
Network Working Group V. Smyslov
Internet-Draft ELVIS-PLUS
Intended status: Standards Track October 7, 2016
Expires: April 10, 2017

Compact Format of IKEv2 Payloads
draft-smyslov-ipsecme-ikev2-compact-00

Abstract

 This document describes a method for reducing the size of the
 Internet Key Exchange version 2 (IKEv2) messages by using an
 alternate format for IKE payloads. Standard format of many IKE
 payloads contains a lot of redundancy. This document takes advantage
 of this fact and specifies a way to eliminate some redundancy by
 using more dense encoding. Reducing size of IKEv2 messages is
 desirable for low power consumption battery powered devices. It also
 helps to avoid IP fragmentation of IKEv2 messages.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 10, 2017.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must

Smyslov Expires April 10, 2017 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft IKEv2 Compact October 2016

 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Requirements Language . 4
3. Overview . 5
4. Compact Representation of IKEv2 Payloads 7
4.1. Compact Generic Payload 7
4.2. Compact SA Payload . 11
4.2.1. Compact Proposal Substructure 11
4.2.2. Compact Transform Substructures 12

4.3. Compact Notify Payload 17
5. Compact Format Negotiation 19
6. Interaction with other IKEv2 Extensions 20
7. Security Considerations 21
8. IANA Considerations . 22
9. References . 23
9.1. Normative References 23
9.2. Informative References 23

 Author's Address . 24

Smyslov Expires April 10, 2017 [Page 2]

Internet-Draft IKEv2 Compact October 2016

1. Introduction

 The Internet Key Exchange protocol version 2 (IKEv2) specified in
 [RFC7296] is used in the IP Security (IPsec) architecture for the
 purposes of Security Association (SA) parameters negotiation and
 authenticated key exchange. The protocol uses UDP as the transport
 for its messages, which size varies from less than one hundred bytes
 to several kBytes.

 Decreasing the size of IKEv2 messages is highly desirable for the
 Internet of Things (IoT) devices utilizing a lower power consumption
 technology. For some of such devices the power consumption for
 transmitting extra bits over network is prohibitively high (see

appendix A of [IPSEC-IOT-REQS]). Many such devices are battery
 powered without an ability to recharge or to replace the battery
 which serves for the life cycle of the device (often a few years).
 For this reason the task of reducing the power consumption for such
 devices is very important and decreasing messages size is one of the
 ways to accomplish it.

 Large UDP messages may also cause fragmentation on IP level, which
 may interact badly with Network Address Translators (NAT). In
 particular, some NATs drop IP fragments that don't contain TCP/UDP
 port numbers (non-initial IP fragments), so that the IP datagram
 cannot be reassembled on the receiving end and IKE SA cannot be
 established. One of the possible solutions to the problem is IKEv2
 fragmentation [RFC7383]. However, the IKEv2 fragmentation can only
 be applied to encrypted messages and thus cannot be used in the
 initial IKEv2 exchange, IKE_SA_INIT. Usually the IKE_SA_INIT
 messages are relatively small and don't cause IP fragmentation.
 However, while more and more new algorithms and protocol extensions
 are included in IKEv2, these messages become larger and larger thus
 increasing the risk of IP fragmentation. It is desirable to make
 IKEv2 messages more compact to help avoid this risk.

 IKEv2 messages are comprised of data structures called payloads.
 Each payload consists of a common part (Generic Payload Header)
 followed by a payload-specific data which is formatted differently
 depending on the payload's purpose. Section 3 of [RFC7296] lists
 formats for all standard IKEv2 payloads. As one can see some IKEv2
 payloads are formatted in such a way, that there are substantial
 redundancy in their encoding. This document defines an alternative
 format for the IKEv2 payloads, which provides more dense encoding,
 that allows making IKEv2 messages more compact.

https://datatracker.ietf.org/doc/html/rfc7296
https://datatracker.ietf.org/doc/html/rfc7383
https://datatracker.ietf.org/doc/html/rfc7296#section-3

