
Network Working Group S. Smyshlyaev, Ed.
Internet-Draft E. Alekseev
Intended status: Informational E. Smyshlyaeva
Expires: December 11, 2018 G. Sedov
 CryptoPro
 June 9, 2018

GOST Cipher Suites for TLS 1.2
draft-smyshlyaev-tls12-gost-suites-00

Abstract

 This document specifies a set of cipher suites for the Transport
 Layer Security (TLS) protocol Version 1.2 to support the Russian
 cryptographic standard algorithms.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on December 11, 2018.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Smyshlyaev, et al. Expires December 11, 2018 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-DraGOST Cipher Suites for Transport Layer Security (June 2018

Table of Contents

1. Introduction . 2
2. Conventions Used in This Document 3
3. Basic Terms and Definitions 3
4. Cipher Suite Definitions 4
4.1. Record Payload Protection 4
4.2. Key Exchange and Authentication 5
4.2.1. Hello Messages 7
4.2.1.1. Signature Algorithms Extension 8

4.2.2. CertificateRequest 8
4.2.3. ClientKeyExchange 9
4.2.3.1. CTR_OMAC . 10
4.2.3.2. CNT_IMIT . 11

4.2.4. CertificateVerify 13
4.3. Cryptographic Algorithms 14
4.3.1. Block Cipher . 14
4.3.2. MAC . 14
4.3.3. Encryption Algorithm 15
4.3.4. SNMAX . 15
4.3.5. Key Tree Parameters 15
4.3.6. PRF and HASH . 16

5. Additional Algorithms . 16
5.1. TLSTREE . 16
5.2. KExp15 and KImp15 Algorithms 16
5.3. KEG Algorithm . 18
5.4. gostIMIT28147 . 18

6. IANA Considerations . 19
7. Security Considerations 19
8. References . 19
8.1. Normative References 19
8.2. Informative References 20

Appendix A. Test Examples 21
A.1. Test Examples for TODO 21
A.2. Test Examples for TODO 21

Appendix B. Acknowledgments 21
 Authors' Addresses . 21

1. Introduction

 This document specifies three new cipher suites for the Transport
 Layer Security (TLS) Protocol Version 1.2 [RFC5246] to support the
 set of Russian cryptographic standard algorithms (called GOST
 algorithms). All of them use the GOST R 34.11-2012 [GOST3411-2012]
 hash algorithm (the English version can be found in [RFC6986]) and
 the GOST R 34.10-2012 [GOST3410-2012] signature algorithm (the
 English version can be found in [RFC7091]) but use different

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc6986
https://datatracker.ietf.org/doc/html/rfc7091

Smyshlyaev, et al. Expires December 11, 2018 [Page 2]

Internet-DraGOST Cipher Suites for Transport Layer Security (June 2018

 encryption algorithms, so they are divided into two types: the
 CTR_OMAC cipher suites and the CNT_IMIT cipher suite.

 The CTR_OMAC cipher suites use the GOST R 34.12-2015 [GOST3412-2015]
 block ciphers (the English version can be found in [RFC7801]).

 TLS_GOSTR341112_256_WITH_KUZNYECHIK_CTR_OMAC = {0xXX, 0xXX};
 TLS_GOSTR341112_256_WITH_MAGMA_CTR_OMAC = {0xXX, 0xXX};

 The CNT_IMIT cipher suites use the GOST 28147-89 [GOST28147-89] block
 cipher (the English version can be found in [RFC5830]).

 TLS_GOSTR341112_256_WITH_28147_CNT_IMIT = {0xXX, 0xXX};

2. Conventions Used in This Document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

3. Basic Terms and Definitions

 This document uses the following terms and definitions for the sets
 and operations on the elements of these sets:

 B* the set of all byte strings of a finite length (hereinafter
 referred to as strings), including the empty string;

 B_s The set of byte vectors of size s, s >= 0, for s = 0 the B_s
 set consists of a single empty element of size 0. If W is an
 element of B_s, then W = (w^1, w^2, ..., w^s), where w^1,
 w^2, ..., w^s are in {0, ... , 255};

 b[i..j] the string b[i..j] = (b_i, b_{i+1}, ... , b_j) in B_{j-i+1}
 where 1<=i<=j<=s and b = (b_1, ... , b_s) in B_s

 |X| the byte length of the byte string X;

 A | C concatenation of strings A and C both belonging to B*, i.e.,
 a string in B_{|A|+|C|}, where the left substring in B_|A| is
 equal to A, and the right substring in B_|C| is equal to C;

 Int_s the transformation that maps a string a = (a_s, ... , a_1) in
 B_s into the integer Int_s(a) = 256^{s-1} * a_s + ... + 256 *
 a_2 + a_1 (the interpretation of the binary string as an
 integer);

https://datatracker.ietf.org/doc/html/rfc7801
https://datatracker.ietf.org/doc/html/rfc5830
https://datatracker.ietf.org/doc/html/rfc2119

Smyshlyaev, et al. Expires December 11, 2018 [Page 3]

