
Network Working Group V. Smyslov
Internet-Draft ELVIS-PLUS
Obsoletes: 8229 (if approved) T. Pauly
Intended status: Standards Track Apple Inc.
Expires: November 16, 2020 May 15, 2020

TCP Encapsulation of IKE and IPsec Packets
draft-smyslov-ipsecme-rfc8229bis-01

Abstract

 This document describes a method to transport Internet Key Exchange
 Protocol (IKE) and IPsec packets over a TCP connection for traversing
 network middleboxes that may block IKE negotiation over UDP. This
 method, referred to as "TCP encapsulation", involves sending both IKE
 packets for Security Association establishment and Encapsulating
 Security Payload (ESP) packets over a TCP connection. This method is
 intended to be used as a fallback option when IKE cannot be
 negotiated over UDP.

 TCP encapsulation for IKE and IPsec was defined in [RFC8229]. This
 document updates specification for TCP encapsulation by including
 additional calarifications obtained during implementation and
 deployment of this method. This documents makes RFC8229 obsolete.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on November 16, 2020.

Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Smyslov & Pauly Expires November 16, 2020 [Page 1]

https://datatracker.ietf.org/doc/html/rfc8229
https://datatracker.ietf.org/doc/html/rfc8229
https://datatracker.ietf.org/doc/html/rfc8229
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft TCP Encapsulation of IKE and IPsec Packets May 2020

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
1.1. Prior Work and Motivation 4

2. Terminology and Notation 4
3. Configuration . 5
4. TCP-Encapsulated Header Formats 6
4.1. TCP-Encapsulated IKE Header Format 6
4.2. TCP-Encapsulated ESP Header Format 7

5. TCP-Encapsulated Stream Prefix 7
6. Applicability . 8
6.1. Recommended Fallback from UDP 8

7. Using TCP Encapsulation 9
7.1. Connection Establishment and Teardown 9
7.2. Retransmissions . 11
7.3. Cookies and Puzzles 11
7.4. Error Handling in IKE_SA_INIT 12
7.5. NAT Detection Payloads 13
7.6. Keep-Alives and Dead Peer Detection 13

 7.7. Implications of TCP Encapsulation on IPsec SA Processing 14
8. Interaction with IKEv2 Extensions 14
8.1. MOBIKE Protocol . 14
8.2. IKE Redirect . 15
8.3. IKEv2 Session Resumption 15
8.4. IKEv2 Protocol Support for High Availability 16
8.5. IKEv2 Fragmentation 16

9. Middlebox Considerations 17
10. Performance Considerations 17
10.1. TCP-in-TCP . 17
10.2. Added Reliability for Unreliable Protocols 18
10.3. Quality-of-Service Markings 18
10.4. Maximum Segment Size 19
10.5. Tunneling ECN in TCP 19

11. Security Considerations 19
12. IANA Considerations . 20
13. References . 20
13.1. Normative References 20
13.2. Informative References 21

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Smyslov & Pauly Expires November 16, 2020 [Page 2]

Internet-Draft TCP Encapsulation of IKE and IPsec Packets May 2020

Appendix A. Using TCP Encapsulation with TLS 23
Appendix B. Example Exchanges of TCP Encapsulation with TLS 1.2 23
B.1. Establishing an IKE Session 23
B.2. Deleting an IKE Session 25
B.3. Re-establishing an IKE Session 26
B.4. Using MOBIKE between UDP and TCP Encapsulation 27

 Acknowledgments . 29
 Authors' Addresses . 29

1. Introduction

 The Internet Key Exchange Protocol version 2 (IKEv2) [RFC7296] is a
 protocol for establishing IPsec Security Associations (SAs), using
 IKE messages over UDP for control traffic, and using Encapsulating
 Security Payload (ESP) [RFC4303] messages for encrypted data traffic.
 Many network middleboxes that filter traffic on public hotspots block
 all UDP traffic, including IKE and IPsec, but allow TCP connections
 through because they appear to be web traffic. Devices on these
 networks that need to use IPsec (to access private enterprise
 networks, to route Voice over IP calls to carrier networks, or
 because of security policies) are unable to establish IPsec SAs.
 This document defines a method for encapsulating IKE control messages
 as well as IPsec data messages within a TCP connection.

 Using TCP as a transport for IPsec packets adds a third option to the
 list of traditional IPsec transports:

 1. Direct. Currently, IKE negotiations begin over UDP port 500. If
 no Network Address Translation (NAT) device is detected between
 the Initiator and the Responder, then subsequent IKE packets are
 sent over UDP port 500, and IPsec data packets are sent using
 ESP.

 2. UDP Encapsulation [RFC3948]. If a NAT is detected between the
 Initiator and the Responder, then subsequent IKE packets are sent
 over UDP port 4500 with four bytes of zero at the start of the
 UDP payload, and ESP packets are sent out over UDP port 4500.
 Some peers default to using UDP encapsulation even when no NAT is
 detected on the path, as some middleboxes do not support IP
 protocols other than TCP and UDP.

 3. TCP Encapsulation. If the other two methods are not available or
 appropriate, IKE negotiation packets as well as ESP packets can
 be sent over a single TCP connection to the peer.

 Direct use of ESP or UDP encapsulation should be preferred by IKE
 implementations due to performance concerns when using TCP
 encapsulation (Section 10). Most implementations should use TCP

https://datatracker.ietf.org/doc/html/rfc7296
https://datatracker.ietf.org/doc/html/rfc4303
https://datatracker.ietf.org/doc/html/rfc3948

Smyslov & Pauly Expires November 16, 2020 [Page 3]

Internet-Draft TCP Encapsulation of IKE and IPsec Packets May 2020

 encapsulation only on networks where negotiation over UDP has been
 attempted without receiving responses from the peer or if a network
 is known to not support UDP.

1.1. Prior Work and Motivation

 Encapsulating IKE connections within TCP streams is a common approach
 to solve the problem of UDP packets being blocked by network
 middleboxes. The specific goals of this document are as follows:

 o To promote interoperability by defining a standard method of
 framing IKE and ESP messages within TCP streams.

 o To be compatible with the current IKEv2 standard without requiring
 modifications or extensions.

 o To use IKE over UDP by default to avoid the overhead of other
 alternatives that always rely on TCP or Transport Layer Security
 (TLS) [RFC5246][RFC8446].

 Some previous alternatives include:

 Cellular Network Access
 Interworking Wireless LAN (IWLAN) uses IKEv2 to create secure
 connections to cellular carrier networks for making voice calls
 and accessing other network services over Wi-Fi networks. 3GPP has
 recommended that IKEv2 and ESP packets be sent within a TLS
 connection to be able to establish connections on restrictive
 networks.

 ISAKMP over TCP
 Various non-standard extensions to the Internet Security
 Association and Key Management Protocol (ISAKMP) have been
 deployed that send IPsec traffic over TCP or TCP-like packets.

 Secure Sockets Layer (SSL) VPNs
 Many proprietary VPN solutions use a combination of TLS and IPsec
 in order to provide reliability. These often run on TCP port 443.

 IKEv2 over TCP
 IKEv2 over TCP as described in [I-D.ietf-ipsecme-ike-tcp] is used
 to avoid UDP fragmentation.

2. Terminology and Notation

 This document distinguishes between the IKE peer that initiates TCP
 connections to be used for TCP encapsulation and the roles of
 Initiator and Responder for particular IKE messages. During the

https://datatracker.ietf.org/doc/html/rfc5246

Smyslov & Pauly Expires November 16, 2020 [Page 4]

Internet-Draft TCP Encapsulation of IKE and IPsec Packets May 2020

 course of IKE exchanges, the role of IKE Initiator and Responder may
 swap for a given SA (as with IKE SA rekeys), while the Initiator of
 the TCP connection is still responsible for tearing down the TCP
 connection and re-establishing it if necessary. For this reason,
 this document will use the term "TCP Originator" to indicate the IKE
 peer that initiates TCP connections. The peer that receives TCP
 connections will be referred to as the "TCP Responder". If an IKE SA
 is rekeyed one or more times, the TCP Originator MUST remain the peer
 that originally initiated the first IKE SA.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP

14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

3. Configuration

 One of the main reasons to use TCP encapsulation is that UDP traffic
 may be entirely blocked on a network. Because of this, support for
 TCP encapsulation is not specifically negotiated in the IKE exchange.
 Instead, support for TCP encapsulation must be pre-configured on both
 the TCP Originator and the TCP Responder.