Smyslov Expires April 10, 2017 [Page 3]

Internet-Draft IKEv2 Compact October 2016

2. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

Smyslov Expires April 10, 2017 [Page 4]

https://datatracker.ietf.org/doc/html/rfc2119

Internet-Draft IKEv2 Compact October 2016

3. Overview

 The idea behind the protocol is to develop an alternate compact
 encoding of IKEv2 payloads that meets the following requirements:

 1. The compact encoding must be applicable to all already defined
 IKEv2 payloads as well as to future payloads, so it must not
 depend on payload format. There may be few special cases if
 specific encoding is justified by much higher efficiency.

 2. The compact encoding must be easily converted to standard
 encoding and visa versa. This allows implementations to re-use
 existing composing/parsing code and to apply compact encoding/
 decoding as pre/post process steps in message processing.

 3. The compact encoding/decoding algorithm must consume low
 resources in terms of code size, CPU consumption and memory
 footprint.

 4. The compact encoding must never increase the payload size and
 must be effective enough to noticeably decrease the size of most
 payloads.

 To meet these requirement the encoding algorithm must be independent
 from the particular payload format. In other words, it must take any
 given payload and perform some kind of compression. General purpose
 lossless compression algorithms are usually not very effective when
 they are applied to small amount of data. Fortunately format of many
 IKEv2 payloads has a peculiarity that allows to use simple and
 relatively efficient compression algorithm.

 Many IKEv2 payloads contain a lot of zero octets. These octets come
 from the following sources:

 o Many Payload Headers contain RESERVED fields that must be zeroed
 according to IKEv2 specification.

 o Payload length is encoded in two octets, while most IKEv2 payloads
 are less than 256 octets in size.

 o Substantial number of IKEv2 parameters are encoded in two octets,
 while the number of currently defined values for these parameters
 is less than one hundred (see [IKEV2-IANA]).

 The idea is to omit these zero octets from the compact payload and
 supply a bitmap that will indicate which octets were omitted.

 IKEv2 header also contains some redundancy - in particular the Length

Smyslov Expires April 10, 2017 [Page 5]

Internet-Draft IKEv2 Compact October 2016

 field occupies four octets, while IKEv2 messages are extremely
 unlikely to exceed few Kb in size. However, some middleboxes perform
 an inspection of IKEv2 header and changing its format will likely
 interact badly with these middleboxes. Thus, the possible saving of
 few octets doesn't justify modification of IKEv2 header.

Smyslov Expires April 10, 2017 [Page 6]

Internet-Draft IKEv2 Compact October 2016

4. Compact Representation of IKEv2 Payloads

 This document defines one generic compact format suitable for
 compacting any IKEv2 payload and two specific compact formats - one
 for SA payload and the other for Notify payload containing status
 notification with no data. The rationale for such a design is the
 following.

 One common generic compact format simplifies implementations and
 allows to use it with any currently defined and not yet defined
 payloads. However, it doesn't provide high level of efficiency.

 SA payload contains a lot of redundancy and can be encoded in highly
 efficient way. Moreover, this payload grows up quickly once more new
 transforms are defined and implementations start using them. In some
 cases the SA payload can be the largest payload in the IKE_SA_INIT
 exchange. So, there is a natural desire to encode it differently to
 gain better result. On the other hand, Notify payload with status
 notification containing no data is often used in IKEv2 initial
 exchange to negotiate support for various protocol extensions. So,
 there are usually several such payloads in the IKE_SA_INIT request
 and response messages, ant it is anticipated that their number will
 increase as long as more and more IKEv2 extensions are defined.
 That's why this payload is also encoded differently to make initial
 messages more compact.