Internet-DraGOST Cipher Suites for Transport Layer Security (June 2018

 Vec_s the transformation inverse to the mapping Int_s (the
 interpretation of an integer as a binary string);

 Str_s the transformation that maps an integer i = 256^{s-1} * i_s +
 ... + 2 * i_2 + i_1 into the string Str_s(i) = (i_1, ... ,
 i_s) in B_s;

 k the byte-length of the block cipher key;

 n the block size of the block cipher (in bytes);

 Q_C the public key stored in the client's certificate;

 k_C the private key that corresponds to Q_C key;

 Q_S the server's public key;

 k_C the server's private key;

 r_C the random string that corresponds to ClientHello.random
 field from [RFC5246];

 r_S the random string that corresponds to ServerHello.random
 field from [RFC5246];

4. Cipher Suite Definitions

4.1. Record Payload Protection

 All of the cipher suites described in this document MUST use the
 stream cipher (see Section 4.3.3) to protect records.

 The general description of the TLSPlaintext, the TLSCompressed and
 the TLSCiphertext structures can be found in Sections 6.2.1, 6.2.2
 и 6.2.3 of [RFC5246]. The TLSCiphertext structure for the
 CTR_OMAC and CNT_IMIT cipher suits is specified as follows.

 struct {
 ContentType type;
 ProtocolVersion version;
 uint16 length;
 opaque fragment[TLSCiphertext.length];
 } TLSCiphertext;

 The TLSCiphertext.fragment that corresponds to the seq_num record
 sequence number is formed as follows.

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5246

Smyshlyaev, et al. Expires December 11, 2018 [Page 4]

Internet-DraGOST Cipher Suites for Transport Layer Security (June 2018

 1. Generate the key material for the current record using the
 TLSTREE function defined in Section 5.1 and the session key
 material: sender_write_key (either the client_write_key or the
 server_write_key), sender_write_MAC_key (either the
 client_write_MAC_key or the server_write_MAC_key) and
 sender_write_IV (either the client_write_IV or the
 server_write_IV):

 K^{seq_num}_ENC = TLSTREE(sender_write_key, seq_num);

 K^{seq_num}_MAC = TLSTREE(sender_write_MAC_key, seq_num);

 IV_{seq_num} = Vec_{n/2}((Int_{n/2}(sender_write_IV) +
 seq_num) mod 2^{n*8/2}).

 2. The MAC value (MACValue) is generated by the MAC algorithm (see
Section 4.3.2) similar to Section 6.2.3.1 of [RFC5246] except the

 used MAC key: the sender_write_MAC_key is replaced by the
 K^{seq_num}_MAC key:

 MACData = Str_8(seq_num)│TLSCompressed.type |
 TLSCompressed.version | TLSCompressed.length |
 TLSCompressed.fragment;

 MACValue = MAC(K^{seq_num}_MAC, MACData).

 3. The stream cipher ENC (see Section 4.3.3) encrypts the entire
 data with the MACValue as follows:

 TLSCiphertext.fragment = ENC(K^{seq_num}_ENC, IV_{seq_num},
 TLSCompressed.fragment | MACValue).

4.2. Key Exchange and Authentication

 All of the cipher suites described in this document use ECDH to
 compute the TLS premaster secret.

https://datatracker.ietf.org/doc/html/rfc5246#section-6.2.3.1

Smyshlyaev, et al. Expires December 11, 2018 [Page 5]

Internet-DraGOST Cipher Suites for Transport Layer Security (June 2018

 Client Server

 ClientHello -------->
 ServerHello
 Certificate
 CertificateRequest*
 <-------- ServerHelloDone
 Certificate*
 ClientKeyExchange
 CertificateVerify*
 [ChangeCipherSpec]
 Finished -------->
 [ChangeCipherSpec]
 <-------- Finished
 Application Data <-------> Application Data

 * message is not sent unless client authentication is desired

 Figure 1 shows all messages involved in the TLS key establishment
 protocol (aka full handshake). A ServerKeyExchange MUST NOT be sent
 (the server's certificate contains all the necessary keying
 information required by the client to arrive at the premaster
 secret).

 The key exchange process consists of the following steps:

 1. The client generates ECDHE key pair (Q_eph, k_eph), Q_eph is on
 the same curve as the server's long-term public key Q_S.

 2. The client generates the premaster secret value PS. The PS value
 is chosen by random from B_32.

 3. Using k_eph and server long-term public key the client generates
 the encryption key for key-wrap algorithm and then sends the PS
 value wrapped with particular key-wrap algorithm.

 4. The client sends its ephemeral public key Q_eph and the wrapped
 PS value in the ClientKeyExchange message.

 5. The server extract the premaster secret value PS using its long-
 term secret key k_S in accordance with the key wrap algorithm.

 The server side of the channel is always authenticated; the client
 side is optionally authenticated. The server is authenticated using
 it's long term private key from the certificate and proving that it

Smyshlyaev, et al. Expires December 11, 2018 [Page 6]

Internet-DraGOST Cipher Suites for Transport Layer Security (June 2018

 knows a shared secret. The client is authenticated when the server
 is checking its signature.

