private revisions, waiting for IETF ID tool to
 become available again (two weeks pre-IETF99 meeting)

16. Informative References

 [I-D.francois-dots-ipv6-signal-option]
 Francois, J., Lahmadi, A., and M. Davids, "IPv6 DOTS
 Signal Option", draft-francois-dots-ipv6-signal-option-02
 (work in progress), May 2017.

 [I-D.ietf-intarea-tunnels]
 Touch, J. and M. Townsley, "IP Tunnels in the Internet
 Architecture", draft-ietf-intarea-tunnels-07 (work in
 progress), June 2017.

 [I-D.smith-enhance-vne-with-ipv6]
 Smith, M., "Enhancing Virtual Network Encapsulation with
 IPv6", draft-smith-enhance-vne-with-ipv6-07 (work in
 progress), October 2015.

 [I-D.voyer-6man-extension-header-insertion]
 daniel.voyer@bell.ca, d., daniel.bernier@bell.ca, d.,
 Leddy, J., Filsfils, C., Previdi, S., Salsano, S.,
 Cianfrani, A., Lebrun, D., Bonaventure, O., Jonnalagadda,
 P., Sharif, M., Elmalky, H., Abdelsalam, A., Raszuk, R.,
 Ayyangar, A., Steinberg, D., and W. Henderickx, "Insertion
 of IPv6 Segment Routing Headers in a Controlled Domain",

draft-voyer-6man-extension-header-insertion-00 (work in
 progress), March 2017.

 [RFC1981] McCann, J., Deering, S., and J. Mogul, "Path MTU Discovery
 for IP version 6", RFC 1981, DOI 10.17487/RFC1981, August
 1996, <http://www.rfc-editor.org/info/rfc1981>.

 [RFC2423] Vaudreuil, G. and G. Parsons, "VPIM Voice Message MIME
 Sub-type Registration", RFC 2423, DOI 10.17487/RFC2423,
 September 1998, <http://www.rfc-editor.org/info/rfc2423>.

https://datatracker.ietf.org/doc/html/draft-smith-skinny-ipv6-in-ipv6-tunnelling-02
https://datatracker.ietf.org/doc/html/draft-smith-skinny-ipv6-in-ipv6-tunnelling-01
https://datatracker.ietf.org/doc/html/draft-francois-dots-ipv6-signal-option-02
https://datatracker.ietf.org/doc/html/draft-ietf-intarea-tunnels-07
https://datatracker.ietf.org/doc/html/draft-smith-enhance-vne-with-ipv6-07
https://datatracker.ietf.org/doc/html/draft-voyer-6man-extension-header-insertion-00
https://datatracker.ietf.org/doc/html/rfc1981
http://www.rfc-editor.org/info/rfc1981
https://datatracker.ietf.org/doc/html/rfc2423
http://www.rfc-editor.org/info/rfc2423

Smith Expires January 27, 2018 [Page 15]

Internet-Draft Skinny IPv6-in-IPv6 Tunnelling July 2017

 [RFC2460] Deering, S. and R. Hinden, "Internet Protocol, Version 6
 (IPv6) Specification", RFC 2460, DOI 10.17487/RFC2460,
 December 1998, <http://www.rfc-editor.org/info/rfc2460>.

 [RFC4291] Hinden, R. and S. Deering, "IP Version 6 Addressing
 Architecture", RFC 4291, DOI 10.17487/RFC4291, February
 2006, <http://www.rfc-editor.org/info/rfc4291>.

 [RFC4861] Narten, T., Nordmark, E., Simpson, W., and H. Soliman,
 "Neighbor Discovery for IP version 6 (IPv6)", RFC 4861,
 DOI 10.17487/RFC4861, September 2007,
 <http://www.rfc-editor.org/info/rfc4861>.