4.1. Compact Generic Payload

 Generic IKEv2 payload is depicted below (Figure 1) for convenience.
 It consists of generic payload header followed by payload data.
 Brief description of generic payload header fields is provided below,
 readers should refer to Section 3.2 of [RFC7296] for full
 description.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Next Payload |C| RESERVED | Payload Length |
 +-+
 | |
 ~ <Payload Data> ~
 | |
 +-+

 Figure 1: Generic Payload

https://datatracker.ietf.org/doc/html/rfc7296#section-3.2

Smyslov Expires April 10, 2017 [Page 7]

Internet-Draft IKEv2 Compact October 2016

 o Next Payload (1 octet) - Identifier for the payload type of the
 next payload in the message.

 o Critical (1 bit) - This bit is set if the current payload cannot
 be skipped in case the receiver doen't understand its type and
 cleared if it is safe to skip this payload.

 o RESERVED (7 bits) - MUST be sent as zero; MUST be ignored on
 receipt.

 o Payload Length (2 octets, unsigned integer) - Length in octets of
 the current payload, including the generic payload header.

 o Payload Data (variable) - Contains payload specific data.

 Some payloads have extended headers following the generic payload
 header. For the purpose of compact payload encoding any extended
 header is treated as part of payload data. Complete description of
 IKEv2 Payload formats can be found in Section 3 of [RFC7296].

 Figure 2 shows generic compact payload format.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Next Payload |C| Bmap | XBL |Payload Length | ~
 +-+ |
 | |
 ~ <Compacted Payload Data> ~
 | |
 +-+
 | |
 ~ <Extended Bitmap> ~
 | |
 +-+

 Figure 2: Compact Generic Payload

 o Next Payload (1 octet) - Identifier for the payload type of the
 next payload in the message. The value is taken intact from
 original payload.

 o Critical (1 bit) - This bit is set if the current payload cannot
 be skipped in case the receiver doen't understand its type and
 cleared if it is safe to skip this payload. The value is taken
 intact from original payload.

https://datatracker.ietf.org/doc/html/rfc7296#section-3

Smyslov Expires April 10, 2017 [Page 8]

Internet-Draft IKEv2 Compact October 2016

 o Bmap (4 bits) - Bitmap, contains bitmap where each bit indicates
 whether one of the four first octets of original Payload Data was
 zero and thus was omitted from Compacted Payload Data. If the bit
 is set, then the corresponding octet was zero and was omitted, if
 the bit is cleared, then either the corresponding octet was copied
 or it didn't present in the original Payload Data (in case the
 octet would be outside the original payload). The rightmost bit
 of the map corresponds to the first of the four octets and the
 leftmost bit corresponds to the last of these four octets.

 o XBL (3 bits) - Extended Bitmap Length, specifies the number of
 Extended Bitmap octets plus one. Note, that by construction this
 field cannot be zero.

 o Payload Length (1 octet) - Length in octets of compacted payload
 not including Extended Bitmap.

 o Compacted Payload Data (variable) - Contains original payload data
 with some zero octets omitted. Up to 52 zero octets from the
 beginning of original payload data can be omitted, the rest of
 original payload data is always copied.

 o Extended Bitmap (variable, 0 - 6 octets) - contains extended
 bitmap. Each octet of this bitmap represents how the
 corresponding eight octets of the original payload data were
 handled - original octets corresponding to the set bits were zero
 and thus were omitted from the compacted payload data, while
 octets corresponding to the cleared bits were copied. First octet
 in the Extended Bitmap corresponds to octets from 5 to 12 of the
 original payload data, next octet - to octets from 13 to 20, etc.
 Note, that the Bmap field indicates how octets from 1 to 4 were
 handled. In each octet of extended bitmap the rightmost bit
 represents the first of corresponding original octets and the
 leftmost bit represents the last one.

 Any IKEv2 payload can be compacted if it meets two requirements:

 o The payload length is less than 256 octets. In other words, the
 high order octet of Payload Length field is zero.

 o The RESERVED field in the generic payload header is zero. Section
3.2 of [RFC7296] requires that this field must always be zero when

 preparing payload.