 The proposed cipher suites has direct impact only on the ClientHello,
 the ServerHello, the CertificateRequest, the ClientKeyExchange and
 the CertificateVerify handshake messages, that are described bellow
 in greater detail in terms of the content and processing of these
 messages.

4.2.1. Hello Messages

 The ClientHello message must meet the following requirements:

 o The ClientHello.compression_methods field MUST contain exactly one
 byte, set to zero, which corresponds to the "null" compression
 method.

 o While using cipher CTR_OMAC cipher suites the
 ClientHello.extensions field MUST contain the following three
 extensions: signature_algorithms (see Section 4.2.1.1),
 extended_master_secret (see [RFC7627]), renegotiation_info (see
 [RFC5746]).

 o While using the CNT_IMIT cipher suite the ClientHello.extensions
 field MUST contain the signature_algorithms (see Section 4.2.1.1)
 extension. And it is RECOMMENDED to contain the following two
 extensions: extended_master_secret (see [RFC7627]),
 renegotiation_info (see [RFC5746]).

 The ServerHello message must meet the following requirements:

 o The ServerHello.compression_method field MUST contain exactly one
 byte, set to zero, which corresponds to the "null" compression
 method.

 o While using the CTR_OMAC cipher suites the ServerHello.extensions
 field MUST contain the following two extensions:
 extended_master_secret (see [RFC7627]), renegotiation_info (see
 [RFC5746]).

 o While using the CNT_IMIT cipher suite it is RECOMMENDED for the
 ServerHello.extensions field to contain the following two
 extensions: extended_master_secret (see [RFC7627]),
 renegotiation_info (see [RFC5746]).

 Note: If the extended_master_secret extension is agreed, then the
 master secret value MUST be calculated in accordance with [RFC7627].

https://datatracker.ietf.org/doc/html/rfc7627
https://datatracker.ietf.org/doc/html/rfc5746
https://datatracker.ietf.org/doc/html/rfc7627
https://datatracker.ietf.org/doc/html/rfc5746
https://datatracker.ietf.org/doc/html/rfc7627
https://datatracker.ietf.org/doc/html/rfc5746
https://datatracker.ietf.org/doc/html/rfc7627
https://datatracker.ietf.org/doc/html/rfc5746
https://datatracker.ietf.org/doc/html/rfc7627

Smyshlyaev, et al. Expires December 11, 2018 [Page 7]

Internet-DraGOST Cipher Suites for Transport Layer Security (June 2018

4.2.1.1. Signature Algorithms Extension

 The signature_algorithms extension is described in Section 7.4.1.4.1
 of (see [RFC5246]) and is specified as follows.

 SignatureAndHashAlgorithm
 supported_signature_algorithms<2..2^16-2>;

 struct {
 HashAlgorithm hash;
 SignatureAlgorithm signature;
 } SignatureAndHashAlgorithm;

 The set of supported hash algorithms is specified as follows:

 enum {
 gostr34102012_256(238),
 gostr34102012_512(239), (255)
 } SignatureAlgorithm;

 where gostr34112012_256 and gostr34112012_512 values correspond to
 the GOST R 34.11-2012 [GOST3411-2012] hash algorithm with 32-byte
 (256-bit) and 64-byte (512-bit) hash code respectively.

 The set of supported signature algorithms is specified as follows:

 enum {
 gostr34102012_256(238),
 gostr34102012_512(239), (255)
 } SignatureAlgorithm;

 where gostr34102012_256 and gostr34102012_512 values correspond to
 the GOST R 34.10-2012 [GOST3410-2012] signature algorithm with
 32-byte (256-bit) and 64-byte (512-bit) key length respectively.

4.2.2. CertificateRequest

 When this message is sent: this message is sent when requesting
 client authentication.

 Meaning of this message: the server uses this message to suggest
 acceptable certificates.

https://datatracker.ietf.org/doc/html/rfc5246

Smyshlyaev, et al. Expires December 11, 2018 [Page 8]

Internet-DraGOST Cipher Suites for Transport Layer Security (June 2018

 The TLS CertificateRequest message is extended as follows.

 struct {
 ClientCertificateType certificate_types<1..2^8-1>;
 SignatureAndHashAlgorithm
 supported_signature_algorithms<2..2^16-2>;
 DistinguishedName certificate_authorities<0..2^16-1>;
 } CertificateRequest;

 where the SignatureAndHashAlgorithm structure is specified in
Section 4.2.1.1, the ClientCertificateType and the DistinguishedName

 structures are specified as follows.

 enum {
 gostr34102012_256(238),
 gostr34102012_512(239), (255)
 } ClientCertificateType;

 opaque DistinguishedName<1..2^16-1>;

4.2.3. ClientKeyExchange

 Client performs the following actions to create the ClientKeyExchange
 message:

 o Generates ECDHE key pair (Q_eph, k_eph), Q_eph is on the same
 curve as the server's long-term public key Q_S.

 o Chooses randomly a premaster secret value PS from B_32;

 o Creates the export representation of the PS value using some key
 wrap function.

 The ClientKeyExchange structure is defined as follows.