 Implementations MUST support TCP encapsulation on TCP port 4500,
 which is reserved for IPsec NAT traversal.

 Beyond a flag indicating support for TCP encapsulation, the
 configuration for each peer can include the following optional
 parameters:

 o Alternate TCP ports on which the specific TCP Responder listens
 for incoming connections. Note that the TCP Originator may
 initiate TCP connections to the TCP Responder from any local port.

 o An extra framing protocol to use on top of TCP to further
 encapsulate the stream of IKE and IPsec packets. See Appendix B
 for a detailed discussion.

 Since TCP encapsulation of IKE and IPsec packets adds overhead and
 has potential performance trade-offs compared to direct or UDP-
 encapsulated SAs (as described in Section 10), implementations SHOULD
 prefer ESP direct or UDP-encapsulated SAs over TCP-encapsulated SAs
 when possible.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174

Smyslov & Pauly Expires November 16, 2020 [Page 5]

Internet-Draft TCP Encapsulation of IKE and IPsec Packets May 2020

4. TCP-Encapsulated Header Formats

 Like UDP encapsulation, TCP encapsulation uses the first four bytes
 of a message to differentiate IKE and ESP messages. TCP
 encapsulation also adds a 16-bit Length field that precedes every
 message to define the boundaries of messages within a stream. The
 value in this field is equal to the length of the original message
 plus the length of the field itself, in octets. If the first 32 bits
 of the message are zeros (a non-ESP marker), then the contents
 comprise an IKE message. Otherwise, the contents comprise an ESP
 message. Authentication Header (AH) messages are not supported for
 TCP encapsulation.

 Although a TCP stream may be able to send very long messages,
 implementations SHOULD limit message lengths to typical UDP datagram
 ESP payload lengths. The maximum message length is used as the
 effective MTU for connections that are being encrypted using ESP, so
 the maximum message length will influence characteristics of inner
 connections, such as the TCP Maximum Segment Size (MSS).
 Additionally, since TCP headers are longer than UDP headers, and TCP
 encapsulation adds a 16-bit Length field, some very long ESP and IKE
 messages that could be sent over UDP cannot be encapsulated in TCP,
 because their total length after encapsulation would exceed 65535 and
 thus could not be represented in Length field.

 Note that this method of encapsulation will also work for placing IKE
 and ESP messages within any protocol that presents a stream
 abstraction, beyond TCP.

4.1. TCP-Encapsulated IKE Header Format

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | Length |
 +-+
 | Non-ESP Marker |
 +-+
 | |
 ~ IKE header [RFC7296] ~
 | |
 +-+

 Figure 1

 The IKE header is preceded by a 16-bit Length field in network byte
 order that specifies the length of the IKE message (including the
 non-ESP marker) within the TCP stream. As with IKE over UDP port

https://datatracker.ietf.org/doc/html/rfc7296

Smyslov & Pauly Expires November 16, 2020 [Page 6]

Internet-Draft TCP Encapsulation of IKE and IPsec Packets May 2020

 4500, a zeroed 32-bit non-ESP marker is inserted before the start of
 the IKE header in order to differentiate the traffic from ESP traffic
 between the same addresses and ports.

 o Length (2 octets, unsigned integer) - Length of the IKE packet,
 including the Length field and non-ESP marker. The value in the
 Length field MUST NOT be 0 or 1. The receiver MUST treat these
 values as fatal errors and MUST close TCP connection.

4.2. TCP-Encapsulated ESP Header Format

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | Length |
 +-+
 | |
 ~ ESP header [RFC4303] ~
 | |
 +-+

 Figure 2

 The ESP header is preceded by a 16-bit Length field in network byte
 order that specifies the length of the ESP packet within the TCP
 stream.

 The Security Parameter Index (SPI) field [RFC7296] in the ESP header
 MUST NOT be a zero value.

 o Length (2 octets, unsigned integer) - Length of the ESP packet,
 including the Length field. The value in the Length field MUST
 NOT be 0 or 1. The receiver MUST treat these values as fatal
 errors and MUST close TCP connection.

5. TCP-Encapsulated Stream Prefix

 Each stream of bytes used for IKE and IPsec encapsulation MUST begin
 with a fixed sequence of six bytes as a magic value, containing the
 characters "IKETCP" as ASCII values. This value is intended to
 identify and validate that the TCP connection is being used for TCP
 encapsulation as defined in this document, to avoid conflicts with
 the prevalence of previous non-standard protocols that used TCP port
 4500. This value is only sent once, by the TCP Originator only, at
 the beginning of any stream of IKE and ESP messages.

 If other framing protocols are used within TCP to further encapsulate
 or encrypt the stream of IKE and ESP messages, the stream prefix must

https://datatracker.ietf.org/doc/html/rfc4303
https://datatracker.ietf.org/doc/html/rfc7296

Smyslov & Pauly Expires November 16, 2020 [Page 7]

Internet-Draft TCP Encapsulation of IKE and IPsec Packets May 2020

 be at the start of the TCP Originator's IKE and ESP message stream
 within the added protocol layer (Appendix B). Although some framing
 protocols do support negotiating inner protocols, the stream prefix
 should always be used in order for implementations to be as generic
 as possible and not rely on other framing protocols on top of TCP.

 0 1 2 3 4 5
 +------+------+------+------+------+------+
 | 0x49 | 0x4b | 0x45 | 0x54 | 0x43 | 0x50 |
 +------+------+------+------+------+------+

 Figure 3

6. Applicability

 TCP encapsulation is applicable only when it has been configured to
 be used with specific IKE peers. If a Responder is configured to use
 TCP encapsulation, it MUST listen on the configured port(s) in case
 any peers will initiate new IKE sessions. Initiators MAY use TCP
 encapsulation for any IKE session to a peer that is configured to
 support TCP encapsulation, although it is recommended that Initiators
 should only use TCP encapsulation when traffic over UDP is blocked.

 Since the support of TCP encapsulation is a configured property, not
 a negotiated one, it is recommended that if there are multiple IKE
 endpoints representing a single peer (such as multiple machines with
 different IP addresses when connecting by Fully Qualified Domain
 Name, or endpoints used with IKE redirection), all of the endpoints
 equally support TCP encapsulation.

 If TCP encapsulation is being used for a specific IKE SA, all
 messages for that IKE SA and its Child SAs MUST be sent over a TCP
 connection until the SA is deleted or IKEv2 Mobility and Multihoming
 (MOBIKE) is used to change the SA endpoints and/or the encapsulation
 protocol. See Section 8.1 for more details on using MOBIKE to
 transition between encapsulation modes.

6.1. Recommended Fallback from UDP

 Since UDP is the preferred method of transport for IKE messages,
 implementations that use TCP encapsulation should have an algorithm
 for deciding when to use TCP after determining that UDP is unusable.
 If an Initiator implementation has no prior knowledge about the
 network it is on and the status of UDP on that network, it SHOULD
 always attempt to negotiate IKE over UDP first. IKEv2 defines how to
 use retransmission timers with IKE messages and, specifically,
 IKE_SA_INIT messages [RFC7296]. Generally, this means that the
 implementation will define a frequency of retransmission and the

https://datatracker.ietf.org/doc/html/rfc7296

Smyslov & Pauly Expires November 16, 2020 [Page 8]

Internet-Draft TCP Encapsulation of IKE and IPsec Packets May 2020

 maximum number of retransmissions allowed before marking the IKE SA
 as failed. An implementation can attempt negotiation over TCP once
 it has hit the maximum retransmissions over UDP, or slightly before
 to reduce connection setup delays. It is recommended that the
 initial message over UDP be retransmitted at least once before
 falling back to TCP, unless the Initiator knows beforehand that the
 network is likely to block UDP.

 When switching from UDP to TCP, a new IKE_SA_INIT exchange MUST be
 initiated with new Initiator's SPI and with recalculated content of
 NAT_DETECTION_SOURCE_IP notification.