 If payload doesn't meet these requirement it is included into the
 message without modification. The regular and compact payloads can
 be present in any order in the compact IKEv2 message. The receiving
 side can distinguish between them by analyzing the least significant

https://datatracker.ietf.org/doc/html/rfc7296#section-3.2
https://datatracker.ietf.org/doc/html/rfc7296#section-3.2

Smyslov Expires April 10, 2017 [Page 9]

Internet-Draft IKEv2 Compact October 2016

 three bits of RESERVED field in generic payload header. These bits
 correspond to XBL field in compact generic payload header, and this
 field will always be non-zero in compact payload while these bits are
 required to be zero in regular payload.

 If payload meets the above requirements then it is compacted as
 follows.

 1. The Next Payload and Critical fields are copied from original
 payload.

 2. The first 4 octets of the original payload data are scanned one
 by one. If the current octet is zero, then it is omitted from
 the Compacted Payload data and the corresponding bit (starting
 from the rightmost bit to the leftmost bit) in Bmap field is set.
 Otherwise the octet is copied and the corresponding bit is
 cleared. If there are no more octets in the original payload
 data then the process stops and the rest of Bmap is zeroed.

 3. If any more octets left in the original payload data, then the
 next 48 of them are scanned one by one. Since the Extended
 Bitmap position isn't known yet a temporary bitmap of six octets
 is used. If the current octet is zero, then it is omitted from
 the Compacted Payload Data and the corresponding bit (starting
 from the rightmost bit to the leftmost bit) in the corresponding
 octet of a temporary bitmap is set. Otherwise the original octet
 is copied and the corresponding bit in temporary bitmap is
 cleared. If there are no more octets in the original payload
 data then the process stops and the rest bits of the current
 temporary bitmap octet are zeroed..

 4. If any more octets left in the original payload data, they are
 copied to the Compacted Payload Data.

 5. The Payload Length field is set to indicate the size of Compacted
 Payload Data plus 3. It will indicate the offset of the Extended
 Bitmap from the beginning of compact payload.

 6. The content of the temporary bitmap is copied to the Extended
 Bitmap field (after the Compacted Payload Data). The temporary
 bitmap octets are copied one by one up to the first zero octet
 (if any). In other words, the Extended Bitmap MUST NOT contain
 zero octets.

 7. The XBL field is set to the number of octets placed in the
 Extended Bitmap plus one.

Smyslov Expires April 10, 2017 [Page 10]

Internet-Draft IKEv2 Compact October 2016

4.2. Compact SA Payload

 SA payload is compacted differently than generic IKEv2 payload. The
 specific format for Compact SA payload allows to get very high level
 of compression. High level of compression is important, because SA
 payload grows up quickly as more and more cryptographic transforms
 are defined, get widespread adoption and advertised by Initiators.

 Unlike generic compact payload, which retains its payload type and is
 distinguished from regular IKEv2 payload by analyzing the leftmost
 three bits of RESERVED field of the generic payload header, the
 Compact SA payload has its own payload type. The reason is that its
 format (Figure 3) is completely different and the above method cannot
 be used. The Compact SA payload is denoted CSA, and its payload type
 is <TBA by IANA>.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Next Payload | Num Proposals | ~
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
 | |
 ~ <Compact Proposals> ~
 | |
 +-+

 Figure 3: Compact SA Payload

 o Next Payload (1 octet) - Identifier for the payload type of the
 next payload in the message. The value is taken intact from
 original payload.

 o Num Proposals (1 octet) - Specifies the number of Compact
 Proposals in this SA payload.

 o Compact Proposals (variable) - One or more compact proposal
 substructures.

 Despite the fact that Compact SA payload has different payload type
 and different format than regular SA payload, the associated
 semantics MUST be the same. Regular SA payload can always be
 compacted if it is compliant with Section 3.3 of [RFC7296].

