
Network Working Group J. Snell
Internet-Draft
Intended status: Informational June 09, 2013
Expires: December 11, 2013

HTTP/2.0 Discussion: Stored Header Encoding
draft-snell-httpbis-bohe-10

Abstract

 This memo describes a proposed alternative encoding for headers that
 combines the best concepts from the proposed Delta and HeaderDiff
 options with the typed value codecs introduced by previous versions
 of this draft.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on December 11, 2013.

Copyright Notice

 Copyright (c) 2013 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Snell Expires December 11, 2013 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft Stored Header Encoding June 2013

Table of Contents

1. Stored Header Encoding 2
2. State Model . 3
3. Header Serialization . 4
3.1. Header Group Prefix 6
3.2. Index Header Group 7
3.3. Index Range Header Group 8
3.4. Cloned Index Header Group 8
3.5. Literal Header Group 9

4. Header Values . 9
4.1. UTF-8 Text Values . 10
4.2. Numeric Values . 10
4.3. Timestamp Values . 11
4.4. Raw Binary Octet Values 11
4.5. Unsigned Variable Length Integer Syntax 11
4.6. Huffman Coding . 12

5. Implementation Considerations 13
6. Security Considerations 13
7. References . 13
7.1. Normative References 13
7.2. Informational References 13

Appendix A. Huffman Tables 14
Appendix B. Static Storage Cache 21
Appendix C. Updated Standard Header Definitions 24
Appendix D. Alternative Timestamp encodings 26
Appendix E. Alternative uvarint encodings 27
E.1. Option 1: . 28
E.2. Option 2: . 28

 Author's Address . 29

1. Stored Header Encoding

 The Stored Header Encoding is an alternative "binary header encoding"
 for HTTP/2.0 that combines the best elements from three other
 proposed encodings, including:

 o The "Header Delta Compression" scheme proposed by Roberto Peon in
http://tools.ietf.org/html/draft-rpeon-httpbis-header-
compression-03

 o The "Header Diff" encoding proposed by Herve Reullan, Jun
 Fujisawa, Romain Bellessort, and Youenn Fablet in http://

tools.ietf.org/html/draft-ruellan-headerdiff-00

 o The "Binary Optimized Header Encoding" proposed by James Snell
 (me) in http://tools.ietf.org/html/draft-snell-httpbis-bohe-03

http://tools.ietf.org/html/draft-rpeon-httpbis-header-compression-03
http://tools.ietf.org/html/draft-rpeon-httpbis-header-compression-03
http://tools.ietf.org/html/draft-ruellan-headerdiff-00
http://tools.ietf.org/html/draft-ruellan-headerdiff-00
http://tools.ietf.org/html/draft-snell-httpbis-bohe-03

Snell Expires December 11, 2013 [Page 2]

Internet-Draft Stored Header Encoding June 2013

 The Stored Header Encoding seeks to find an elegant, efficient and
 simple marriage of the best concepts from each of these separate
 proposals.

2. State Model

 The compressor and decompressor each maintain a cache of header value
 pairs. There is a static cache, prepopulated by the specification,
 and a dynamic cache, populated through the compression and
 decompression process. Each cache contains a maximum of 128
 individual key+value pairs.

 Each item in the index is referenced by an 8-bit identifier. The
 most significant bit identifies whether an item from the static or
 dynamic cache is being referenced. Note: the Nil byte (0x00) is a
 valid identifier for the dynamic cache.

 0xxxxxxx: Dynamic Cache

 1xxxxxxx: Static Cache

 The dynamic cache is managed in a "least recently written" style,
 that is, as the cache fills to capacity in both number of entries and
 maximum stored byte size, the least recently written items are
 dropped and those index positions are reused.

 Index positions from the dynamic cache are assigned in "encounter
 order", beginning from 0x00 and increasing monotonically to 0x7F.
 That is to say, the positions are assigned in precisely the same
 order that they are serialized, and thereby encountered by the
 decompressor upon reading and processing the block.

 Every item in the store consists of a Header Name and a Value. The
 Name is a lower-case ASCII character sequence. The Value is either a
 UTF-8 string, a number, a Timestamp or an arbitrary sequence of
 binary octets.

 The available size of the stored compression state can be capped by
 the decompressor. Each stored value contributes to the accumulated
 size of the storage state. As new key+value pairs are assigned
 positions in the dynamic cache, the least-recently assigned items
 must be removed if necessary to free up the required space.

 The size of string values is measured by the number of UTF-8 bytes
 required for the character sequence.

Snell Expires December 11, 2013 [Page 3]

Internet-Draft Stored Header Encoding June 2013

 The size for number and timestamp values is measured by the number of
 unsigned variable length integer (uvarint) encoded bytes it takes to
 represent the value (see the section of value types below).

 The size of raw binary values is measured by the number of octets.

 Duplicate header values MUST be counted individually.

 Header names also count towards the stored state size but are only
 counted once. That is, for instance, the header name "foo" would
 contribute three bytes to the stored state size regardless of how
 many distinct instances of the "foo" header appear within the stored
 state.

 Header names MUST NOT exceed 255 octets in length.

3. Header Serialization

 Headers are serialized into four typed header groups, each
 represented by a two-bit identifier. These groups are serialized
 sequentially. A serialized header block can contain, at most 256
 header groups. The first byte of the serialized block is an
 unsigned, 0-based counter indicating the number of groups.

 Header Group Prefix Codes:

 00 -- Index Header Group
 01 -- Index Range Header Group
 10 -- Cloned Index Header Group
 11 -- Literal Header Group

 The Cloned Index (10) and Literal (11) header group types have an
 additional "ephemeral" flag indicating whether the group modifies the
 compression state.

 Each header group contains a single 8-bit prefix and up to 32
 distinct header instances.

 If a particular serialization block contains more than 32 intances of
 a given type, then multiple instances of the Header Group Type can be
 included in the serialized block. For instance, if a given message
 contains 33 index references, the serialized block may contain two
 separate Index Header Groups.