Smyshlyaev, et al. Expires December 11, 2018 [Page 9]

Internet-DraGOST Cipher Suites for Transport Layer Security (June 2018

 enum { VKO_KDF_GOST, vko_gost } KeyExchangeAlgorithm;

 struct {
 select (KeyExchangeAlgorithm) {
 case VKO_KDF_GOST: PSKeyTransport;
 case vko_gost: TLSGostKeyTransportBlob;
 } exchange_keys;
 } ClientKeyExchange;

 The PSKeyTransport structure corresponds to the CTR_OMAC cipher
 suites and is described in Section 4.2.3.1 and the
 TLSGostKeyTransportBlob corresponds to CNT_IMIT cipher suite and is
 described in Section 4.2.3.2.

4.2.3.1. CTR_OMAC

 The CTR_OMAC cipher suites use the KExp15 and the KImp15 algorithms
 defined in Section 5.2 for key wrapping.

 The export representation of the PS value is calculated as follows.

 1. The client generates the keys K^EXP_MAC and K^EXP_ENC using the
 KEG function described in Section 5.3:

 H = HASH(r_C | r_S);

 K^EXP_MAC | K^EXP_ENC = KEG(k_eph, Q_S, H).

 2. The client generates export representation of the premaster
 secret value PS:

 IV = H[25..24 + n / 2];

 PSExp = KExp15(PS, K^EXP_MAC, K^EXP_ENC, IV).

 3. The client creates the PSKeyTransport structure that is defined
 as follows:

Smyshlyaev, et al. Expires December 11, 2018 [Page 10]

Internet-DraGOST Cipher Suites for Transport Layer Security (June 2018

 PSKeyTransport ::= SEQUENCE {
 PSEXP OCTET STRING,
 ephemeralPublicKey SubjectPublicKeyInfo
 }
 SubjectPublicKeyInfo ::= SEQUENCE {
 algorithm AlgorithmIdentifier,
 subjectPublicKey BITSTRING
 }
 AlgorithmIdentifier ::= SEQUENCE {
 algorithm OBJECT IDENTIFIER,
 parameters ANY OPTIONAL
 }

 Here the PSEXP field contains the PSExp value and the
 ephemeralPublicKey field contains the Q_eph value.

 After receiving the ClientKeyExchange message the server process it
 as follows.

 1. Checks the next three conditions fulfilling and terminates the
 connection with fatal error if not.

 o Q_eph is on the same curve as server public key;

 o Q_eph is not equal to zero point;

 o q * Q_eph is not equal to zero point.

 2. Generates the keys K^EXP_MAC and K^EXP_ENC using the KEG function
 described in Section 5.3:

 H = HASH(r_C | r_S);

 K^EXP_MAC | K^EXP_ENC = KEG(k_S, Q_eph, H).

 3. Extracts the common secret PS from the export representation
 PSExp:

 IV = H[25..24+n/2];

 PS = KImp15(PSExp, K^EXP_MAC, K^EXP_ENC, IV).

4.2.3.2. CNT_IMIT

 The client generates the key KEK using the VKO function. VKO is one
 of the functions VKO_GOSTR3410_2012_256 or VKO_GOSTR3410_2012_512
 described in [RFC7836]. The particular function depends on the

https://datatracker.ietf.org/doc/html/rfc7836

Smyshlyaev, et al. Expires December 11, 2018 [Page 11]

Internet-DraGOST Cipher Suites for Transport Layer Security (June 2018

 elliptic curve used in the server certificate. The KEK calculation
 is made as follow

 UKM = HASH(r_C | r_S)

 KEK = VKO(k_eph, Q_S, UKM)

 Generates the diversified key KEK(UKM) using the function CryptoPro
 KEK Diversification Algorithm defined in [RFC4357]

 Generates export representation of the common secret PS:

 Compute a 4-byte MAC value, gost28147IMIT (UKM, KEK(UKM), CEK) as
 described in Section 5.4. Call the result CEK_MAC.

 Encrypt CEK in ECB mode using KEK(UKM). Call the ciphertext
 CEK_ENC.

 The wrapped key is the string UKM | CEK_ENC | CEK_MAC in B_44.

 The TLSGostKeyTransportBlob is defined as

TLSGostKeyTransportBlob ::= SEQUENCE {
 keyBlob GostR3410-KeyTransport,
}
GostR3410-KeyTransport ::=
 SEQUENCE {
 sessionEncryptedKey Gost28147-89-EncryptedKey,
 transportParameters [0] IMPLICIT GostR3410-TransportParameters OPTIONAL
}
Gost28147-89-EncryptedKey ::=
 SEQUENCE {
 encryptedKey Gost28147-89-Key,
 macKey Gost28147-89-MAC
}
GostR3410-TransportParameters ::=
 SEQUENCE {
 encryptionParamSet OBJECT IDENTIFIER,
 ephemeralPublicKey [0] IMPLICIT SubjectPublicKeyInfo OPTIONAL,
 ukm OCTET STRING
}

 The Gost28147-89-EncryptedKey.encryptedKey value contais CEK_ENC
 value, the Gost28147-89-EncryptedKey.macKey contains CEK_MAC, and
 GostR3410-TransportParameters.ukm contains the UKM value.

https://datatracker.ietf.org/doc/html/rfc4357

Smyshlyaev, et al. Expires December 11, 2018 [Page 12]

Internet-DraGOST Cipher Suites for Transport Layer Security (June 2018

 There MUST be a keyBlob.transportParameters.ephemeralPublicKey field
 containing the client ephemeral public key Q_eph.