4.2.1. Compact Proposal Substructure

 Compact Proposal substructure (Figure 4) resembles regular Proposal
 substructure lacking first four octets. The Compact Proposal
 substructure fields are briefly described below. Readers should

https://datatracker.ietf.org/doc/html/rfc7296#section-3.3

Smyslov Expires April 10, 2017 [Page 11]

Internet-Draft IKEv2 Compact October 2016

 refer to Section 3.3.1 of [RFC7296] for detailed description of
 Compact Proposal substructure fields with the same names, as in
 regular Proposal substructure.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Proposal Num | Protocol ID | SPI Size |Num Transforms|
 +-+
 ~ SPI (variable) ~
 +-+
 | |
 ~ <Compact Transforms> ~
 | |
 +-+

 Figure 4: Compact Proposal Substructure

 o Proposal Num (1 octet) - Proposal Number.

 o Protocol ID (1 octet) - Specifies the IPsec protocol identifier
 for the current negotiation.

 o SPI Size (1 octet) - Size of SPI.

 o Num Transforms (1 octet) - Specifies the number of transforms in
 this proposal.

 o SPI (variable) - The sending entity's SPI.

 o Compact Transforms (variable) - One or more compact transform
 substructures.

4.2.2. Compact Transform Substructures

 Compact Transform substructures are encoded differently depending on
 Transform Type, Transform ID and presence of attributes to get most
 effective encoding for common use cases. The leftmost bits of the
 first octet of the Compact Transform substructure are used to
 distinguish between different formats. These bits are called Tag.
 The table below shows how Tag value correlates with Compact Transform
 substructure format.

https://datatracker.ietf.org/doc/html/rfc7296#section-3.3.1

Smyslov Expires April 10, 2017 [Page 12]

Internet-Draft IKEv2 Compact October 2016

 +----------+--------------------------------------+-----+-----------+
 | Tag | Compact Transform | Len | Format |
 +----------+--------------------------------------+-----+-----------+
00xxxxxx	Short form - Encryption (Type 1)	1	Figure 5
01xxxxxx	Short form - Encryption (Type 1)	2	Figure 6
	with key length		
10xxxxxx	Short form - Diffie-Hellman Group	1	Figure 7
	(Type 4)		
110xxxxx	Short form - Integrity (Type 3)	1	Figure 8
1110xxxx	Short form - Pseudo-random Function	1	Figure 9
	(Type 2)		
11110xxx	Short form - Extended Sequence	1	Figure 10
	Numbers (Type 5)		
11111xxx	Long form	3	Figure 11
11111000	Full form	var	Figure 12
 +----------+--------------------------------------+-----+-----------+

 Table 1: Tag values and corresponding Compact Transform formats

 Short forms are the most efficient Compact Transform formats. Most
 of them occupy only one octet, except for the Encryption Transform
 with key length, which occupy two octets. The Transform can be
 encoded using short form if it meets the following requirements:

 1. Transform Type is between 1 and 5. At the time the document was
 written these Transform Types were the only defined (see
 [IKEV2-IANA]).

 2. Transform ID is less or equal to the value, specific to each
 Transform Type:

 * 63 for Transform Type 1 (Encryption Algorithm)

 * 15 for Transform Type 2 (Pseudo-random Function)

 * 31 for Transform Type 3 (Integrity Algorithm)

 * 63 for Transform Type 4 (Diffie-Hellman Group)

 * 7 for Transform Type 5 (Extended Sequence Numbers)

Smyslov Expires April 10, 2017 [Page 13]

Internet-Draft IKEv2 Compact October 2016

 3. Transform has no attributes, or Transform has Type 1 (Encryption
 Algorithm), it has only one attribute of type Key Length (Type
 14), the value of this attribute is less than 2048 and the value
 is divisible by 8.

 If the Transform doesn't meet these requirements, then it cannot be
 encoded in short form. In this case either long form (Figure 11) or
 full form (Figure 12) must be used. Note, that all the transforms
 defined in [IKEV2-IANA] at the time this document was written meet
 these requirements.

 Figures 5-10 show short form encodings for different Transform Types.

 0 1 2 3 4 5 6 7
 +-+-+-+-+-+-+-+-+
 |Tag|ENCR Tr ID |
 +-+-+-+-+-+-+-+-+

 Figure 5: Compact Transform Substructure (Short Form: Encryption)

 o Tag (2 bits) - MUST be 00.

 o ENCR Tr ID (6 bits) - Encryption Algorithm Transform ID.