 Wire Format

 header-block = count *(index-header-group /

Snell Expires December 11, 2013 [Page 4]

Internet-Draft Stored Header Encoding June 2013

 index-range-header-group /
 cloned-index-header-group /
 literal-header-group)

 count = OCTET

 ; Header Group Prefix = 8 bits ...
 ; First two bits = header-group-type
 ; Third bit = ephemeral flag
 ; Final five bits = instance counter
 ;
 index-header-group-type = 00
 index-range-group-type = 01
 cloned-index-group-type = 10
 literal-group-type = 11
 count = 5bit

 index-header-prefix = index-header-group-type
 unset count ; 000xxxxx
 index-range-header-prefix = index-header-group-type
 unset count ; 010xxxxx
 cloned-index-header-prefix = cloned-index-group-type
 bit count ; 10?xxxxx
 literal-header-prefix = literal-group-type
 bit count ; 11?xxxxx

 ; Cache Index Identifier = 8 bits ...
 ; 0xxxxxxx = Dynamic Cache Identifier
 ; 1xxxxxxx = Static Cache Identifier
 cache-index = %x00-FF

 ; Index Header Group
 index-header-group = index-header-prefix
 1*32cache-index

 ; Index-Range Header Group
 ; Contains a pair of cache-index values, second MUST
 ; be strictly higher in value than the first...
 index-range-header-group = index-range-header-prefix
 1*32(cache-index cache-index)

 ; Cloned-Index Header Group
 cloned-index-header-group = cloned-index-header-prefix
 1*32(cache-index value)

 ; Literal Header Group
 literal-header-group = literal-header-prefix
 1*32(name value)

Snell Expires December 11, 2013 [Page 5]

Internet-Draft Stored Header Encoding June 2013

 value = text-value /
 number-value /
 timestamp-value /
 binary-value

 text-value-type = 000 ; three bits
 number-value-type = 001
 timestamp-value-type = 010
 binary-value-type = 011

 text-value-prefix = text-value-type count
 number-value-prefix = number-value-type count
 timestamp-value-prefix = timestamp-value-type count
 binary-value-prefix = binary-value-type count

 text-value = text-value-prefix 1*32string
 number-value = number-value-type 1*32uvarint
 timestamp-value = timestamp-value-prefix 1*32uvarint
 binary-value = binary-value-prefix uvarint *OCTET

 uvarint = *uvarint-continuation uvarint-final
 uvarint-continuation = %x80-FF
 uvarint-final = %x00-7F

 name = OCTET 1*namechar

 namechar = ":" / "!" / "#" / "$" / "%" / "&" /
 "'" / "*" / "+" / "-" / "." / "^" /
 "_" / "`" / "|" / "~" / DIGIT / %x61-7A

 string = uvarint *(HUFFMAN-ENCODED-CHAR)
 HUFFMAN-EOF
 padding-to-nearest-byte;
 padding-to-nearest-byte = *7unset

 bit = set / unset
 unset = 0
 set = 1

3.1. Header Group Prefix

 The Header Group Prefix is a single octet that provides three
 distinct pieces of information:

 0 1 2 3 4 5 6 7
 +------+---+---------------+
 | TYPE |EPH| COUNTER |

Snell Expires December 11, 2013 [Page 6]

Internet-Draft Stored Header Encoding June 2013

 +------+---+---------------+

 TYPE:
 The two most significant bits identify the group type.

 EPH:
 The next bit is the "ephemeral flag" and is used only for Cloned
 and Literal group types. This bit indicates whether or not the
 group alters the stored compression state.

 COUNTER:
 The remaining five bits specify the number of header instances in
 the group, with 00000 indicating that the group contains 1
 instance and 11111 contains 32. A header group MUST contain at
 least one instance.

 The remaining serialization of the header group depends entirely on
 the group type.

3.2. Index Header Group

 The serialization of the Index Header Group consists of the Header
 Group Prefix and up to 32 additional octets, each referencing a
 single 8-bit storage index identifier for items in either the Static
 or Dynamic Cache.

 For instance

 00000000 00000000 = References item #0 from
 the dynamic cache

 00000001 00000000 10000000 = References item #0 from the
 dynamic cache and item #0
 from the static cache

 Index Header Groups do not affect the stored compression state. If
 an Index Header Group references a header index that has not yet been
 allocated, the deserialization MUST terminate with an error. This
 likely means that the compression state has become out of sync and
 needs to be reestablished.

Snell Expires December 11, 2013 [Page 7]

Internet-Draft Stored Header Encoding June 2013

3.3. Index Range Header Group

 The serialization of the Index Range Header Group consists of the
 Header Group Prefix and up to 32 additional 2-octet (16 bits) pairs
 of 8-bit storage index identifiers. Each pair specifies a sequential
 range of adjacent ranges.

 For instance:

 01000000 00000000 00000100 = References items #0-#4 from
 the dynamic cache.
 (five distinct items total)

 A range MAY span dynamic and static index values. Index values are
 treated as unsigned byte values, so indices from the static cache are
 numerically greater than dynamic cache values.. e.g.

 01000000 01111111 10000001 = References item #127 from the
 dynamic cache, and items #0
 and #1 from the static cache.

 Index Range Header Groups do not affect the stored compression state.
 If a range references a header index that has not yet been allocated,
 the deserialization MUST terminate with an error. This likely means
 that the compression state has become out of sync and needs to be
 reestablished.

3.4. Cloned Index Header Group

 The serialization of the Cloned Index Header Group consists of the
 Header Group Prefix and up to 32 Index+Value pairs. Each Index+Value
 pair consists of a leading 8-bit storage index of an existing stored
 header followed by a new serialized value. The serialization of the
 value depends on the value type (see discussion of Value
 serialization below).

 The Cloned Header Group affects the stored compression state if, and
 only if, the "ephemeral" flag in the Header Group Prefix is NOT set.
 If the header group is not marked as being ephemeral, then the
 specified value is stored in the next available storage index using
 the key name from the referenced storage index.

 For instance, assume the dynamic cache currently contains an item at
 index #1 with key name "foo" and value "bar", the following causes a
 new item to be added to the storage with key name "foo" and value
 "baz":

Snell Expires December 11, 2013 [Page 8]

Internet-Draft Stored Header Encoding June 2013

 10000000 00000001 00000000 00000100
 10111000 01001111 10110101 00100000

 An explanation of the value syntax is given a bit later.

 If a Cloned Header Group references a header index that has not yet
 been allocated, the deserialization MUST terminate with an error.
 This likely means that the compression state has become out of sync
 and needs to be reestablished.

3.5. Literal Header Group

 The serialization of the Literal Header Group consists of the Header
 Group Prefix and up to 32 Name+Value pairs. Each Name+Value pair
 consists of a length-prefixed sequence of ASCII bytes specifying the
 Header Name followed by the serialized value. The header name length
 prefix is encoded as a single unsigned 8-bit integer. The
 serialization of the value depends on the value type. The value
 length prefix is encoded as an unsigned variable length integer
 (uvarint). The length prefix SHOULD NOT be longer than five octets
 and SHOULD NOT specify a value larger than 0xFFFF.

 The Literal Header Group affects the stored compression state if, and
 only if, the "ephemeral" flag in the Header Group Prefix is NOT set.
 If the header group is not marked as being ephemeral, then the
 specified key name and value are stored in the next available storage
 index.