7. Using TCP Encapsulation

7.1. Connection Establishment and Teardown

 When the IKE Initiator uses TCP encapsulation, it will initiate a TCP
 connection to the Responder using the configured TCP port. The first
 bytes sent on the stream MUST be the stream prefix value (Section 5).
 After this prefix, encapsulated IKE messages will negotiate the IKE
 SA and initial Child SA [RFC7296]. After this point, both
 encapsulated IKE (Figure 1) and ESP (Figure 2) messages will be sent
 over the TCP connection. The TCP Responder MUST wait for the entire
 stream prefix to be received on the stream before trying to parse out
 any IKE or ESP messages. The stream prefix is sent only once, and
 only by the TCP Originator.

 In order to close an IKE session, either the Initiator or Responder
 SHOULD gracefully tear down IKE SAs with DELETE payloads. Once the
 SA has been deleted, the TCP Originator SHOULD close the TCP
 connection if it does not intend to use the connection for another
 IKE session to the TCP Responder. If the connection is left idle and
 the TCP Responder needs to clean up resources, the TCP Responder MAY
 close the TCP connection.

 An unexpected FIN or a TCP Reset on the TCP connection may indicate a
 loss of connectivity, an attack, or some other error. If a DELETE
 payload has not been sent, both sides SHOULD maintain the state for
 their SAs for the standard lifetime or timeout period. The TCP
 Originator is responsible for re-establishing the TCP connection if
 it is torn down for any unexpected reason. Since new TCP connections
 may use different ports due to NAT mappings or local port allocations
 changing, the TCP Responder MUST allow packets for existing SAs to be
 received from new source ports.

 A peer MUST discard a partially received message due to a broken
 connection.

https://datatracker.ietf.org/doc/html/rfc7296

Smyslov & Pauly Expires November 16, 2020 [Page 9]

Internet-Draft TCP Encapsulation of IKE and IPsec Packets May 2020

 Whenever the TCP Originator opens a new TCP connection to be used for
 an existing IKE SA, it MUST send the stream prefix first, before any
 IKE or ESP messages. This follows the same behavior as the initial
 TCP connection.

 If a TCP connection is being used to resume a previous IKE session,
 the TCP Responder can recognize the session using either the IKE SPI
 from an encapsulated IKE message or the ESP SPI from an encapsulated
 ESP message. If the session had been fully established previously,
 it is suggested that the TCP Originator send an UPDATE_SA_ADDRESSES
 message if MOBIKE is supported, or an informational message (a keep-
 alive) otherwise.

 The TCP Responder MUST NOT accept any messages for the existing IKE
 session on a new incoming connection, unless that connection begins
 with the stream prefix. If either the TCP Originator or TCP
 Responder detects corruption on a connection that was started with a
 valid stream prefix, it SHOULD close the TCP connection. The
 connection can be determined to be corrupted if there are too many
 subsequent messages that cannot be parsed as valid IKE messages or
 ESP messages with known SPIs, or if the authentication check for an
 ESP message with a known SPI fails. Implementations SHOULD NOT tear
 down a connection if only a single ESP message has an unknown SPI,
 since the SPI databases may be momentarily out of sync. If there is
 instead a syntax issue within an IKE message, an implementation MUST
 send the INVALID_SYNTAX notify payload and tear down the IKE SA as
 usual, rather than tearing down the TCP connection directly.

 A TCP Originator SHOULD only open one TCP connection per IKE SA, over
 which it sends all of the corresponding IKE and ESP messages. This
 helps ensure that any firewall or NAT mappings allocated for the TCP
 connection apply to all of the traffic associated with the IKE SA
 equally.

 Similarly, a TCP Responder SHOULD at any given time send packets for
 an IKE SA and its Child SAs over only one TCP connection. It SHOULD
 choose the TCP connection on which it last received a valid and
 decryptable IKE or ESP message. In order to be considered valid for
 choosing a TCP connection, an IKE message must be successfully
 decrypted and authenticated, not be a retransmission of a previously
 received message, and be within the expected window for IKE message
 IDs. Similarly, an ESP message must pass authentication checks and
 be decrypted, and must not be a replay of a previous message.

 Since a connection may be broken and a new connection re-established
 by the TCP Originator without the TCP Responder being aware, a TCP
 Responder SHOULD accept receiving IKE and ESP messages on both old
 and new connections until the old connection is closed by the TCP

Smyslov & Pauly Expires November 16, 2020 [Page 10]

Internet-Draft TCP Encapsulation of IKE and IPsec Packets May 2020

 Originator. A TCP Responder MAY close a TCP connection that it
 perceives as idle and extraneous (one previously used for IKE and ESP
 messages that has been replaced by a new connection).

 Multiple IKE SAs MUST NOT share a single TCP connection, unless one
 is a rekey of an existing IKE SA, in which case there will
 temporarily be two IKE SAs on the same TCP connection.

7.2. Retransmissions

Section 2.1 of [RFC7296] describes how IKEv2 deals with the
 unreliability of the UDP protocol. In brief, the exchange Initiator
 is responsible for retransmissions and must retransmit requests
 message until response message is received. If no reply is received
 after several retransmissions, the SA is deleted. The Responder
 never initiates retransmission, but must send a response message
 again in case it receives a retransmitted request.

 When IKEv2 uses a reliable transport protocol, like TCP, the
 retransmission rules are as follows:

 o the exchange Initiator SHOULD NOT retransmit request message; if
 no response is received within some reasonable period of time, the
 IKE SA is deleted.

 o if a TCP connection is broken and reestablished while the exchange
 Initiator is waiting for a response, the Initiator MUST retransmit
 its request and continue to wait for a response.

 o the exchange Responder does not change its behavior, but acts as
 described in Section 2.1 of [RFC7296].

7.3. Cookies and Puzzles

 IKEv2 provides a DoS attack protection mechanism through Cookies,
 which is described in Section 2.6 of [RFC7296]. [RFC8019] extends
 this mechanism for protection against DDoS attacks by means of Client
 Puzzles. Both mechanisms allow the Responder to avoid keeping state
 until the Initiator proves its IP address is legitimate (and after
 solving a puzzle if required).

 The connection-oriented nature of TCP and transport brings additional
 considerations for using these mechanisms. In general, Cookies
 provide less value in case of TCP encapsulation, since by the time a
 Responder receives the IKE_SA_INIT request, the TCP session has
 already been established and the Initiator's IP address has been
 verified. Moreover, a TCP Responder creates state once a SYN packet
 is received (unless SYN Cookies described in [RFC4987] are employed),

https://datatracker.ietf.org/doc/html/rfc7296#section-2.1
https://datatracker.ietf.org/doc/html/rfc7296#section-2.1
https://datatracker.ietf.org/doc/html/rfc7296#section-2.6
https://datatracker.ietf.org/doc/html/rfc8019
https://datatracker.ietf.org/doc/html/rfc4987

Smyslov & Pauly Expires November 16, 2020 [Page 11]

Internet-Draft TCP Encapsulation of IKE and IPsec Packets May 2020

 which eliminates some of the benefits of IKEv2 Cookies. When using
 TCP encapsulation, it adds little value to send Cookie requests
 without Puzzles unless the Responder is concerned with the
 possibility of TCP Sequence Number attacks (see [RFC6528] for
 details). Puzzles, on the other hand, still remain useful (and their
 use requires using Cookies).

 The following considerations are applicable for using Cookie and
 Puzzle mechanisms in case of TCP encapsulation:

 o the exchange Responder SHOULD NOT request a Cookie, with the
 exception of Puzzles or for rare cases like preventing TCP
 Sequence Number attacks.

 o if the Responder chooses to send Cookie request (possibly along
 with Puzzle request), then the TCP connection that the IKE_SA_INIT
 request message was received over SHOULD be closed, so that the
 Responder remains stateless at least until the Cookie (or Puzzle
 Solution) is returned. Note that if this TCP connection is
 closed, the Responder MUST NOT include the Initiator's TCP port
 into the Cookie calculation (*), since the Cookie will be returned
 over a new TCP connection with a different port.

 o the exchange Initiator acts as described in Section 2.6 of
 [RFC7296] and Section 7 of [RFC8019], i.e. using TCP encapsulation
 doesn't change the Initiator's behavior.