 1
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |Tag|ENCR Tr ID | Key Length |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 Figure 6: Compact Transform (Short Form: Encryption with Key Length)

 o Tag (2 bits) - MUST be 01.

 o ENCR Tr ID (6 bits) - Encryption Algorithm Transform ID.

 o Key Length (1 octet) - Key Length in bytes (note, that Key Length
 attribute in IKEv2 specifies key length in bits).

 0 1 2 3 4 5 6 7
 +-+-+-+-+-+-+-+-+
 |Tag| GRP Tr ID |
 +-+-+-+-+-+-+-+-+

 Figure 7: Compact Transform (Short Form: Diffie-Hellman Group)

Smyslov Expires April 10, 2017 [Page 14]

Internet-Draft IKEv2 Compact October 2016

 o Tag (2 bits) - MUST be 10.

 o GRP Tr ID (6 bits) - Diffie-Hellman Group Transform ID.

 0 1 2 3 4 5 6 7
 +-+-+-+-+-+-+-+-+
 | Tag |INTG TrID|
 +-+-+-+-+-+-+-+-+

 Figure 8: Compact Transform (Short Form: Integrity)

 o Tag (3 bits) - MUST be 110.

 o INTG TrID (5 bits) - Integrity Algorithm Transform ID.

 0 1 2 3 4 5 6 7
 +-+-+-+-+-+-+-+-+
 | Tag | PRF |
 +-+-+-+-+-+-+-+-+

 Figure 9: Compact Transform (Short Form: PRF)

 o Tag (4 bits) - MUST be 1110.

 o PRF (4 bits) - Pseudo-random Function Transform ID.

 0 1 2 3 4 5 6 7
 +-+-+-+-+-+-+-+-+
 | Tag | ESN |
 +-+-+-+-+-+-+-+-+

 Figure 10: Compact Transform (Short Form: ESN)

 o Tag (5 bits) - MUST be 11110.

 o ESN (3 bits) - Extended Sequence Numbers Transform ID.

 Long form (Figure 11) is used when Transform doesn't meet
 requirements for short form encoding, but still meets the following
 requirements:

 1. Transform Type is between 1 and 7. At the time this document was
 written only Transform Types 1 to 5 were defined (see
 [IKEV2-IANA]).

Smyslov Expires April 10, 2017 [Page 15]

Internet-Draft IKEv2 Compact October 2016

 2. Transform has no attributes.

 Long form allows to effectively encode Transform IDs for standard
 Transform Types that don't fit into the short form, e.g. private
 Transform IDs (if these transforms don't have associated attributes).
 It is expected that new Transform IDs will be defined more often than
 new Transform Types. So, defining effective encoding for standard
 Transform Type and arbitrary Transform IDs makes sense.

 1 2
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3
 +-+
 | Tag |Type | Transform ID |
 +-+

 Figure 11: Compact Transform (Long Form)

 o Tag (5 bits) - MUST be 11111.

 o Transform Type (3 bits) - The type of transform being specified in
 this substructure.

 o Transform ID (2 octets) - The specific instance of the Transform
 Type being specified.

 Full encoding of Compact Transform substructure allows encoding of
 any transform without restrictions. It is used when transform cannot
 be encoded neither in short form nor in long form. The format
 (Figure 12) resembles regular Transform Substructure with all
 RESERVED fields removed. The Compact Transform substructure fields
 are briefly described below. Readers should refer to Section 3.3.2
 of [RFC7296] for detailed description of Compact Transform
 substructure fields with the same names, as in regular Transform
 substructure.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Tag |Transform Type | Transform Length |
 +-+
 | Transform ID | ~
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
 | |
 ~ <Transform Attributes> ~
 | |
 +-+