 For instance:

 11000000 00000011 01100110 01101111
 01101111 00000000 00000010 10111000
 01000100 11010010

4. Header Values

 Header Values can be one of four types, each identified by a three-
 bit identifier:

 o 000 -- UTF-8 Text

 o 001 -- Numeric

 o 010 -- Timetamp

 o 011 -- Raw Binary Octets

Snell Expires December 11, 2013 [Page 9]

Internet-Draft Stored Header Encoding June 2013

 A single value can contain up to 32 discreet "value instances".

 Each serialized value is preceded by an 8-bit Value Prefix.

 0 1 2 3 4 5 6 7 ... n
 +---------+---------------+-----------+
 | TYPE | COUNTER | VALUE(S) |
 +---------+---------------+-----------+

 TYPE:
 The three most significant bits specify the value type.

 COUNTER:
 The remaining bits specify the number of discreet instances in the
 value. 00000 indicates that one instance is included, 11111
 indicates that 32 instances are included. The value MUST contain
 at least one instance.

 The remaining serialization depends entirely on the type.

4.1. UTF-8 Text Values

 UTF-8 Text is encoded as a length-prefixed sequence of Huffman-
 encoded UTF-8 octets. The length prefix is encoded as an unsigned
 variable-length integer (Section 4.5) specifying the number of octets
 after applying the Huffman-encoding.

 One text value "foo":

 00000000 00000011 10000100 11100111 10100100

 Two text values "foo" and "bar":

 00000001 00000011 10000100 11100111 10100100
 00000011 10111000 01000100 11010010

4.2. Numeric Values

 Numeric values are encoded as unsigned variable-length integers
 (uvarint) (Section 4.5) of up to a maximum of 10-octets. Negative
 values cannot be represented using this syntax.

Snell Expires December 11, 2013 [Page 10]

Internet-Draft Stored Header Encoding June 2013

 One numeric value "100"

 00100000 01100100

 One numeric value "1234"

 00100000 11010010 00001001

 Two numeric values "100" and "1234"

 00100001 01100100 11010010 00001001

4.3. Timestamp Values

 Timestamp values are encoded as unsigned variable-length integers
 (Section 4.5) specifying the number of milliseconds that have passed
 since the standard Epoch (1970-01-01T00:00:00 GMT). The syntax is
 identical that used for Numeric Values. Dates prior to the epoch
 cannot be represented using this syntax.

 Representing timestamps in this manner ensures that timestamps will
 always encode using six bytes up and until 2109-05-15T07:35:00 GMT,
 then as seven bytes up to and until 19809-03-05T11:03:41 GMT.

 A single timestamp value (1370729066123 milliseconds since the
 epoch):

 01000000 10001011 11011101 11000110 10101110 11110010 00100111

4.4. Raw Binary Octet Values

 Binary values are encoded as a length prefixed sequence of arbitrary
 octets. The length prefix is encoded as an unsigned variable length
 integer.

 A single binary value (0x55AA0F):

 01100000 00000011 01010101 10101010 00001111

4.5. Unsigned Variable Length Integer Syntax

 Unsigned variable length integers are serialized with the least-
 significant bytes first in batches of 7-bits, with the most

Snell Expires December 11, 2013 [Page 11]

Internet-Draft Stored Header Encoding June 2013

 significant bit per byte reserved as a continuation bit. Values less
 than or equal to 127 are serialized using at most one byte; values
 less than or equal to 16383 are serialized using at most two bytes;
 values less than or equal to 2097151 are serialized using at most
 three bytes; and so on.

 UVarInt Psuedocode:

 def uvarint(num):
 return [] if num = 0
 ret = []
 while(num != 0):
 m = num >>> 7 ; unsigned shift left 7 bits
 ret.push (byte)((num & ~0x80) | (m > 0 ? 0x80 : 0x00));
 num = m;
 return ret;

 The variable length encoding of the value 217 is:

 11011001 00000001

 The variable length encoding of the value 1386210052 is:

 10000100 11000110 11111111 10010100 00000101

4.6. Huffman Coding

 All UTF-8 text values are compressed using a modified static Huffman
 code. "Modified" because the encoded version may contain compact-
 representations of raw, arbitrary UTF-8 bytes that are not covered by
 the static Huffman code table.

 There are two Huffman tables in use, one for HTTP Requests and
 another for HTTP Responses, each covers UTF-8 codepoints strictly
 less than 128 as well the fifty possible UTF-8 leading octets.

 The encoded result MUST end with a specific terminal sequence of bits
 called the "HUFFMAN_EOF". Currently, the HUFFMAN_EOF is the same for
 both the Request and Response tables, but that could change if the
 tables are regenerated. Currently, the HUFFMAN_EOF sequence is
 101001.

 Codepoints >= 128 are handled by first taking the leading octet of
 the UTF-8 representation and serializing its associated Huffman code
 from the table to the output stream, then, depending on the octets

Snell Expires December 11, 2013 [Page 12]

Internet-Draft Stored Header Encoding June 2013

 value, serializing the six least significant bits from each of the
 remaining trailing octets.

 For instance, the UTF-8 character U+00D4 (LATIN CAPITAL LETTER O WITH
 CIRCUMFLEX), with UTF-8 representation of C394 (hex) is encoded as:

 11000100 01010010 10010000

 The first 8-bits represents the Huffman-table prefix, the six most
 significant bytes of the second octet are taken directly from the six
 least significant bits of the second UTF-8 byte (0x94). Following
 those six bits are the six bits of the HUFFMAN_EOF 101001, followed
 by four unset padding bits.

 The number of raw UTF-8 bits to write depends on the value of the
 leading octet. If the value is between 0xC2 and 0xDF (inclusive),
 six bits from the second continuation byte is encoded. If the value
 is between 0xE0 and 0xEF (inclusive), six bits from the second and
 third continuation bytes are encoded. If the value is between 0xF0
 and 0xF4 (inclusive), six bits from the second, third and fourth
 continuation bytes are encoded. UTF-8 codepoints that require
 greater than four bytes to encode cannot be represented.

5. Implementation Considerations

 When implementing the Stored Header Encoding, it is important to note
 that the compression state is managed in encounter order. This means
 that the compressor must delay storing items in the compression state
 until the order in which frames are to be serialized out to the
 network has been determined. This is a potential performance
 bottleneck that needs to be fully tested out to determine its impact.