 After receiving ClientKeyExchange message server process it as
 follows

 o Checks the next four conditions fulfilling and terminates the
 connection with fatal error if not.

 1. Q_eph is on the same curve as server public key;

 2. Q_eph is not equal to zero point;

 3. q * Q_eph is not equal to zero point.

 4. Checks if UKM = HASH(r_C | r_S)

 o Generates the key KEK using the VKO function.

 KEK = VKO(k_S, Q_eph, UKM)

 o Generates the diversified key KEK(UKM) using the function
 CryptoPro KEK Diversification Algorithm defined in [RFC4357]

 o Extracts the common secret PS from the export representation:

 Decrypt CEK_ENC in ECB mode using KEK(UKM). Call the result
 CEK.

 Compute a 4-byte MAC value, gost28147IMIT (UKM, KEK(UKM), CEK).
 If the result is not equal to CEK_MAC return a fault value.

4.2.4. CertificateVerify

 The TLS CertificateVerify message is extended as follows.

 struct {
 SignatureAndHashAlgorithm algorithm;
 opaque signature<0..2^16-1>;
 } CertificateVerify;

 where SignatureAndHashAlgorithm structure is specified in
Section 4.2.1.1.

 The CertificateVerify.signature field is specified as follows.

https://datatracker.ietf.org/doc/html/rfc4357

Smyshlyaev, et al. Expires December 11, 2018 [Page 13]

Internet-DraGOST Cipher Suites for Transport Layer Security (June 2018

CertificateVerify.signature = SIGN_{k_C}(handshake_messages) = Str_l(r) ||
Str_l(s)

 where SIGN_{k_C} is the GOST R 34.10-2012 [GOST3410-2012] signature
 algorithm, k_C is a client long-term private key that corresponds to
 the client long-term public key Q_C from the client's certificate, l
 = 32 for gostr34102012_256 signature algorithm and l = 64 for
 gostr34102012_512 signature algorithm.

4.3. Cryptographic Algorithms

4.3.1. Block Cipher

 The cipher suite TLS_GOSTR341112_256_WITH_KUZNYECHIK_CTR_OMAC MUST
 use Kuznyechik [RFC7801] as a base block cipher for the encryption
 and MAC algorithm. The block length for this suite is 16 bytes and
 the key length is 32 bytes. The cipher suite
 TLS_GOSTR341112_256_WITH_MAGMA_CTR_OMAC MUST use Magma
 [GOST3412-2015] as a base block cipher for the encryption and MAC
 algorithm. The block length for this suite is 8 bytes and the key
 length is 32 bytes.

 The cipher suite TLS_GOSTR341112_256_WITH_28147_CNT_IMIT MUST use
 GOST 28147-89 as a base block cipher [RFC5830] with the set of
 parameters id-tc26-gost-28147-param-Z defined in [RFC7836]. The
 block length for this suite is 8 bytes and the key length is 32
 bytes.

4.3.2. MAC

 Both CTR_OMAC cipher suites use the MAC construction as defined in
 [GOST3413-2015].

 The CNT_IMIT cipher suite uses the MAC construction defined in
 [RFC5830] with CryptoPro Key Meshing algorithm defined in [RFC4357]
 as follows. The MAC value MAC(K, M_t) for the message M_t is
 calculated with accordance to the next formula

 MAC(K, M_t) = gostIMIT28147_MESH(IV0, K, M_0 | M_1 | ... | M_t)

 Here gostIMIT28147_MESH(IV, K, M) is the gostIMIT28147(IV, K, M)
 function defined in Section 5.4 with CryptoPro Key Meshing algorithm
 defined in [RFC4357] and IV0 in B_8 is a string of all zeroes

https://datatracker.ietf.org/doc/html/rfc7801
https://datatracker.ietf.org/doc/html/rfc5830
https://datatracker.ietf.org/doc/html/rfc7836
https://datatracker.ietf.org/doc/html/rfc5830
https://datatracker.ietf.org/doc/html/rfc4357
https://datatracker.ietf.org/doc/html/rfc4357

Smyshlyaev, et al. Expires December 11, 2018 [Page 14]

Internet-DraGOST Cipher Suites for Transport Layer Security (June 2018

4.3.3. Encryption Algorithm

 Both CTR_OMAC cipher suites use the block cipher in CTR-ACPKM mode
 defined in [DraftRekeying]. The section size is 4 KB for
 TLS_GOSTR341112_256_WITH_KUZNYECHIK_CTR_OMAC cipher suite and 1 KB
 for TLS_GOSTR341112_256_WITH_MAGMA_CTR_OMAC cipher suite. The
 initial counter nonce is defined as in Section 4.1.