 [RFC4862] Thomson, S., Narten, T., and T. Jinmei, "IPv6 Stateless
 Address Autoconfiguration", RFC 4862,
 DOI 10.17487/RFC4862, September 2007,
 <http://www.rfc-editor.org/info/rfc4862>.

 [RFC5237] Arkko, J. and S. Bradner, "IANA Allocation Guidelines for
 the Protocol Field", BCP 37, RFC 5237,
 DOI 10.17487/RFC5237, February 2008,
 <http://www.rfc-editor.org/info/rfc5237>.

 [RFC6169] Krishnan, S., Thaler, D., and J. Hoagland, "Security
 Concerns with IP Tunneling", RFC 6169,
 DOI 10.17487/RFC6169, April 2011,
 <http://www.rfc-editor.org/info/rfc6169>.

 [RFC6564] Krishnan, S., Woodyatt, J., Kline, E., Hoagland, J., and
 M. Bhatia, "A Uniform Format for IPv6 Extension Headers",

RFC 6564, DOI 10.17487/RFC6564, April 2012,
 <http://www.rfc-editor.org/info/rfc6564>.

 [RFC6724] Thaler, D., Ed., Draves, R., Matsumoto, A., and T. Chown,
 "Default Address Selection for Internet Protocol Version 6
 (IPv6)", RFC 6724, DOI 10.17487/RFC6724, September 2012,
 <http://www.rfc-editor.org/info/rfc6724>.

 [RFC7217] Gont, F., "A Method for Generating Semantically Opaque
 Interface Identifiers with IPv6 Stateless Address
 Autoconfiguration (SLAAC)", RFC 7217,
 DOI 10.17487/RFC7217, April 2014,
 <http://www.rfc-editor.org/info/rfc7217>.

 [RFC7676] Pignataro, C., Bonica, R., and S. Krishnan, "IPv6 Support
 for Generic Routing Encapsulation (GRE)", RFC 7676,
 DOI 10.17487/RFC7676, October 2015,
 <http://www.rfc-editor.org/info/rfc7676>.

https://datatracker.ietf.org/doc/html/rfc2460
http://www.rfc-editor.org/info/rfc2460
https://datatracker.ietf.org/doc/html/rfc4291
http://www.rfc-editor.org/info/rfc4291
https://datatracker.ietf.org/doc/html/rfc4861
http://www.rfc-editor.org/info/rfc4861
https://datatracker.ietf.org/doc/html/rfc4862
http://www.rfc-editor.org/info/rfc4862
https://datatracker.ietf.org/doc/html/bcp37
https://datatracker.ietf.org/doc/html/rfc5237
http://www.rfc-editor.org/info/rfc5237
https://datatracker.ietf.org/doc/html/rfc6169
http://www.rfc-editor.org/info/rfc6169
https://datatracker.ietf.org/doc/html/rfc6564
http://www.rfc-editor.org/info/rfc6564
https://datatracker.ietf.org/doc/html/rfc6724
http://www.rfc-editor.org/info/rfc6724
https://datatracker.ietf.org/doc/html/rfc7217
http://www.rfc-editor.org/info/rfc7217
https://datatracker.ietf.org/doc/html/rfc7676
http://www.rfc-editor.org/info/rfc7676

Smith Expires January 27, 2018 [Page 16]

Internet-Draft Skinny IPv6-in-IPv6 Tunnelling July 2017

 [RFC8064] Gont, F., Cooper, A., Thaler, D., and W. Liu,
 "Recommendation on Stable IPv6 Interface Identifiers",

RFC 8064, DOI 10.17487/RFC8064, February 2017,
 <http://www.rfc-editor.org/info/rfc8064>.

Author's Address

 Mark Smith
 PO BOX 521
 HEIDELBERG, VIC 3084
 AU

 Email: markzzzsmith@gmail.com

https://datatracker.ietf.org/doc/html/rfc8064
http://www.rfc-editor.org/info/rfc8064

Smith Expires January 27, 2018 [Page 17]