6. Security Considerations

 TBD

7. References

7.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

7.2. Informational References

 [RFC6265] Barth, A., "HTTP State Management Mechanism", RFC 6265,
 April 2011.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc6265

Snell Expires December 11, 2013 [Page 13]

Internet-Draft Stored Header Encoding June 2013

Appendix A. Huffman Tables

 Request Table

 (0) |11111111|11111111|11111111|0 [25] 1fffffe [25]
 (1) |11111111|11111111|11111111|1 [25] 1ffffff [25]
 (2) |11111111|11111111|11100000 [24] ffffe0 [24]
 (3) |11111111|11111111|11100001 [24] ffffe1 [24]
 (4) |11111111|11111111|11100010 [24] ffffe2 [24]
 (5) |11111111|11111111|11100011 [24] ffffe3 [24]
 (6) |11111111|11111111|11100100 [24] ffffe4 [24]
 (7) |11111111|11111111|11100101 [24] ffffe5 [24]
 (8) |11111111|11111111|11100110 [24] ffffe6 [24]
 (9) |11111111|11111111|11100111 [24] ffffe7 [24]
 (10) |11111111|11111111|11101000 [24] ffffe8 [24]
 (11) |11111111|11111111|11101001 [24] ffffe9 [24]
 (12) |11111111|11111111|11101010 [24] ffffea [24]
 (13) |11111111|11111111|11101011 [24] ffffeb [24]
 (14) |11111111|11111111|11101100 [24] ffffec [24]
 (15) |11111111|11111111|11101101 [24] ffffed [24]
 (16) |11111111|11111111|11101110 [24] ffffee [24]
 (17) |11111111|11111111|11101111 [24] ffffef [24]
 (18) |11111111|11111111|11110000 [24] fffff0 [24]
 (19) |11111111|11111111|11110001 [24] fffff1 [24]
 (20) |11111111|11111111|11110010 [24] fffff2 [24]
 (21) |11111111|11111111|11110011 [24] fffff3 [24]
 (22) |11111111|11111111|11110100 [24] fffff4 [24]
 (23) |11111111|11111111|11110101 [24] fffff5 [24]
 (24) |11111111|11111111|11110110 [24] fffff6 [24]
 (25) |11111111|11111111|11110111 [24] fffff7 [24]
 (26) |11111111|11111111|11111000 [24] fffff8 [24]
 (27) |11111111|11111111|11111001 [24] fffff9 [24]
 (28) |11111111|11111111|11111010 [24] fffffa [24]
 (29) |11111111|11111111|11111011 [24] fffffb [24]
 (30) |11111111|11111111|11111100 [24] fffffc [24]
 (31) |11111111|11111111|11111101 [24] fffffd [24]
 ' ' (32) |11111111|0110 [12] ff6 [12]
 '!' (33) |11111111|0111 [12] ff7 [12]
 '"' (34) |11111111|111010 [14] 3ffa [14]
 '#' (35) |11111111|1111100 [15] 7ffc [15]
 '$' (36) |11111111|1111101 [15] 7ffd [15]
 '%' (37) |011000 [6] 18 [6]
 '&' (38) |1010100 [7] 54 [7]
 ''' (39) |11111111|1111110 [15] 7ffe [15]
 '(' (40) |11111111|1000 [12] ff8 [12]
 ')' (41) |11111111|1001 [12] ff9 [12]
 '*' (42) |11111111|1010 [12] ffa [12]
 '+' (43) |11111111|1011 [12] ffb [12]

Snell Expires December 11, 2013 [Page 14]

Internet-Draft Stored Header Encoding June 2013

 ',' (44) |11111011|10 [10] 3ee [10]
 '-' (45) |011001 [6] 19 [6]
 '.' (46) |00010 [5] 2 [5]
 '/' (47) |00011 [5] 3 [5]
 '0' (48) |011010 [6] 1a [6]
 '1' (49) |011011 [6] 1b [6]
 '2' (50) |011100 [6] 1c [6]
 '3' (51) |011101 [6] 1d [6]
 '4' (52) |1010101 [7] 55 [7]
 '5' (53) |1010110 [7] 56 [7]
 '6' (54) |1010111 [7] 57 [7]
 '7' (55) |1011000 [7] 58 [7]
 '8' (56) |1011001 [7] 59 [7]
 '9' (57) |1011010 [7] 5a [7]
 ':' (58) |011110 [6] 1e [6]
 ';' (59) |11111011|11 [10] 3ef [10]
 '<' (60) |11111111|11111111|10 [18] 3fffe [18]
 '=' (61) |011111 [6] 1f [6]
 '>' (62) |11111111|11111110|0 [17] 1fffc [17]
 '?' (63) |11110110|0 [9] 1ec [9]
 '@' (64) |11111111|11100 [13] 1ffc [13]
 'A' (65) |10111010 [8] ba [8]
 'B' (66) |11110110|1 [9] 1ed [9]
 'C' (67) |10111011 [8] bb [8]
 'D' (68) |10111100 [8] bc [8]
 'E' (69) |11110111|0 [9] 1ee [9]
 'F' (70) |10111101 [8] bd [8]
 'G' (71) |11111100|00 [10] 3f0 [10]
 'H' (72) |11111100|01 [10] 3f1 [10]
 'I' (73) |11110111|1 [9] 1ef [9]
 'J' (74) |11111100|10 [10] 3f2 [10]
 'K' (75) |11111111|010 [11] 7fa [11]
 'L' (76) |11111100|11 [10] 3f3 [10]
 'M' (77) |11111000|0 [9] 1f0 [9]
 'N' (78) |11111101|00 [10] 3f4 [10]
 'O' (79) |11111101|01 [10] 3f5 [10]
 'P' (80) |11111000|1 [9] 1f1 [9]
 'Q' (81) |11111101|10 [10] 3f6 [10]
 'R' (82) |11111001|0 [9] 1f2 [9]
 'S' (83) |11111001|1 [9] 1f3 [9]
 'T' (84) |11111010|0 [9] 1f4 [9]
 'U' (85) |11111101|11 [10] 3f7 [10]
 'V' (86) |11111110|00 [10] 3f8 [10]
 'W' (87) |11111110|01 [10] 3f9 [10]
 'X' (88) |11111110|10 [10] 3fa [10]
 'Y' (89) |11111110|11 [10] 3fb [10]
 'Z' (90) |11111111|00 [10] 3fc [10]
 '[' (91) |11111111|111011 [14] 3ffb [14]

Snell Expires December 11, 2013 [Page 15]