 The CNT_IMIT cipher suite uses the counter mode construction defined
 in [RFC5830] with CryptoPro Key Meshing algorithm defined in
 [RFC4357]. The encryption of the record M_t is performed with
 accordance to the next formula

 ENC(M_0) | ENC(M_1) | ... | ENC(M_t) = CNT_MESH(M_0 | M_1 | ... |
 M_t)

 Here ENC(M_i) denotes the encryption of Record with number i and
 CNT_MESH denotes counter mode defined in [RFC5830] with CryptoPro Key
 Meshing algorithm defined in [RFC4357].

4.3.4. SNMAX

 The SNMAX parameter defines the maximal amount of messages that can
 be send during one TLS 1.2 connection. For
 TLS_GOSTR341112_256_WITH_KUZNYECHIK_CTR_OMAC cipher suite this amount
 is 2^64 - 1 messages and for TLS_GOSTR341112_256_WITH_MAGMA_CTR_OMAC
 is 2^32 - 1 messages.

4.3.5. Key Tree Parameters

 The CTR_OMAC cipher suites use the TLSTREE function for the re-keying
 approach. The constants for it are defined as in the table below.

 Key tree constants

 +--+------------------------+
 | CipherSuites | C_1, C_2, C_3 |
 +--+------------------------+
TLS_GOSTR341112_256_WITH_KUZNYECHIK_CTR_	C_1=0xFFFFFFFF00000000
OMAC	, C_2=0xFFFFFFFFFFF800
	00,
	C_3=0xFFFFFFFFFFFFFFC0
TLS_GOSTR341112_256_WITH_MAGMA_CTR_OMAC	C_1=0xFFFFFFC000000000
	, C_2=0xFFFFFFFFFE0000
	00,
	C_3=0xFFFFFFFFFFFFF000
 +--+------------------------+

https://datatracker.ietf.org/doc/html/rfc5830
https://datatracker.ietf.org/doc/html/rfc4357
https://datatracker.ietf.org/doc/html/rfc5830
https://datatracker.ietf.org/doc/html/rfc4357

Smyshlyaev, et al. Expires December 11, 2018 [Page 15]

Internet-DraGOST Cipher Suites for Transport Layer Security (June 2018

4.3.6. PRF and HASH

 The pseudorandom function (PRF) for all the cipher suites defined in
 this document is the PRF_TLS_GOSTR3411_2012_256 function described in
 [RFC7836].

 The hash function Hash for all the cipher suites defined in this
 document is the GOST R 34.11-2012 [GOST3411-2012] hash algorithm with
 32-byte (256-bit) hash code.

5. Additional Algorithms

5.1. TLSTREE

 The TLSTREE function is defined as follows:

 TLSTREE(K_root, i) = KDF_3(KDF_2(KDF_1(K_root, Vec(i & C_1)),
 Vec(i & C_2)), Vec(i & C_2))

 where

 o K_root in B_32;

 o i in {0, 1, ... , 2^64 - 1};

 o C_1, C_2, C_3 are constants defined by the particular cipher suite
 (see Section 4.3.5);

 o KDF_j(K, D), j = 1, 2, 3, K in B_32, D in B_8, is the key
 derivation functions based on the KDF_GOSTR3411_2012_256 function
 defined in [RFC7836]:

 KDF_1(K, D) = KDF_GOSTR3411_2012_256(K, "level1", D);
 KDF_2(K, D) = KDF_GOSTR3411_2012_256(K, "level2", D);
 KDF_3(K, D) = KDF_GOSTR3411_2012_256(K, "level3", D).

5.2. KExp15 and KImp15 Algorithms

 Algorithms KExp15 and KImp15 are keywrap algorithms those provide
 confidentiality and integrity of keys. These algorithms use the
 block cipher defined by the particular cipher suite.

 The inputs of Kexp15 key export algorithm are

 o Key K in V*

 o MAC key K^Exp_MAC in B_k

https://datatracker.ietf.org/doc/html/rfc7836
https://datatracker.ietf.org/doc/html/rfc7836

Smyshlyaev, et al. Expires December 11, 2018 [Page 16]

Internet-DraGOST Cipher Suites for Transport Layer Security (June 2018

 o Encryption key K^Exp_ENC in B_k

 o IV value in B_{n/2}

 The keys K^Exp_MAC and K^Exp_ENC MUST be independent. The export
 representation of the key K is computed as follows

 o Compute the MAC value of n byte length

 KEYMAC = OMAC(K^Exp_MAC, IV | K)

 where OMAC(K, M) is a MAC function defined in [GOST3413-2015].

 o Compute the KEXP value

 KEXP = encKey | encKeyMac = CTR(K^Exp_ENC, IV, KEYMAC)

 where |encKey| = |K|, |encKeyMAC| = |KEYMAC|, CTR(K, IV, M) is the
 counter encryption mode defined in [GOST3413-2015] where s = n.

 o The export representation of key K is the result of algorithm
 Kexp15 and is defined as

 KExp15(K, K^Exp_MAC, K^Exp_ENC, IV) = KEXP.