 (*) Examples of Cookie calculation methods are given in Section 2.6
 of [RFC7296] and in Section 7.1.1.3 of [RFC8019] and they don't
 include transport protocol ports. However these examples are given
 for illustrative purposes, since Cookie generation algorithm is a
 local matter and some implementations might include port numbers,
 that won't work with TCP encapsulation.

7.4. Error Handling in IKE_SA_INIT

Section 2.21.1 of [RFC7296] describes how error notifications are
 handled in the IKE_SA_INIT exchange. In particular, it is advised
 that the Initiator should not act immediately after receiving error
 notification and should instead wait some time for valid response,
 since the IKE_SA_INIT messages are completely unauthenticated. This
 advice does not apply equally in case of TCP encapsulation. If the
 Initiator receives a response message over TCP, then either this
 message is genuine and was sent by the peer, or the TCP session was
 hijacked and the message is forged. In this latter case, no genuine
 messages from the Responder will be received.

https://datatracker.ietf.org/doc/html/rfc6528
https://datatracker.ietf.org/doc/html/rfc7296#section-2.6
https://datatracker.ietf.org/doc/html/rfc7296#section-2.6
https://datatracker.ietf.org/doc/html/rfc8019#section-7
https://datatracker.ietf.org/doc/html/rfc7296#section-2.6
https://datatracker.ietf.org/doc/html/rfc7296#section-2.6
https://datatracker.ietf.org/doc/html/rfc8019#section-7.1.1.3
https://datatracker.ietf.org/doc/html/rfc7296#section-2.21.1

Smyslov & Pauly Expires November 16, 2020 [Page 12]

Internet-Draft TCP Encapsulation of IKE and IPsec Packets May 2020

 Thus, in case of TCP encapsulation, an Initiator SHOULD NOT wait for
 additional messages in case it receives error notification from the
 Responder in the IKE_SA_INIT exchange.

7.5. NAT Detection Payloads

 When negotiating over UDP port 500, IKE_SA_INIT packets include
 NAT_DETECTION_SOURCE_IP and NAT_DETECTION_DESTINATION_IP payloads to
 determine if UDP encapsulation of IPsec packets should be used.
 These payloads contain SHA-1 digests of the SPIs, IP addresses, and
 ports as defined in [RFC7296]. IKE_SA_INIT packets sent on a TCP
 connection SHOULD include these payloads with the same content as
 when sending over UDP and SHOULD use the applicable TCP ports when
 creating and checking the SHA-1 digests.

 If a NAT is detected due to the SHA-1 digests not matching the
 expected values, no change should be made for encapsulation of
 subsequent IKE or ESP packets, since TCP encapsulation inherently
 supports NAT traversal. Implementations MAY use the information that
 a NAT is present to influence keep-alive timer values.

 If a NAT is detected, implementations need to handle transport mode
 TCP and UDP packet checksum fixup as defined for UDP encapsulation in
 [RFC3948].

7.6. Keep-Alives and Dead Peer Detection

 Encapsulating IKE and IPsec inside of a TCP connection can impact the
 strategy that implementations use to detect peer liveness and to
 maintain middlebox port mappings. Peer liveness should be checked
 using IKE informational packets [RFC7296].

 In general, TCP port mappings are maintained by NATs longer than UDP
 port mappings, so IPsec ESP NAT keep-alives [RFC3948] SHOULD NOT be
 sent when using TCP encapsulation. Any implementation using TCP
 encapsulation MUST silently drop incoming NAT keep-alive packets and
 not treat them as errors. NAT keep-alive packets over a TCP-
 encapsulated IPsec connection will be sent as an ESP message with a
 one-octet-long payload with the value 0xFF.

 Note that, depending on the configuration of TCP and TLS on the
 connection, TCP keep-alives [RFC1122] and TLS keep-alives [RFC6520]
 may be used. These MUST NOT be used as indications of IKE peer
 liveness.

https://datatracker.ietf.org/doc/html/rfc7296
https://datatracker.ietf.org/doc/html/rfc3948
https://datatracker.ietf.org/doc/html/rfc7296
https://datatracker.ietf.org/doc/html/rfc3948
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc6520

Smyslov & Pauly Expires November 16, 2020 [Page 13]

Internet-Draft TCP Encapsulation of IKE and IPsec Packets May 2020

7.7. Implications of TCP Encapsulation on IPsec SA Processing

 Using TCP encapsulation affects some aspects of IPsec SA processing.

 1. Section 8.1 of [RFC4301] requires all tunnel mode IPsec SAs to be
 able to copy the Don't Fragment (DF) bit from inner IP header to
 the outer (tunnel) one. With TCP encapsulation this is generally
 not possible, because TCP/IP stack manages DF bit in the outer IP
 header, and usually the stack ensures that the DF bit is set for
 TCP packets to avoid IP fragmentation.

 2. The other feature that is less applicable with TCP encapsulation
 is an ability to split traffic of different QoS classes into
 different IPsec SAs, created by a single IKE SA. In this case
 the Differentiated Services Code Point (DSCP) field is usually
 copied from the inner IP header to the outer (tunnel) one,
 ensuring that IPsec traffic of each SA receives the corresponding
 level of service. With TCP encapsulation all IPsec SAs created
 by a single IKE SA will share a single TCP connection and thus
 will receive the same level of service (see Section 10.3). If
 this functionality is needed, implementations should create
 several IKE SAs over TCP and assign a corresponding DSCP value to
 each of them.

8. Interaction with IKEv2 Extensions

8.1. MOBIKE Protocol

 MOBIKE protocol, that allows IKEv2 SA to migrate between IP
 addresses, is defined in [RFC4555], and [RFC4621] further clarifies
 the details of the protocol. When an IKE session that has negotiated
 MOBIKE is transitioning between networks, the Initiator of the
 transition may switch between using TCP encapsulation, UDP
 encapsulation, or no encapsulation. Implementations that implement
 both MOBIKE and TCP encapsulation MUST support dynamically enabling
 and disabling TCP encapsulation as interfaces change.

 When a MOBIKE-enabled Initiator changes networks, the INFORMATIONAL
 exchange with the UPDATE_SA_ADDRESSES notification SHOULD be
 initiated first over UDP before attempting over TCP. If there is a
 response to the request sent over UDP, then the ESP packets should be
 sent directly over IP or over UDP port 4500 (depending on if a NAT
 was detected), regardless of if a connection on a previous network
 was using TCP encapsulation. If no response is received within a
 certain period of time after several retransmissions, the Initiator
 ought to change its transport for this exchange from UDP to TCP and
 resend the request message. New INFORMATIONAL exchange MUST NOT be
 started in this situation. If the Responder only responds to the

https://datatracker.ietf.org/doc/html/rfc4301#section-8.1
https://datatracker.ietf.org/doc/html/rfc4555
https://datatracker.ietf.org/doc/html/rfc4621

Smyslov & Pauly Expires November 16, 2020 [Page 14]

Internet-Draft TCP Encapsulation of IKE and IPsec Packets May 2020

 request sent over TCP, then the ESP packets should be sent over the
 TCP connection, regardless of if a connection on a previous network
 did not use TCP encapsulation.

 Since switching from UDP to TCP happens can occur during a single
 INFORMATIONAL message exchange, the content of the
 NAT_DETECTION_SOURCE_IP notification will in most cases be incorrect
 (since UDP and TCP source ports will most likely be different), and
 the peer may incorrectly detect the presence of a NAT. This should
 not cause functional issues since all messages will be encapsulated
 in TCP anyway, and TCP encapsulation does not change based on the
 presence of NATs.

 MOBIKE protocol defined the NO_NATS_ALLOWED notification that can be
 used to detect the presence of NAT between peer and to refuse to
 communicate in this situation. In case of TCP the NO_NATS_ALLOWED
 notification SHOULD be ignored because TCP generally has no problems
 with NAT boxes.

Section 3.7 of [RFC4555] describes an additional optional step in the
 process of changing IP addresses called Return Routability Check. It
 is performed by the responder in order to be sure that the new
 initiator's address is in fact routable. In case of TCP
 encapsulation this check has little value, since TCP handshake proves
 routability of the TCP Originator's address. So, in case of TCP
 encapsulation the Return Routability Check SHOULD NOT be performed.