Internet-Draft Stored Header Encoding June 2013

 '\' (92) |11111111|11111111|11111110 [24] fffffe [24]
 ']' (93) |11111111|111100 [14] 3ffc [14]
 '^' (94) |11111111|111101 [14] 3ffd [14]
 '_' (95) |1011011 [7] 5b [7]
 '`' (96) |11111111|11111111|110 [19] 7fffe [19]
 'a' (97) |00100 [5] 4 [5]
 'b' (98) |1011100 [7] 5c [7]
 'c' (99) |00101 [5] 5 [5]
 'd' (100) |100000 [6] 20 [6]
 'e' (101) |0000 [4] 0 [4]
 'f' (102) |100001 [6] 21 [6]
 'g' (103) |100010 [6] 22 [6]
 'h' (104) |100011 [6] 23 [6]
 'i' (105) |00110 [5] 6 [5]
 'j' (106) |10111110 [8] be [8]
 'k' (107) |10111111 [8] bf [8]
 'l' (108) |100100 [6] 24 [6]
 'm' (109) |100101 [6] 25 [6]
 'n' (110) |100110 [6] 26 [6]
 'o' (111) |00111 [5] 7 [5]
 'p' (112) |01000 [5] 8 [5]
 'q' (113) |11111010|1 [9] 1f5 [9]
 'r' (114) |01001 [5] 9 [5]
 's' (115) |01010 [5] a [5]
 't' (116) |01011 [5] b [5]
 'u' (117) |100111 [6] 27 [6]
 'v' (118) |11000000 [8] c0 [8]
 'w' (119) |101000 [6] 28 [6]
 'x' (120) |11000001 [8] c1 [8]
 'y' (121) |11000010 [8] c2 [8]
 'z' (122) |11111011|0 [9] 1f6 [9]
 '{' (123) |11111111|11111110|1 [17] 1fffd [17]
 '|' (124) |11111111|1100 [12] ffc [12]
 '}' (125) |11111111|11111111|0 [17] 1fffe [17]
 '~' (126) |11111111|1101 [12] ffd [12]
 (127) |101001 [6] 29 [6]
 (0xC2) |11000011 [8] c3 [8]
 (0xC3) |11000100 [8] c4 [8]
 (0xC4) |11000101 [8] c5 [8]
 (0xC5) |11000110 [8] c6 [8]
 (0xC6) |11000111 [8] c7 [8]
 (0xC7) |11001000 [8] c8 [8]
 (0xC8) |11001001 [8] c9 [8]
 (0xC9) |11001010 [8] ca [8]
 (0xCA) |11001011 [8] cb [8]
 (0xCB) |11001100 [8] cc [8]
 (0xCC) |11001101 [8] cd [8]
 (0xCD) |11001110 [8] ce [8]

Snell Expires December 11, 2013 [Page 16]

Internet-Draft Stored Header Encoding June 2013

 (0xCE) |11001111 [8] cf [8]
 (0xCF) |11010000 [8] d0 [8]
 (0xD0) |11010001 [8] d1 [8]
 (0xD1) |11010010 [8] d2 [8]
 (0xD2) |11010011 [8] d3 [8]
 (0xD3) |11010100 [8] d4 [8]
 (0xD4) |11010101 [8] d5 [8]
 (0xD5) |11010110 [8] d6 [8]
 (0xD6) |11010111 [8] d7 [8]
 (0xD7) |11011000 [8] d8 [8]
 (0xD8) |11011001 [8] d9 [8]
 (0xD9) |11011010 [8] da [8]
 (0xDA) |11011011 [8] db [8]
 (0xDB) |11011100 [8] dc [8]
 (0xDC) |11011101 [8] dd [8]
 (0xDD) |11011110 [8] de [8]
 (0xDE) |11011111 [8] df [8]
 (0xDF) |11100000 [8] e0 [8]
 (0xE0) |11100001 [8] e1 [8]
 (0xE1) |11100010 [8] e2 [8]
 (0xE2) |11100011 [8] e3 [8]
 (0xE3) |11100100 [8] e4 [8]
 (0xE4) |11100101 [8] e5 [8]
 (0xE5) |11100110 [8] e6 [8]
 (0xE6) |11100111 [8] e7 [8]
 (0xE7) |11101000 [8] e8 [8]
 (0xE8) |11101001 [8] e9 [8]
 (0xE9) |11101010 [8] ea [8]
 (0xEA) |11101011 [8] eb [8]
 (0xEB) |11101100 [8] ec [8]
 (0xEC) |11101101 [8] ed [8]
 (0xED) |11101110 [8] ee [8]
 (0xEE) |11101111 [8] ef [8]
 (0xEF) |11110000 [8] f0 [8]
 (0xF0) |11110001 [8] f1 [8]
 (0xF1) |11110010 [8] f2 [8]
 (0xF2) |11110011 [8] f3 [8]
 (0xF3) |11110100 [8] f4 [8]
 (0xF4) |11110101 [8] f5 [8]

 Response Table:

 (0) |11111111|11111111|11111111|0 [25] 1fffffe [25]
 (1) |11111111|11111111|11111111|1 [25] 1ffffff [25]
 (2) |11111111|11111111|11100000 [24] ffffe0 [24]
 (3) |11111111|11111111|11100001 [24] ffffe1 [24]
 (4) |11111111|11111111|11100010 [24] ffffe2 [24]

Snell Expires December 11, 2013 [Page 17]

Internet-Draft Stored Header Encoding June 2013

 (5) |11111111|11111111|11100011 [24] ffffe3 [24]
 (6) |11111111|11111111|11100100 [24] ffffe4 [24]
 (7) |11111111|11111111|11100101 [24] ffffe5 [24]
 (8) |11111111|11111111|11100110 [24] ffffe6 [24]
 (9) |11111111|11111111|11100111 [24] ffffe7 [24]
 (10) |11111111|11111111|11101000 [24] ffffe8 [24]
 (11) |11111111|11111111|11101001 [24] ffffe9 [24]
 (12) |11111111|11111111|11101010 [24] ffffea [24]
 (13) |11111111|11111111|11101011 [24] ffffeb [24]
 (14) |11111111|11111111|11101100 [24] ffffec [24]
 (15) |11111111|11111111|11101101 [24] ffffed [24]
 (16) |11111111|11111111|11101110 [24] ffffee [24]
 (17) |11111111|11111111|11101111 [24] ffffef [24]
 (18) |11111111|11111111|11110000 [24] fffff0 [24]
 (19) |11111111|11111111|11110001 [24] fffff1 [24]
 (20) |11111111|11111111|11110010 [24] fffff2 [24]
 (21) |11111111|11111111|11110011 [24] fffff3 [24]
 (22) |11111111|11111111|11110100 [24] fffff4 [24]
 (23) |11111111|11111111|11110101 [24] fffff5 [24]
 (24) |11111111|11111111|11110110 [24] fffff6 [24]
 (25) |11111111|11111111|11110111 [24] fffff7 [24]
 (26) |11111111|11111111|11111000 [24] fffff8 [24]
 (27) |11111111|11111111|11111001 [24] fffff9 [24]
 (28) |11111111|11111111|11111010 [24] fffffa [24]
 (29) |11111111|11111111|11111011 [24] fffffb [24]
 (30) |11111111|11111111|11111100 [24] fffffc [24]
 (31) |11111111|11111111|11111101 [24] fffffd [24]
 ' ' (32) |11111111|0110 [12] ff6 [12]
 '!' (33) |11111111|0111 [12] ff7 [12]
 '"' (34) |11111111|111010 [14] 3ffa [14]
 '#' (35) |11111111|1111100 [15] 7ffc [15]
 '$' (36) |11111111|1111101 [15] 7ffd [15]
 '%' (37) |011000 [6] 18 [6]
 '&' (38) |1010100 [7] 54 [7]
 ''' (39) |11111111|1111110 [15] 7ffe [15]
 '(' (40) |11111111|1000 [12] ff8 [12]
 ')' (41) |11111111|1001 [12] ff9 [12]
 '*' (42) |11111111|1010 [12] ffa [12]
 '+' (43) |11111111|1011 [12] ffb [12]
 ',' (44) |11111011|10 [10] 3ee [10]
 '-' (45) |011001 [6] 19 [6]
 '.' (46) |00010 [5] 2 [5]
 '/' (47) |00011 [5] 3 [5]
 '0' (48) |011010 [6] 1a [6]
 '1' (49) |011011 [6] 1b [6]
 '2' (50) |011100 [6] 1c [6]
 '3' (51) |011101 [6] 1d [6]
 '4' (52) |1010101 [7] 55 [7]