 Figure 12: Compact Transform (Full Form)

https://datatracker.ietf.org/doc/html/rfc7296#section-3.3.2
https://datatracker.ietf.org/doc/html/rfc7296#section-3.3.2

Smyslov Expires April 10, 2017 [Page 16]

Internet-Draft IKEv2 Compact October 2016

 o Tag (1 octet) - MUST be 11111000.

 o Transform Type (1 octet) - The type of transform being specified
 in this substructure.

 o Transform Length (2 octets, unsigned integer) - The length in
 octets of the Compact Transform Substructure including Header and
 Attributes.

 o Transform ID (2 octets) - The specific instance of the Transform
 Type being specified.

 o Transforms Attributes (variable) - Transform attributes.

4.3. Compact Notify Payload

 Notify payloads containing status notifications with no data are
 often used in IKEv2. This is "de facto" standard way to negotiate
 various protocol extensions and for that reason usually several such
 Notify payloads are present in initial IKEv2 exchanges. It is
 anticipated that the number of IKEv2 extensions will increase and
 thus the size of initial exchange messages will increase too. This
 is the reason that this kind of Notify payload is encoded
 specifically, to get more effective message compression.

 As well as Compact SA payload, Compact Notify payload has its own
 payload type. The Compact Notify payload is denoted CN, and its
 payload type is <TBA by IANA>.

 1
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | Next Payload | Notify Type |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 Figure 13: Compact Notify Payload for Status Notification

 o Next Payload (1 octet) - Identifier for the payload type of the
 next payload in the message. The value is taken intact from
 original payload.

 o Notify Type (1 octet) - The type of notification message minus
 16384.

 Despite the fact that Compact Notify payload has different payload
 type and different format than regular Notify payload, the associated
 semantics MUST be the same.

Smyslov Expires April 10, 2017 [Page 17]

Internet-Draft IKEv2 Compact October 2016

 Notify payload can be encoded as Compact Notify payload if it meets
 the following requirements (see Section 3.10 of [RFC7296] for Notify
 payload format):

 1. Notify Message Type is between 16384 and 16639 (inclusive). This
 corresponds to status notifications.

 2. Protocol ID is zero.

 3. SPI Size is zero, meaning no SPI is present.

 4. Notification Data is empty.

 At the time this document was written about 40 percent of status
 notifications defined in [IKEV2-IANA] met these requirements. If
 Notify payload doesn't meet these requirements, the generic compact
 format (Section 4.1) can be tried.

https://datatracker.ietf.org/doc/html/rfc7296#section-3.10

Smyslov Expires April 10, 2017 [Page 18]

Internet-Draft IKEv2 Compact October 2016

5. Compact Format Negotiation

 Most IKEv2 extensions are negotiated in the following way. The
 Initiator announces its support for some extension by including
 corresponding Vendor ID payload or Notify payload containing status
 notification in the request message of IKE_SA_INIT or IKE_AUTH
 exchanges. If the Responder supports this extension it returns the
 same (or some specific) payload to the Initiator in response message.
 Responder that doesn't support compact format just ignores these
 payloads in accordance with IKEv2 specification.

 This method is inappropriate for negotiation of compact format,
 because Initiator should be able to send an initial request message
 in compact form and thus it must inform Responder somehow that the
 message must be parsed differently than regular IKEv2 message. Since
 compact message may contain regular IKEv2 payloads, it is possible to
 define a new status notification and to include it without compacting
 as the very first payload in the initial request. However, this
 spoils the whole idea of reducing initial messages size, since this
 payload will increase message size for no good reason.

 Instead this document specifies a different negotiation mechanism.
 An alternative initial exchange is defined, ALT_IKE_SA_INIT.
 Initiator wishing to use compact representations of IKEv2 payloads
 MUST start creating IKEv2 SA using ALT_IKE_SA_INIT exchange instead
 of IKE_SA_INIT. The very first ALT_IKE_SA_INIT request may contain
 compact payloads. If Responder receives ALT_IKE_SA_INIT request and
 doesn't support compact format, then according to Section 2.21.1 of
 [RFC7296] it discards the request. It may also send INVALID_SYNTAX
 notification. For the Initiator receiving no response after several
 retransmissions or receiving INVALID_SYNTAX notification is an
 indication that the Responder doesn't support compact format. In
 this case the Initiator MAY restart initial request using regular
 IKE_SA_INIT request.