8.2. IKE Redirect

 A redirect mechanism for IKEv2 is defined in [RFC5685]. This
 mechanism allows security gateways to redirect clients to another
 gateway either during IKE SA establishment or after session setup.
 If a client is connecting to a security gateway using TCP and then is
 redirected to another security gateway, the client needs to reset its
 transport selection. In other words, the client MUST again try first
 UDP and then fall back to TCP while establishing a new IKE SA,
 regardless of the transport of the SA the redirect notification was
 received over (unless the client's configuration instructs it to
 instantly use TCP for the gateway it is redirected to).

8.3. IKEv2 Session Resumption

 Session resumption for IKEv2 is defined in [RFC5723]. Once an IKE SA
 is established, the server creates a resumption ticket where
 information about this SA is stored, and transfers this ticket to the
 client. The ticket may be later used to resume the IKE SA after it
 is deleted. In the event of resumption the client presents the
 ticket in a new exchange, called IKE_SESSION_RESUME. Some parameters

https://datatracker.ietf.org/doc/html/rfc4555#section-3.7
https://datatracker.ietf.org/doc/html/rfc5685
https://datatracker.ietf.org/doc/html/rfc5723

Smyslov & Pauly Expires November 16, 2020 [Page 15]

Internet-Draft TCP Encapsulation of IKE and IPsec Packets May 2020

 in the new SA are retrieved from the ticket and others are re-
 negotiated (more details are given in Section 5 of [RFC5723]). If
 TCP encapsulation was used in an old SA, then the client SHOULD
 resume this SA using TCP, without first trying to connect over UDP.

8.4. IKEv2 Protocol Support for High Availability

 [RFC6311] defines a support for High Availability in IKEv2. In case
 of cluster failover, a new active node must immediately initiate a
 special INFORMATION exchange containing the IKEV2_MESSAGE_ID_SYNC
 notification, which instructs the client to skip some number of
 Message IDs that might not be synchronized yet between nodes at the
 time of failover.

 Synchronizing states when using TCP encapsulation is much harder than
 when using UDP; doing so requires access to TCP/IP stack internals,
 which is not always available from an IKE/IPsec implementation. If a
 cluster implementation doesn't synchronize TCP states between nodes,
 then after failover event the new active node will not have any TCP
 connection with the client, so the node cannot initiate the
 INFORMATIONAL exchange as required by [RFC6311]. Since the cluster
 usually acts as TCP Responder, the new active node cannot re-
 establish TCP connection, since only the TCP Originator can do it.
 For the client, the cluster failover event may remain undetected for
 long time if it has no IKE or ESP traffic to send. Once the client
 sends an ESP or IKEv2 packet, the cluster node will reply with TCP
 RST and the client (as TCP Originator) will reestablish the TCP
 connection so that the node will be able to initiate the
 INFORMATIONAL exchange informing the client about the cluster
 failover.

 This document makes the following recommendation: if support for High
 Availability in IKEv2 is negotiated and TCP transport is used, a
 client that is a TCP Originator SHOULD periodically send IKEv2
 messages (e.g. by initiating liveness check exchange) whenever there
 is no IKEv2 or ESP traffic. This differs from the recommendations
 given in Section 2.4 of [RFC7296] in the following: the liveness
 check should be periodically performed even if the client has nothing
 to send over ESP. The frequency of sending such messages should be
 high enough to allow quick detection and restoring of broken TCP
 connection.

8.5. IKEv2 Fragmentation

 IKE message fragmentation [RFC7383] is not required when using TCP
 encapsulation, since a TCP stream already handles the fragmentation
 of its contents across packets. Since fragmentation is redundant in
 this case, implementations might choose to not negotiate IKE

https://datatracker.ietf.org/doc/html/rfc5723#section-5
https://datatracker.ietf.org/doc/html/rfc6311
https://datatracker.ietf.org/doc/html/rfc7296#section-2.4
https://datatracker.ietf.org/doc/html/rfc7383

Smyslov & Pauly Expires November 16, 2020 [Page 16]

Internet-Draft TCP Encapsulation of IKE and IPsec Packets May 2020

 fragmentation. Even if fragmentation is negotiated, an
 implementation SHOULD NOT send fragments when going over a TCP
 connection, although it MUST support receiving fragments.

 If an implementation supports both MOBIKE and IKE fragmentation, it
 SHOULD negotiate IKE fragmentation over a TCP-encapsulated session in
 case the session switches to UDP encapsulation on another network.

9. Middlebox Considerations

 Many security networking devices, such as firewalls or intrusion
 prevention systems, network optimization/acceleration devices, and
 NAT devices, keep the state of sessions that traverse through them.

 These devices commonly track the transport-layer and/or application-
 layer data to drop traffic that is anomalous or malicious in nature.
 While many of these devices will be more likely to pass TCP-
 encapsulated traffic as opposed to UDP-encapsulated traffic, some may
 still block or interfere with TCP-encapsulated IKE and IPsec traffic.

 A network device that monitors the transport layer will track the
 state of TCP sessions, such as TCP sequence numbers. TCP
 encapsulation of IKE should therefore use standard TCP behaviors to
 avoid being dropped by middleboxes.

10. Performance Considerations

 Several aspects of TCP encapsulation for IKE and IPsec packets may
 negatively impact the performance of connections within a tunnel-mode
 IPsec SA. Implementations should be aware of these performance
 impacts and take these into consideration when determining when to
 use TCP encapsulation. Implementations SHOULD favor using direct ESP
 or UDP encapsulation over TCP encapsulation whenever possible.

10.1. TCP-in-TCP

 If the outer connection between IKE peers is over TCP, inner TCP
 connections may suffer negative effects from using TCP within TCP.
 Running TCP within TCP is discouraged, since the TCP algorithms
 generally assume that they are running over an unreliable datagram
 layer.

 If the outer (tunnel) TCP connection experiences packet loss, this
 loss will be hidden from any inner TCP connections, since the outer
 connection will retransmit to account for the losses. Since the
 outer TCP connection will deliver the inner messages in order, any
 messages after a lost packet may have to wait until the loss is
 recovered. This means that loss on the outer connection will be

Smyslov & Pauly Expires November 16, 2020 [Page 17]

Internet-Draft TCP Encapsulation of IKE and IPsec Packets May 2020

 interpreted only as delay by inner connections. The burstiness of
 inner traffic can increase, since a large number of inner packets may
 be delivered across the tunnel at once. The inner TCP connection may
 interpret a long period of delay as a transmission problem,
 triggering a retransmission timeout, which will cause spurious
 retransmissions. The sending rate of the inner connection may be
 unnecessarily reduced if the retransmissions are not detected as
 spurious in time.

 The inner TCP connection's round-trip-time estimation will be
 affected by the burstiness of the outer TCP connection if there are
 long delays when packets are retransmitted by the outer TCP
 connection. This will make the congestion control loop of the inner
 TCP traffic less reactive, potentially permanently leading to a lower
 sending rate than the outer TCP would allow for.

 TCP-in-TCP can also lead to increased buffering, or bufferbloat.
 This can occur when the window size of the outer TCP connection is
 reduced and becomes smaller than the window sizes of the inner TCP
 connections. This can lead to packets backing up in the outer TCP
 connection's send buffers. In order to limit this effect, the outer
 TCP connection should have limits on its send buffer size and on the
 rate at which it reduces its window size.

 Note that any negative effects will be shared between all flows going
 through the outer TCP connection. This is of particular concern for
 any latency-sensitive or real-time applications using the tunnel. If
 such traffic is using a TCP-encapsulated IPsec connection, it is
 recommended that the number of inner connections sharing the tunnel
 be limited as much as possible.

10.2. Added Reliability for Unreliable Protocols

 Since ESP is an unreliable protocol, transmitting ESP packets over a
 TCP connection will change the fundamental behavior of the packets.
 Some application-level protocols that prefer packet loss to delay
 (such as Voice over IP or other real-time protocols) may be
 negatively impacted if their packets are retransmitted by the TCP
 connection due to packet loss.