Snell Expires December 11, 2013 [Page 18]

Internet-Draft Stored Header Encoding June 2013

 '5' (53) |1010110 [7] 56 [7]
 '6' (54) |1010111 [7] 57 [7]
 '7' (55) |1011000 [7] 58 [7]
 '8' (56) |1011001 [7] 59 [7]
 '9' (57) |1011010 [7] 5a [7]
 ':' (58) |011110 [6] 1e [6]
 ';' (59) |11111011|11 [10] 3ef [10]
 '<' (60) |11111111|11111111|10 [18] 3fffe [18]
 '=' (61) |011111 [6] 1f [6]
 '>' (62) |11111111|11111110|0 [17] 1fffc [17]
 '?' (63) |11110110|0 [9] 1ec [9]
 '@' (64) |11111111|11100 [13] 1ffc [13]
 'A' (65) |10111010 [8] ba [8]
 'B' (66) |11110110|1 [9] 1ed [9]
 'C' (67) |10111011 [8] bb [8]
 'D' (68) |10111100 [8] bc [8]
 'E' (69) |11110111|0 [9] 1ee [9]
 'F' (70) |10111101 [8] bd [8]
 'G' (71) |11111100|00 [10] 3f0 [10]
 'H' (72) |11111100|01 [10] 3f1 [10]
 'I' (73) |11110111|1 [9] 1ef [9]
 'J' (74) |11111100|10 [10] 3f2 [10]
 'K' (75) |11111111|010 [11] 7fa [11]
 'L' (76) |11111100|11 [10] 3f3 [10]
 'M' (77) |11111000|0 [9] 1f0 [9]
 'N' (78) |11111101|00 [10] 3f4 [10]
 'O' (79) |11111101|01 [10] 3f5 [10]
 'P' (80) |11111000|1 [9] 1f1 [9]
 'Q' (81) |11111101|10 [10] 3f6 [10]
 'R' (82) |11111001|0 [9] 1f2 [9]
 'S' (83) |11111001|1 [9] 1f3 [9]
 'T' (84) |11111010|0 [9] 1f4 [9]
 'U' (85) |11111101|11 [10] 3f7 [10]
 'V' (86) |11111110|00 [10] 3f8 [10]
 'W' (87) |11111110|01 [10] 3f9 [10]
 'X' (88) |11111110|10 [10] 3fa [10]
 'Y' (89) |11111110|11 [10] 3fb [10]
 'Z' (90) |11111111|00 [10] 3fc [10]
 '[' (91) |11111111|111011 [14] 3ffb [14]
 '\' (92) |11111111|11111111|11111110 [24] fffffe [24]
 ']' (93) |11111111|111100 [14] 3ffc [14]
 '^' (94) |11111111|111101 [14] 3ffd [14]
 '_' (95) |1011011 [7] 5b [7]
 '`' (96) |11111111|11111111|110 [19] 7fffe [19]
 'a' (97) |00100 [5] 4 [5]
 'b' (98) |1011100 [7] 5c [7]
 'c' (99) |00101 [5] 5 [5]
 'd' (100) |100000 [6] 20 [6]

Snell Expires December 11, 2013 [Page 19]

Internet-Draft Stored Header Encoding June 2013

 'e' (101) |0000 [4] 0 [4]
 'f' (102) |100001 [6] 21 [6]
 'g' (103) |100010 [6] 22 [6]
 'h' (104) |100011 [6] 23 [6]
 'i' (105) |00110 [5] 6 [5]
 'j' (106) |10111110 [8] be [8]
 'k' (107) |10111111 [8] bf [8]
 'l' (108) |100100 [6] 24 [6]
 'm' (109) |100101 [6] 25 [6]
 'n' (110) |100110 [6] 26 [6]
 'o' (111) |00111 [5] 7 [5]
 'p' (112) |01000 [5] 8 [5]
 'q' (113) |11111010|1 [9] 1f5 [9]
 'r' (114) |01001 [5] 9 [5]
 's' (115) |01010 [5] a [5]
 't' (116) |01011 [5] b [5]
 'u' (117) |100111 [6] 27 [6]
 'v' (118) |11000000 [8] c0 [8]
 'w' (119) |101000 [6] 28 [6]
 'x' (120) |11000001 [8] c1 [8]
 'y' (121) |11000010 [8] c2 [8]
 'z' (122) |11111011|0 [9] 1f6 [9]
 '{' (123) |11111111|11111110|1 [17] 1fffd [17]
 '|' (124) |11111111|1100 [12] ffc [12]
 '}' (125) |11111111|11111111|0 [17] 1fffe [17]
 '~' (126) |11111111|1101 [12] ffd [12]
 (127) |101001 [6] 29 [6]
 (0xC2) |11000011 [8] c3 [8]
 (0xC3) |11000100 [8] c4 [8]
 (0xC4) |11000101 [8] c5 [8]
 (0xC5) |11000110 [8] c6 [8]
 (0xC6) |11000111 [8] c7 [8]
 (0xC7) |11001000 [8] c8 [8]
 (0xC8) |11001001 [8] c9 [8]
 (0xC9) |11001010 [8] ca [8]
 (0xCA) |11001011 [8] cb [8]
 (0xCB) |11001100 [8] cc [8]
 (0xCC) |11001101 [8] cd [8]
 (0xCD) |11001110 [8] ce [8]
 (0xCE) |11001111 [8] cf [8]
 (0xCF) |11010000 [8] d0 [8]
 (0xD0) |11010001 [8] d1 [8]
 (0xD1) |11010010 [8] d2 [8]
 (0xD2) |11010011 [8] d3 [8]
 (0xD3) |11010100 [8] d4 [8]
 (0xD4) |11010101 [8] d5 [8]
 (0xD5) |11010110 [8] d6 [8]
 (0xD6) |11010111 [8] d7 [8]