 The import of key K via KImp15 algorithm is restoring the key K from
 export representation KEXP with keys K^Exp_MAC and K^Exp_ENC from B_k
 and value IV from B_{n/2}. This is performed as follows

 o The string KEXP is decrypted on the key K^Exp_ENC with counter
 encryption mode defined in [GOST3413-2015] where s = n. The
 result of this operation is the string K|KEYMAC.

 o Compute the MAC value of n byte length

 KEYMAC' = OMAC(K^Exp_MAC, IV | K).

 o If KEYMAC is not equal to KEYMAC' return a fault value.

 o Otherwise the result of the KImp15 algorithm is defined as
 KImp15(KEXP, K^KExp_MAC, K^KExp_ENC, IV) and is equal to string K.

Smyshlyaev, et al. Expires December 11, 2018 [Page 17]

Internet-DraGOST Cipher Suites for Transport Layer Security (June 2018

 During the use of one keypair (K^Exp_ENC, K^Exp_MAC) the IV values
 MUST be unique. For the import of key K with the KImp15 algorithm
 every IV value MUST be sent with the export key representation or be
 a preshared value.

5.3. KEG Algorithm

 The KEG algorithm of export key elaboration takes on input private
 key d, public key Q and string h from B_32. Then it returns the
 string from B_64.

 The KEG algorithm is defined by two distinct ways depending on the
 private key length.

 If the length of private key d is 64 bytes the KEG algorithm is
 defined as

 KEG(d, Q, h) = VKO_512(d, Q, UKM)

 where VKO_512 is the function VKO_GOSTR3410_2012_512 defined in
 [RFC7836] and the UKM parameter is equal to r = Int_32(h[1..16]) if r
 is not equal to 0 and is equal to 1 otherwise.

 If the length of private key d is 32 bytes the KEG algorithm is
 defined as

 KEG(d, Q, h) = KDFTREE_256(K_EXP, "kdf tree", seed, 1)

 where KDFTREE_256 is the function KDF_TREE_GOSTR3411_2012_256 defined
 in [RFC7836] and the parameters K_EXP and seed are defined as

 K_EXP = VKO_256(d, Q, UKM)

 UKM is equal to r if r is not equal to 0 and is equal to 1
 otherwise

 r = Int_32(h[1..16])

 seed = h[17..24]

 where VKO_256 is the function VKO_GOSTR3410_2012_256 defined in
 [RFC7836] .

5.4. gostIMIT28147

 gost28147IMIT (IV, K, M) IV in B_8, K in B_32, M in B* is a MAC
 computation algorithm with 4 bytes output that proceed as follow

https://datatracker.ietf.org/doc/html/rfc7836
https://datatracker.ietf.org/doc/html/rfc7836
https://datatracker.ietf.org/doc/html/rfc7836

Smyshlyaev, et al. Expires December 11, 2018 [Page 18]

Internet-DraGOST Cipher Suites for Transport Layer Security (June 2018

 1. Divide M into 8 byte blocks: M = M_0 | M_1 | ... | M_r

 2. Let M' = M_0 (xor) IV | M_1 | M_2 | ... | M_r

 3. Compute MAC value with 4 byte length with algorithm described in
 [RFC5830] using K as key and M' as input.

 4. The result of MAC computation is the result of gost28147IMIT (IV,
 K, M) algorithm.

6. IANA Considerations

 IANA has added the following entries in the TLS Cipher Suite
 Registry: TODO

7. Security Considerations

 TODO

8. References

8.1. Normative References

 [DraftRekeying]
 Smyshlyaev, S., "Re-keying Mechanisms for Symmetric Keys",
 2018, <https://tools.ietf.org/html/

draft-irtf-cfrg-re-keying-12>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC4357] Popov, V., Kurepkin, I., and S. Leontiev, "Additional
 Cryptographic Algorithms for Use with GOST 28147-89, GOST
 R 34.10-94, GOST R 34.10-2001, and GOST R 34.11-94
 Algorithms", RFC 4357, DOI 10.17487/RFC4357, January 2006,
 <https://www.rfc-editor.org/info/rfc4357>.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <https://www.rfc-editor.org/info/rfc5246>.

 [RFC5746] Rescorla, E., Ray, M., Dispensa, S., and N. Oskov,
 "Transport Layer Security (TLS) Renegotiation Indication
 Extension", RFC 5746, DOI 10.17487/RFC5746, February 2010,
 <https://www.rfc-editor.org/info/rfc5746>.

https://datatracker.ietf.org/doc/html/rfc5830
https://tools.ietf.org/html/draft-irtf-cfrg-re-keying-12
https://tools.ietf.org/html/draft-irtf-cfrg-re-keying-12
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc4357
https://www.rfc-editor.org/info/rfc4357
https://datatracker.ietf.org/doc/html/rfc5246
https://www.rfc-editor.org/info/rfc5246
https://datatracker.ietf.org/doc/html/rfc5746
https://www.rfc-editor.org/info/rfc5746

Smyshlyaev, et al. Expires December 11, 2018 [Page 19]

Internet-DraGOST Cipher Suites for Transport Layer Security (June 2018

 [RFC5830] Dolmatov, V., Ed., "GOST 28147-89: Encryption, Decryption,
 and Message Authentication Code (MAC) Algorithms",

RFC 5830, DOI 10.17487/RFC5830, March 2010,
 <https://www.rfc-editor.org/info/rfc5830>.