10.3. Quality-of-Service Markings

 Quality-of-Service (QoS) markings, such as the Differentiated
 Services Code Point (DSCP) and Traffic Class, should be used with
 care on TCP connections used for encapsulation. Individual packets
 SHOULD NOT use different markings than the rest of the connection,
 since packets with different priorities may be routed differently and
 cause unnecessary delays in the connection.

Smyslov & Pauly Expires November 16, 2020 [Page 18]

Internet-Draft TCP Encapsulation of IKE and IPsec Packets May 2020

10.4. Maximum Segment Size

 A TCP connection used for IKE encapsulation SHOULD negotiate its MSS
 in order to avoid unnecessary fragmentation of packets.

10.5. Tunneling ECN in TCP

 Since there is not a one-to-one relationship between outer IP packets
 and inner ESP/IP messages when using TCP encapsulation, the markings
 for Explicit Congestion Notification (ECN) [RFC3168] cannot be simply
 mapped. However, any ECN Congestion Experienced (CE) marking on
 inner headers should be preserved through the tunnel.

 Implementations SHOULD follow the ECN compatibility mode for tunnel
 ingress as described in [RFC6040]. In compatibility mode, the outer
 tunnel TCP connection marks its packet headers as not ECN-capable.
 If upon egress, the arriving outer header is marked with CE, the
 implementation will drop the inner packet, since there is not a
 distinct inner packet header onto which to translate the ECN
 markings.

11. Security Considerations

 IKE Responders that support TCP encapsulation may become vulnerable
 to new Denial-of-Service (DoS) attacks that are specific to TCP, such
 as SYN-flooding attacks. TCP Responders should be aware of this
 additional attack surface.

 TCP Responders should be careful to ensure that (1) the stream prefix
 "IKETCP" uniquely identifies incoming streams as streams that use the
 TCP encapsulation protocol and (2) they are not running any other
 protocols on the same listening port (to avoid potential conflicts).

 Attackers may be able to disrupt the TCP connection by sending
 spurious TCP Reset packets. Therefore, implementations SHOULD make
 sure that IKE session state persists even if the underlying TCP
 connection is torn down.

 If MOBIKE is being used, all of the security considerations outlined
 for MOBIKE apply [RFC4555].

 Similarly to MOBIKE, TCP encapsulation requires a TCP Responder to
 handle changes to source address and port due to network or
 connection disruption. The successful delivery of valid IKE or ESP
 messages over a new TCP connection is used by the TCP Responder to
 determine where to send subsequent responses. If an attacker is able
 to send packets on a new TCP connection that pass the validation
 checks of the TCP Responder, it can influence which path future

https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc6040
https://datatracker.ietf.org/doc/html/rfc4555

Smyslov & Pauly Expires November 16, 2020 [Page 19]

Internet-Draft TCP Encapsulation of IKE and IPsec Packets May 2020

 packets will take. For this reason, the validation of messages on
 the TCP Responder must include decryption, authentication, and replay
 checks.

 Since TCP provides reliable, in-order delivery of ESP messages, the
 ESP anti-replay window size SHOULD be set to 1. See [RFC4303] for a
 complete description of the ESP anti-replay window. This increases
 the protection of implementations against replay attacks.

12. IANA Considerations

 TCP port 4500 is already allocated to IPsec for NAT traversal. This
 port SHOULD be used for TCP-encapsulated IKE and ESP as described in
 this document.

 This document updates the reference for TCP port 4500 from RFC 8229
 to itself:

 Keyword Decimal Description Reference
 ----------- -------- ------------------- ---------
 ipsec-nat-t 4500/tcp IPsec NAT-Traversal [RFCXXXX]

 Figure 4

13. References

13.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3948] Huttunen, A., Swander, B., Volpe, V., DiBurro, L., and M.
 Stenberg, "UDP Encapsulation of IPsec ESP Packets",

RFC 3948, DOI 10.17487/RFC3948, January 2005,
 <https://www.rfc-editor.org/info/rfc3948>.

 [RFC4301] Kent, S. and K. Seo, "Security Architecture for the
 Internet Protocol", RFC 4301, DOI 10.17487/RFC4301,
 December 2005, <https://www.rfc-editor.org/info/rfc4301>.

 [RFC4303] Kent, S., "IP Encapsulating Security Payload (ESP)",
RFC 4303, DOI 10.17487/RFC4303, December 2005,

 <https://www.rfc-editor.org/info/rfc4303>.

https://datatracker.ietf.org/doc/html/rfc4303
https://datatracker.ietf.org/doc/html/rfc8229
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc3948
https://www.rfc-editor.org/info/rfc3948
https://datatracker.ietf.org/doc/html/rfc4301
https://www.rfc-editor.org/info/rfc4301
https://datatracker.ietf.org/doc/html/rfc4303
https://www.rfc-editor.org/info/rfc4303

Smyslov & Pauly Expires November 16, 2020 [Page 20]

Internet-Draft TCP Encapsulation of IKE and IPsec Packets May 2020

 [RFC6040] Briscoe, B., "Tunnelling of Explicit Congestion
 Notification", RFC 6040, DOI 10.17487/RFC6040, November
 2010, <https://www.rfc-editor.org/info/rfc6040>.

 [RFC7296] Kaufman, C., Hoffman, P., Nir, Y., Eronen, P., and T.
 Kivinen, "Internet Key Exchange Protocol Version 2
 (IKEv2)", STD 79, RFC 7296, DOI 10.17487/RFC7296, October
 2014, <https://www.rfc-editor.org/info/rfc7296>.

 [RFC8019] Nir, Y. and V. Smyslov, "Protecting Internet Key Exchange
 Protocol Version 2 (IKEv2) Implementations from
 Distributed Denial-of-Service Attacks", RFC 8019,
 DOI 10.17487/RFC8019, November 2016,
 <https://www.rfc-editor.org/info/rfc8019>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

13.2. Informative References

 [I-D.ietf-ipsecme-ike-tcp]
 Nir, Y., "A TCP transport for the Internet Key Exchange",

draft-ietf-ipsecme-ike-tcp-01 (work in progress), December
 2012.

 [RFC1122] Braden, R., Ed., "Requirements for Internet Hosts -
 Communication Layers", STD 3, RFC 1122,
 DOI 10.17487/RFC1122, October 1989,
 <https://www.rfc-editor.org/info/rfc1122>.

 [RFC2817] Khare, R. and S. Lawrence, "Upgrading to TLS Within
 HTTP/1.1", RFC 2817, DOI 10.17487/RFC2817, May 2000,
 <https://www.rfc-editor.org/info/rfc2817>.

 [RFC3168] Ramakrishnan, K., Floyd, S., and D. Black, "The Addition
 of Explicit Congestion Notification (ECN) to IP",

RFC 3168, DOI 10.17487/RFC3168, September 2001,
 <https://www.rfc-editor.org/info/rfc3168>.

 [RFC4555] Eronen, P., "IKEv2 Mobility and Multihoming Protocol
 (MOBIKE)", RFC 4555, DOI 10.17487/RFC4555, June 2006,
 <https://www.rfc-editor.org/info/rfc4555>.

 [RFC4621] Kivinen, T. and H. Tschofenig, "Design of the IKEv2
 Mobility and Multihoming (MOBIKE) Protocol", RFC 4621,
 DOI 10.17487/RFC4621, August 2006,
 <https://www.rfc-editor.org/info/rfc4621>.

https://datatracker.ietf.org/doc/html/rfc6040
https://www.rfc-editor.org/info/rfc6040
https://datatracker.ietf.org/doc/html/rfc7296
https://www.rfc-editor.org/info/rfc7296
https://datatracker.ietf.org/doc/html/rfc8019
https://www.rfc-editor.org/info/rfc8019
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://datatracker.ietf.org/doc/html/draft-ietf-ipsecme-ike-tcp-01
https://datatracker.ietf.org/doc/html/rfc1122
https://www.rfc-editor.org/info/rfc1122
https://datatracker.ietf.org/doc/html/rfc2817
https://www.rfc-editor.org/info/rfc2817
https://datatracker.ietf.org/doc/html/rfc3168
https://www.rfc-editor.org/info/rfc3168
https://datatracker.ietf.org/doc/html/rfc4555
https://www.rfc-editor.org/info/rfc4555
https://datatracker.ietf.org/doc/html/rfc4621
https://www.rfc-editor.org/info/rfc4621

Smyslov & Pauly Expires November 16, 2020 [Page 21]

Internet-Draft TCP Encapsulation of IKE and IPsec Packets May 2020

 [RFC4987] Eddy, W., "TCP SYN Flooding Attacks and Common
 Mitigations", RFC 4987, DOI 10.17487/RFC4987, August 2007,
 <https://www.rfc-editor.org/info/rfc4987>.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <https://www.rfc-editor.org/info/rfc5246>.