Snell Expires December 11, 2013 [Page 20]

Internet-Draft Stored Header Encoding June 2013

 (0xD7) |11011000 [8] d8 [8]
 (0xD8) |11011001 [8] d9 [8]
 (0xD9) |11011010 [8] da [8]
 (0xDA) |11011011 [8] db [8]
 (0xDB) |11011100 [8] dc [8]
 (0xDC) |11011101 [8] dd [8]
 (0xDD) |11011110 [8] de [8]
 (0xDE) |11011111 [8] df [8]
 (0xDF) |11100000 [8] e0 [8]
 (0xE0) |11100001 [8] e1 [8]
 (0xE1) |11100010 [8] e2 [8]
 (0xE2) |11100011 [8] e3 [8]
 (0xE3) |11100100 [8] e4 [8]
 (0xE4) |11100101 [8] e5 [8]
 (0xE5) |11100110 [8] e6 [8]
 (0xE6) |11100111 [8] e7 [8]
 (0xE7) |11101000 [8] e8 [8]
 (0xE8) |11101001 [8] e9 [8]
 (0xE9) |11101010 [8] ea [8]
 (0xEA) |11101011 [8] eb [8]
 (0xEB) |11101100 [8] ec [8]
 (0xEC) |11101101 [8] ed [8]
 (0xED) |11101110 [8] ee [8]
 (0xEE) |11101111 [8] ef [8]
 (0xEF) |11110000 [8] f0 [8]
 (0xF0) |11110001 [8] f1 [8]
 (0xF1) |11110010 [8] f2 [8]
 (0xF2) |11110011 [8] f3 [8]
 (0xF3) |11110100 [8] f4 [8]
 (0xF4) |11110101 [8] f5 [8]

Appendix B. Static Storage Cache

 0x80 "date" = NIL
 0x81 ":scheme" = "https"
 0x82 ":scheme" = "http"
 0x83 ":scheme" = "ftp"
 0x84 ":method" = "get"
 0x85 ":method" = "post"
 0x86 ":method" = "put"
 0x87 ":method" = "delete"
 0x88 ":method" = "options"
 0x89 ":method" = "patch"
 0x8A ":method" = "connect"
 0x8B ":path" = "/"
 0x8C ":host" = NIL
 0x8D "cookie" = NIL

Snell Expires December 11, 2013 [Page 21]

Internet-Draft Stored Header Encoding June 2013

 0x8E ":status" = NIL
 0x8F ":status-text" = NIL
 0x90 ":version" = NIL
 0x91 "accept" = NIL
 0x92 "accept-charset" = NIL
 0x93 "accept-encoding" = NIL
 0x94 "accept-language" = NIL
 0x95 "accept-ranges" = NIL
 0x96 "allow" = NIL
 0x97 "authorization" = NIL
 0x98 "cache-control" = NIL
 0x99 "content-base" = NIL
 0x9A "content-encoding" = NIL
 0x9B "content-length" = NIL
 0x9C "content-location" = NIL
 0x9D "content-md5" = NIL
 0x9E "content-range" = NIL
 0x9F "content-type" = NIL
 0xA0 "content-disposition" = NIL
 0xA1 "content-language" = NIL
 0xA2 "etag" = NIL
 0xA3 "expect" = NIL
 0xA4 "expires" = NIL
 0xA5 "from" = NIL
 0xA6 "if-match" = NIL
 0xA7 "if-modified-since" = NIL
 0xA8 "if-none-match" = NIL
 0xA9 "if-range" = NIL
 0xAA "if-unmodified-since" = NIL
 0xAB "last-modified" = NIL
 0xAC "location" = NIL
 0xAD "max-forwards" = NIL
 0xAE "origin" = NIL
 0xAF "pragma" = NIL
 0xB0 "proxy-authenticate" = NIL
 0xB1 "proxy-authorization" = NIL
 0xB2 "range" = NIL
 0xB3 "referer" = NIL
 0xB4 "retry-after" = NIL
 0xB5 "server" = NIL
 0xB6 "set-cookie" = NIL
 0xB7 "status" = NIL
 0xB8 "te" = NIL
 0xB9 "trailer" = NIL
 0xBA "transfer-encoding" = NIL
 0xBB "upgrade" = NIL
 0xBC "user-agent" = NIL
 0xBD "vary" = NIL

Snell Expires December 11, 2013 [Page 22]

Internet-Draft Stored Header Encoding June 2013

 0xBE "via" = NIL
 0xBF "warning" = NIL
 0xC0 "www-authenticate" = NIL
 0xC1 "access-control-allow-origin" = NIL
 0xC2 "get-dictionary" = NIL
 0xC3 "p3p" = NIL
 0xC4 "link" = NIL
 0xC5 "prefer" = NIL
 0xC6 "preference-applied" = NIL
 0xC7 "accept-patch" = NIL
 0xC8 NIL
 0xC9 NIL
 0xCA NIL
 0xCB NIL
 0xCC NIL
 0xCD NIL
 0xCE NIL
 0xCF NIL
 0xD0 NIL
 0xD1 NIL
 0xD2 NIL
 0xD3 NIL
 0xD4 NIL
 0xD5 NIL
 0xD6 NIL
 0xD7 NIL
 0xD8 NIL
 0xD9 NIL
 0xDA NIL
 0xDB NIL
 0xDC NIL
 0xDD NIL
 0xDE NIL
 0xDF NIL
 0xE0 NIL
 0xE1 NIL
 0xE2 NIL
 0xE3 NIL
 0xE4 NIL
 0xE5 NIL
 0xE6 NIL
 0xE7 NIL
 0xE8 NIL
 0xE9 NIL
 0xEA NIL
 0xEB NIL
 0xEC NIL
 0xED NIL

Snell Expires December 11, 2013 [Page 23]

Internet-Draft Stored Header Encoding June 2013

 0xEE NIL
 0xEF NIL
 0xF0 NIL
 0xF1 NIL
 0xF2 NIL
 0xF3 NIL
 0xF4 NIL
 0xF5 NIL
 0xF6 NIL
 0xF7 NIL
 0xF8 NIL
 0xF9 NIL
 0xFA NIL
 0xFB NIL
 0xFC NIL
 0xFD NIL
 0xFE NIL
 0xFF NIL

Appendix C. Updated Standard Header Definitions

 In order to properly deal with the backwards compatibility concerns
 for HTTP/1, there are several important rules for use of Typed Codecs
 in HTTP headers:

 o All header fields MUST be explicitly defined to use the new header
 types. All existing HTTP/1 header fields, then, will continue to
 be represented as ISO-8859-1 Text unless their standard
 definitions are updated. The HTTP/2 specification would update
 the definition of specific known header fields (e.g. content-
 length, date, if-modified-since, etc).

 o Extension header fields that use the typed codecs will have
 specific normative transformations to ISO-8859-1 defined.