 [RFC6986] Dolmatov, V., Ed. and A. Degtyarev, "GOST R 34.11-2012:
 Hash Function", RFC 6986, DOI 10.17487/RFC6986, August
 2013, <https://www.rfc-editor.org/info/rfc6986>.

 [RFC7091] Dolmatov, V., Ed. and A. Degtyarev, "GOST R 34.10-2012:
 Digital Signature Algorithm", RFC 7091,
 DOI 10.17487/RFC7091, December 2013,
 <https://www.rfc-editor.org/info/rfc7091>.

 [RFC7627] Bhargavan, K., Ed., Delignat-Lavaud, A., Pironti, A.,
 Langley, A., and M. Ray, "Transport Layer Security (TLS)
 Session Hash and Extended Master Secret Extension",

RFC 7627, DOI 10.17487/RFC7627, September 2015,
 <https://www.rfc-editor.org/info/rfc7627>.

 [RFC7801] Dolmatov, V., Ed., "GOST R 34.12-2015: Block Cipher
 "Kuznyechik"", RFC 7801, DOI 10.17487/RFC7801, March 2016,
 <https://www.rfc-editor.org/info/rfc7801>.

 [RFC7836] Smyshlyaev, S., Ed., Alekseev, E., Oshkin, I., Popov, V.,
 Leontiev, S., Podobaev, V., and D. Belyavsky, "Guidelines
 on the Cryptographic Algorithms to Accompany the Usage of
 Standards GOST R 34.10-2012 and GOST R 34.11-2012",

RFC 7836, DOI 10.17487/RFC7836, March 2016,
 <https://www.rfc-editor.org/info/rfc7836>.

8.2. Informative References

 [GOST28147-89]
 Government Committee of the USSR for Standards,
 "Cryptographic Protection for Data Processing System,
 Gosudarstvennyi Standard of USSR (In Russian)",
 GOST 28147-89, 1989.

 [GOST3410-2012]
 Federal Agency on Technical Regulating and Metrology,
 "Information technology. Cryptographic data security.
 Signature and verification processes of [electronic]
 digital signature", GOST R 34.10-2012, 2012.

https://datatracker.ietf.org/doc/html/rfc5830
https://www.rfc-editor.org/info/rfc5830
https://datatracker.ietf.org/doc/html/rfc6986
https://www.rfc-editor.org/info/rfc6986
https://datatracker.ietf.org/doc/html/rfc7091
https://www.rfc-editor.org/info/rfc7091
https://datatracker.ietf.org/doc/html/rfc7627
https://www.rfc-editor.org/info/rfc7627
https://datatracker.ietf.org/doc/html/rfc7801
https://www.rfc-editor.org/info/rfc7801
https://datatracker.ietf.org/doc/html/rfc7836
https://www.rfc-editor.org/info/rfc7836

Smyshlyaev, et al. Expires December 11, 2018 [Page 20]

Internet-DraGOST Cipher Suites for Transport Layer Security (June 2018

 [GOST3411-2012]
 Federal Agency on Technical Regulating and Metrology,
 "Information technology. Cryptographic Data Security.
 Hashing function", GOST R 34.11-2012, 2012.

 [GOST3412-2015]
 Federal Agency on Technical Regulating and Metrology,
 "Information technology. Cryptographic data security.
 Block ciphers", GOST R 34.12-2015, 2015.

 [GOST3413-2015]
 Federal Agency on Technical Regulating and Metrology,
 "Information technology. Cryptographic data security.
 Modes of operation for block ciphers", GOST R 34.13-2015,
 2015.

Appendix A. Test Examples

A.1. Test Examples for TODO

A.2. Test Examples for TODO

Appendix B. Acknowledgments

 We thank TODO for their useful comments.

Authors' Addresses

 Stanislav Smyshlyaev (editor)
 CryptoPro
 18, Suschevsky val
 Moscow 127018
 Russian Federation

 Phone: +7 (495) 995-48-20
 Email: svs@cryptopro.ru

 Evgeny Alekseev
 CryptoPro
 18, Suschevsky val
 Moscow 127018
 Russian Federation

 Phone: +7 (495) 995-48-20
 Email: alekseev@cryptopro.ru

Smyshlyaev, et al. Expires December 11, 2018 [Page 21]

Internet-DraGOST Cipher Suites for Transport Layer Security (June 2018

 Ekaterina Smyshlyaeva
 CryptoPro
 18, Suschevsky val
 Moscow 127018
 Russian Federation

 Phone: +7 (495) 995-48-20
 Email: ess@cryptopro.ru

 Grigory Sedov
 CryptoPro
 18, Suschevsky val
 Moscow 127018
 Russian Federation

 Phone: +7 (495) 995-48-20
 Email: sedovgk@cryptopro.ru

Smyshlyaev, et al. Expires December 11, 2018 [Page 22]