 [RFC5685] Devarapalli, V. and K. Weniger, "Redirect Mechanism for
 the Internet Key Exchange Protocol Version 2 (IKEv2)",

RFC 5685, DOI 10.17487/RFC5685, November 2009,
 <https://www.rfc-editor.org/info/rfc5685>.

 [RFC5723] Sheffer, Y. and H. Tschofenig, "Internet Key Exchange
 Protocol Version 2 (IKEv2) Session Resumption", RFC 5723,
 DOI 10.17487/RFC5723, January 2010,
 <https://www.rfc-editor.org/info/rfc5723>.

 [RFC6311] Singh, R., Ed., Kalyani, G., Nir, Y., Sheffer, Y., and D.
 Zhang, "Protocol Support for High Availability of IKEv2/
 IPsec", RFC 6311, DOI 10.17487/RFC6311, July 2011,
 <https://www.rfc-editor.org/info/rfc6311>.

 [RFC6520] Seggelmann, R., Tuexen, M., and M. Williams, "Transport
 Layer Security (TLS) and Datagram Transport Layer Security
 (DTLS) Heartbeat Extension", RFC 6520,
 DOI 10.17487/RFC6520, February 2012,
 <https://www.rfc-editor.org/info/rfc6520>.

 [RFC6528] Gont, F. and S. Bellovin, "Defending against Sequence
 Number Attacks", RFC 6528, DOI 10.17487/RFC6528, February
 2012, <https://www.rfc-editor.org/info/rfc6528>.

 [RFC7383] Smyslov, V., "Internet Key Exchange Protocol Version 2
 (IKEv2) Message Fragmentation", RFC 7383,
 DOI 10.17487/RFC7383, November 2014,
 <https://www.rfc-editor.org/info/rfc7383>.

 [RFC8229] Pauly, T., Touati, S., and R. Mantha, "TCP Encapsulation
 of IKE and IPsec Packets", RFC 8229, DOI 10.17487/RFC8229,
 August 2017, <https://www.rfc-editor.org/info/rfc8229>.

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

https://datatracker.ietf.org/doc/html/rfc4987
https://www.rfc-editor.org/info/rfc4987
https://datatracker.ietf.org/doc/html/rfc5246
https://www.rfc-editor.org/info/rfc5246
https://datatracker.ietf.org/doc/html/rfc5685
https://www.rfc-editor.org/info/rfc5685
https://datatracker.ietf.org/doc/html/rfc5723
https://www.rfc-editor.org/info/rfc5723
https://datatracker.ietf.org/doc/html/rfc6311
https://www.rfc-editor.org/info/rfc6311
https://datatracker.ietf.org/doc/html/rfc6520
https://www.rfc-editor.org/info/rfc6520
https://datatracker.ietf.org/doc/html/rfc6528
https://www.rfc-editor.org/info/rfc6528
https://datatracker.ietf.org/doc/html/rfc7383
https://www.rfc-editor.org/info/rfc7383
https://datatracker.ietf.org/doc/html/rfc8229
https://www.rfc-editor.org/info/rfc8229
https://datatracker.ietf.org/doc/html/rfc8446
https://www.rfc-editor.org/info/rfc8446

Smyslov & Pauly Expires November 16, 2020 [Page 22]

Internet-Draft TCP Encapsulation of IKE and IPsec Packets May 2020

Appendix A. Using TCP Encapsulation with TLS

 This section provides recommendations on how to use TLS in addition
 to TCP encapsulation.

 When using TCP encapsulation, implementations may choose to use TLS
 1.2 [RFC5246] or TLS 1.3 [RFC8446] on the TCP connection to be able
 to traverse middleboxes, which may otherwise block the traffic.

 If a web proxy is applied to the ports used for the TCP connection
 and TLS is being used, the TCP Originator can send an HTTP CONNECT
 message to establish an SA through the proxy [RFC2817].

 The use of TLS should be configurable on the peers, and may be used
 as the default when using TCP encapsulation or may be used as a
 fallback when basic TCP encapsulation fails. The TCP Responder may
 expect to read encapsulated IKE and ESP packets directly from the TCP
 connection, or it may expect to read them from a stream of TLS data
 packets. The TCP Originator should be pre-configured to use TLS or
 not when communicating with a given port on the TCP Responder.

 When new TCP connections are re-established due to a broken
 connection, TLS must be renegotiated. TLS session resumption is
 recommended to improve efficiency in this case.

 The security of the IKE session is entirely derived from the IKE
 negotiation and key establishment and not from the TLS session (which
 in this context is only used for encapsulation purposes); therefore,
 when TLS is used on the TCP connection, both the TCP Originator and
 the TCP Responder SHOULD allow the NULL cipher to be selected for
 performance reasons. Note, that TLS 1.3 only supports AEAD
 algorithms and at the time of writing this document there was no
 recommended cipher suite for TLS 1.3 with the NULL cipher.

 Implementations should be aware that the use of TLS introduces
 another layer of overhead requiring more bytes to transmit a given
 IKE and IPsec packet. For this reason, direct ESP, UDP
 encapsulation, or TCP encapsulation without TLS should be preferred
 in situations in which TLS is not required in order to traverse
 middleboxes.

Appendix B. Example Exchanges of TCP Encapsulation with TLS 1.2

B.1. Establishing an IKE Session

 Client Server
 ---------- ----------
 1) -------------------- TCP Connection -------------------

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc8446
https://datatracker.ietf.org/doc/html/rfc2817

Smyslov & Pauly Expires November 16, 2020 [Page 23]

Internet-Draft TCP Encapsulation of IKE and IPsec Packets May 2020

 (IP_I:Port_I -> IP_R:Port_R)
 TcpSyn ---------->
 <---------- TcpSyn,Ack
 TcpAck ---------->

 2) --------------------- TLS Session ---------------------
 ClientHello ---------->
 ServerHello
 Certificate*
 ServerKeyExchange*
 <---------- ServerHelloDone
 ClientKeyExchange
 CertificateVerify*
 [ChangeCipherSpec]
 Finished ---------->
 [ChangeCipherSpec]
 <---------- Finished

 3) ---------------------- Stream Prefix --------------------
 "IKETCP" ---------->
 4) ----------------------- IKE Session ---------------------
 Length + Non-ESP Marker ---------->
 IKE_SA_INIT
 HDR, SAi1, KEi, Ni,
 [N(NAT_DETECTION_*_IP)]
 <------ Length + Non-ESP Marker
 IKE_SA_INIT
 HDR, SAr1, KEr, Nr,
 [N(NAT_DETECTION_*_IP)]
 Length + Non-ESP Marker ---------->
 first IKE_AUTH
 HDR, SK {IDi, [CERTREQ]
 CP(CFG_REQUEST), IDr,
 SAi2, TSi, TSr, ...}
 <------ Length + Non-ESP Marker
 first IKE_AUTH
 HDR, SK {IDr, [CERT], AUTH,
 EAP, SAr2, TSi, TSr}

 Length + Non-ESP Marker ---------->
 IKE_AUTH + EAP
 repeat 1..N times
 <------ Length + Non-ESP Marker
 IKE_AUTH + EAP
 Length + Non-ESP Marker ---------->
 final IKE_AUTH
 HDR, SK {AUTH}
 <------ Length + Non-ESP Marker

Smyslov & Pauly Expires November 16, 2020 [Page 24]

Internet-Draft TCP Encapsulation of IKE and IPsec Packets May 2020

 final IKE_AUTH
 HDR, SK {AUTH, CP(CFG_REPLY),
 SA, TSi, TSr, ...}
 -------------- IKE and IPsec SAs Established ------------
 Length + ESP Frame ---------->

 Figure 5

 1. The client establishes a TCP connection with the server on port
 4500 or on an alternate pre-configured port that the server is
 listening on.