 If the Responder supports compact format then it response with
 ALT_IKE_SA_INIT response, confirming to the Initiator that using
 compact format is successfully negotiated. Once using compact format
 is negotiated, compact payloads may appear in any message of
 subsequent exchanges in the context of the IKE SA being negotiated.

 The semantics associated with ALT_IKE_SA_INIT exchange MUST be the
 same, as the semantics associated with IKE_SA_INIT exchange. In
 other words, when ALT_IKE_SA_INIT exchange is used, the endpoints
 must behave exactly as if it is IKE_SA_INIT exchange. The only
 difference (apart from different Exchange Types) is that IKE_SA_INIT
 messages MUST NOT contain compact payloads, while ALT_IKE_SA_INIT MAY
 contain them.

https://datatracker.ietf.org/doc/html/rfc7296#section-2.21.1
https://datatracker.ietf.org/doc/html/rfc7296#section-2.21.1

Smyslov Expires April 10, 2017 [Page 19]

Internet-Draft IKEv2 Compact October 2016

6. Interaction with other IKEv2 Extensions

 To be added.

Smyslov Expires April 10, 2017 [Page 20]

Internet-Draft IKEv2 Compact October 2016

7. Security Considerations

 To be added.

Smyslov Expires April 10, 2017 [Page 21]

Internet-Draft IKEv2 Compact October 2016

8. IANA Considerations

 This document defines two new Payloads in the "IKEv2 Payload Types"
 registry:

 <TBA> Compact SA Payload CSA
 <TBA> Compact Notify Payload CN

 This document also defines new Exchange Type in the "IKEv2 Exchange
 Types" registry:

 <TBA> ALT_IKE_SA_INIT

Smyslov Expires April 10, 2017 [Page 22]

Internet-Draft IKEv2 Compact October 2016

9. References

9.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC7296] Kaufman, C., Hoffman, P., Nir, Y., Eronen, P., and T.
 Kivinen, "Internet Key Exchange Protocol Version 2
 (IKEv2)", STD 79, RFC 7296, DOI 10.17487/RFC7296,
 October 2014, <http://www.rfc-editor.org/info/rfc7296>.

 [RFC7383] Smyslov, V., "Internet Key Exchange Protocol Version 2
 (IKEv2) Message Fragmentation", RFC 7383, DOI 10.17487/

RFC7383, November 2014,
 <http://www.rfc-editor.org/info/rfc7383>.

 [IKEV2-IANA]
 "Internet Key Exchange Version 2 (IKEv2) Parameters",
 <http://www.iana.org/assignments/ikev2-parameters>.

9.2. Informative References

 [IPSEC-IOT-REQS]
 Migault, D., Guggemos, T., and C. Bormann, "Requirements
 for Diet-ESP the IPsec/ESP protocol for IoT",

draft-mglt-6lo-diet-esp-requirements-02 (work in
 progress), July 2016.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc7296
http://www.rfc-editor.org/info/rfc7296
https://datatracker.ietf.org/doc/html/rfc7383
https://datatracker.ietf.org/doc/html/rfc7383
http://www.rfc-editor.org/info/rfc7383
http://www.iana.org/assignments/ikev2-parameters
https://datatracker.ietf.org/doc/html/draft-mglt-6lo-diet-esp-requirements-02

Smyslov Expires April 10, 2017 [Page 23]

Internet-Draft IKEv2 Compact October 2016

Author's Address

 Valery Smyslov
 ELVIS-PLUS
 PO Box 81
 Moscow (Zelenograd) 124460
 RU

 Phone: +7 495 276 0211
 Email: svan@elvis.ru

Smyslov Expires April 10, 2017 [Page 24]