 2. If configured to use TLS, the client initiates a TLS handshake.
 During the TLS handshake, the server SHOULD NOT request the
 client's certificate, since authentication is handled as part of
 IKE negotiation.

 3. The client sends the stream prefix for TCP-encapsulated IKE
 (Section 5) traffic to signal the beginning of IKE negotiation.

 4. The client and server establish an IKE connection. This example
 shows EAP-based authentication, although any authentication type
 may be used.

B.2. Deleting an IKE Session

Smyslov & Pauly Expires November 16, 2020 [Page 25]

Internet-Draft TCP Encapsulation of IKE and IPsec Packets May 2020

 Client Server
 ---------- ----------
 1) ----------------------- IKE Session ---------------------
 Length + Non-ESP Marker ---------->
 INFORMATIONAL
 HDR, SK {[N,] [D,]
 [CP,] ...}
 <------ Length + Non-ESP Marker
 INFORMATIONAL
 HDR, SK {[N,] [D,]
 [CP], ...}

 2) --------------------- TLS Session ---------------------
 close_notify ---------->
 <---------- close_notify
 3) -------------------- TCP Connection -------------------
 TcpFin ---------->
 <---------- Ack
 <---------- TcpFin
 Ack ---------->
 -------------------- IKE SA Deleted -------------------

 Figure 6

 1. The client and server exchange informational messages to notify
 IKE SA deletion.

 2. The client and server negotiate TLS session deletion using TLS
 CLOSE_NOTIFY.

 3. The TCP connection is torn down.

 The deletion of the IKE SA should lead to the disposal of the
 underlying TLS and TCP state.

B.3. Re-establishing an IKE Session

Smyslov & Pauly Expires November 16, 2020 [Page 26]

Internet-Draft TCP Encapsulation of IKE and IPsec Packets May 2020

 Client Server
 ---------- ----------
 1) -------------------- TCP Connection -------------------
 (IP_I:Port_I -> IP_R:Port_R)
 TcpSyn ---------->
 <---------- TcpSyn,Ack
 TcpAck ---------->
 2) --------------------- TLS Session ---------------------
 ClientHello ---------->
 <---------- ServerHello
 [ChangeCipherSpec]
 Finished
 [ChangeCipherSpec] ---------->
 Finished
 3) ---------------------- Stream Prefix --------------------
 "IKETCP" ---------->
 4) <---------------------> IKE/ESP Flow <------------------>
 Length + ESP Frame ---------->

 Figure 7

 1. If a previous TCP connection was broken (for example, due to a
 TCP Reset), the client is responsible for re-initiating the TCP
 connection. The TCP Originator's address and port (IP_I and
 Port_I) may be different from the previous connection's address
 and port.

 2. In the ClientHello TLS message, the client SHOULD send the
 session ID it received in the previous TLS handshake if
 available. It is up to the server to perform either an
 abbreviated handshake or a full handshake based on the session ID
 match.

 3. After TCP and TLS are complete, the client sends the stream
 prefix for TCP-encapsulated IKE traffic (Section 5).

 4. The IKE and ESP packet flow can resume. If MOBIKE is being used,
 the Initiator SHOULD send an UPDATE_SA_ADDRESSES message.

B.4. Using MOBIKE between UDP and TCP Encapsulation

 Client Server
 ---------- ----------
 (IP_I1:UDP500 -> IP_R:UDP500)
 1) ----------------- IKE_SA_INIT Exchange -----------------
 (IP_I1:UDP4500 -> IP_R:UDP4500)
 Non-ESP Marker ----------->
 Initial IKE_AUTH

Smyslov & Pauly Expires November 16, 2020 [Page 27]

Internet-Draft TCP Encapsulation of IKE and IPsec Packets May 2020

 HDR, SK { IDi, CERT, AUTH,
 CP(CFG_REQUEST),
 SAi2, TSi, TSr,
 N(MOBIKE_SUPPORTED) }
 <----------- Non-ESP Marker
 Initial IKE_AUTH
 HDR, SK { IDr, CERT, AUTH,
 EAP, SAr2, TSi, TSr,
 N(MOBIKE_SUPPORTED) }
 <------------------ IKE SA Establishment --------------->

 2) ------------ MOBIKE Attempt on New Network --------------
 (IP_I2:UDP4500 -> IP_R:UDP4500)
 Non-ESP Marker ----------->
 INFORMATIONAL
 HDR, SK { N(UPDATE_SA_ADDRESSES),
 N(NAT_DETECTION_SOURCE_IP),
 N(NAT_DETECTION_DESTINATION_IP) }

 3) -------------------- TCP Connection -------------------
 (IP_I2:Port_I -> IP_R:Port_R)
 TcpSyn ----------->
 <----------- TcpSyn,Ack
 TcpAck ----------->

 4) --------------------- TLS Session ---------------------
 ClientHello ----------->
 ServerHello
 Certificate*
 ServerKeyExchange*
 <----------- ServerHelloDone
 ClientKeyExchange
 CertificateVerify*
 [ChangeCipherSpec]
 Finished ----------->
 [ChangeCipherSpec]
 <----------- Finished

 5) ---------------------- Stream Prefix --------------------
 "IKETCP" ---------->

 6) ----------------------- IKE Session ---------------------
 Length + Non-ESP Marker ----------->
 INFORMATIONAL (Same as step 2)
 HDR, SK { N(UPDATE_SA_ADDRESSES),
 N(NAT_DETECTION_SOURCE_IP),
 N(NAT_DETECTION_DESTINATION_IP) }

Smyslov & Pauly Expires November 16, 2020 [Page 28]

Internet-Draft TCP Encapsulation of IKE and IPsec Packets May 2020

 <------- Length + Non-ESP Marker
 HDR, SK { N(NAT_DETECTION_SOURCE_IP),
 N(NAT_DETECTION_DESTINATION_IP) }
 7) <----------------- IKE/ESP Data Flow ------------------->

 Figure 8

 1. During the IKE_SA_INIT exchange, the client and server exchange
 MOBIKE_SUPPORTED notify payloads to indicate support for MOBIKE.

 2. The client changes its point of attachment to the network and
 receives a new IP address. The client attempts to re-establish
 the IKE session using the UPDATE_SA_ADDRESSES notify payload, but
 the server does not respond because the network blocks UDP
 traffic.

 3. The client brings up a TCP connection to the server in order to
 use TCP encapsulation.

 4. The client initiates a TLS handshake with the server.

 5. The client sends the stream prefix for TCP-encapsulated IKE
 traffic (Section 5).

 6. The client sends the UPDATE_SA_ADDRESSES notify payload on the
 TCP-encapsulated connection. Note that this IKE message is the
 same as the one sent over UDP in step 2; it should have the same
 message ID and contents.

 7. The IKE and ESP packet flow can resume.

Acknowledgments

 The following people provided valuable feedback and advices while
 preparing RFC8229: Stuart Cheshire, Delziel Fernandes, Yoav Nir,
 Christoph Paasch, Yaron Sheffer, David Schinazi, Graham Bartlett,
 Byju Pularikkal, March Wu, Kingwel Xie, Valery Smyslov, Jun Hu, and
 Tero Kivinen. Special thanks to Eric Kinnear for his implementation
 work.

 The authors would like to thank Tero Kivinen for his valuable
 comments while preparing this document.

Authors' Addresses

https://datatracker.ietf.org/doc/html/rfc8229

Smyslov & Pauly Expires November 16, 2020 [Page 29]

Internet-Draft TCP Encapsulation of IKE and IPsec Packets May 2020

 Valery Smyslov
 ELVIS-PLUS
 PO Box 81
 Moscow (Zelenograd) 124460
 Russian Federation

 Phone: +7 495 276 0211
 Email: svan@elvis.ru

 Tommy Pauly
 Apple Inc.
 1 Infinite Loop
 Cupertino, California 95014
 United States of America

 Email: tpauly@apple.com

Smyslov & Pauly Expires November 16, 2020 [Page 30]