 * UTF-8 Text will be converted to ISO-8859-1 with extended
 characters pct-encoded

 * Numbers will be converted to their ASCII equivalent values.

 * Date Times will be converted to their HTTP-Date equivalent
 values.

 * Binary fields will be Base64-encoded.

 o There will be no normative transformation from ISO-8859-1 values
 into the typed codecs. Implementations are free to apply

Snell Expires December 11, 2013 [Page 24]

Internet-Draft Stored Header Encoding June 2013

 transformation where those impls determine it is appropriate, but
 it will be perfectly legal for an implementation to pass a text
 value through even if it is known that a given header type has a
 typed codec equivalent (for instance, Content-Length may come
 through as a number or a text value, either will be valid). This
 means that when translating from HTTP/1 -> HTTP/2, receiving
 implementations need to be prepared to handle either value form.

 A Note of warning: Individual header fields MAY be defined such that
 they can be represented using multiple types. Numeric fields, for
 instance, can be represented using either the uvarint encoding or
 using the equivalent sequence of ASCII numbers. Implementers will
 need to be capable of supporting each of the possible variations.
 Designers of header field definitions need to be aware of the
 additional complexity and possible issues that allowing for such
 alternatives can introduce for implementers.

 Based on an initial survey of header fields currently defined by the
 HTTPbis specification documents, the following header field
 definitions can be updated to make use of the new types

 +---------------------+---------------+-----------------------------+
 | Field | Type | Description |
 +---------------------+---------------+-----------------------------+
content-length	Numeric or	Can be represented as
	Text	either an unsigned,
		variable-length integer or
		a sequence of ASCII
		numbers.
date	Timestamp or	Can be represented as
	Text	either a uvarint encoded
		timestamp or as text (HTTP-
		date).
max-forwards	Numeric or	Can be represented as
	Text	either an unsigned,
		variable-length integer or
		a sequence of ASCII
		numbers.
retry-after	Timestamp,	Can be represented as
	Numeric or	either a uvarint encoded
	Text	timestamp, an unsigned,
		variable-length integer, or
		the text equivalents of
		either (HTTP-date or
		sequence of ASCII numbers)
if-modified-since	Timestamp or	Can be represented as
	Text	either a uvarint encoded
		timestamp or as text (HTTP-

Snell Expires December 11, 2013 [Page 25]

Internet-Draft Stored Header Encoding June 2013

		date).
if-unmodified-since	Timestamp or	Can be represented as
	Text	either a uvarint encoded
		timestamp or as text (HTTP-
		date).
last-modified	Timestamp or	Can be represented as
	Text	either a uvarint encoded
		timestamp or as text (HTTP-
		date).
age	Numeric or	Can be represented as
	Text	either an unsigned,
		variable-length integer or
		a sequence of ASCII
		numbers.
expires	Timestamp or	Can be represented as
	Text	either a uvarint encoded
		timestamp or as text (HTTP-
		date).
etag	Binary or	Can be represented as
	Text	either a sequence of binary
		octets or using the
		currently defined text
		format. When represented as
		binary octets, the Entity
		Tag MUST be considered to
		be a Strong Entity tag.
		Weak Entity Tags cannot be
		represented using the
		binary octet option.
 +---------------------+---------------+-----------------------------+

Appendix D. Alternative Timestamp encodings

 This specification currently uses the number of milliseconds from the
 UNIX Epoch to represent timestamps. This 64-bit number is encoded
 using the same uvarint encoding as Numeric fields. This means that
 the timestamp is encoded using a variable width that, right now (for
 about the next 100 years or so), will encode in six bytes, then seven
 bytes for the reasonable future.

 One possible alternative approach we can take is similar to NTP's
 handling of Era's. We can take the current timestamp and generate an
 Era value, with a maximum of 255 (0xFF). This is used as a
 multiplier for the timestamp value. The two values are calculated
 using the following formula:

Snell Expires December 11, 2013 [Page 26]

Internet-Draft Stored Header Encoding June 2013

 m = 4294967296000
 now = milliseconds since UNIX Epoch
 era = now / m
 ts = now % m

 The allowable values for "era" would be capped at 255. This value is
 encoded as a single byte, followed by a uvarint encoding of ts. This
 ensures that the timestamp will never be encoded using more than
 7-bytes total, though it may be encoded in as few as two bytes on
 extremely rare occasions (specifically, immediately following each
 era rollover).

 Wire Syntax:

 era = %x00-FF
 ts = uvarint
 date-time = era ts

 To convert back to the Epoch, the formula is equally simple:

 now = era * m + ts

 The largest date we can encode using this format is
 "36812-02-20T00:36:15.999Z". Dates prior to the epoch cannot be
 represented.

 The significant drawback with this approach is that current dates
 would encode in 7-bytes until the next era rollover, which will occur
 at approximately 2106-02-07T06:28:15.999Z (give or take a few leap
 seconds thrown in here and there).

 Note: The byte lengths assume we want millisecond precision. If we
 opted to keep the second precision currently in HTTP/1, then this
 alternative encoding ensures that our timestamps never exceed six-
 bytes in length.

Appendix E. Alternative uvarint encodings

 The uvarint encoding currently specified by this specification is
 certainly not the only possible option we can use. I chose it simply
 because it is drop dead simple to implement. There are quite a few
 other approaches we can take, each of which can be used as drop-in
 replacements for the current approach. Below are just a couple
 alternatives. There are plenty others. We just need to pick the one
 that we feel will work the best.

Snell Expires December 11, 2013 [Page 27]

Internet-Draft Stored Header Encoding June 2013

 It ought to be noted that while each of these schemes vary in details
 such as endianess, specific wire-format, etc, each will typically
 encode the same numbers using the same number of bytes with
 variations of only a single byte only in the edge cases. Processing
 time for each is also equivalent when dealing with any number less or
 equal to 64-bits in length. This means that the choice is largely a
 matter of style than substance.

E.1. Option 1:

 With this option, leading bits are used to indicate the total number
 of bytes used to encode the number value, with no fixed upper limit.
 Values strictly less than 128 are encoded using a single byte.

 0 xxxxxxx
 10 xxxxxx OCTET
 110 xxxxx 2OCTET
 1110 xxxx 3OCTET
 11110 xxx 4OCTET
 111110 xx 5OCTET
 1111110 x 6OCTET
 11111110 7OCTET
 11111111 0xxxxxxx 7OCTET
 11111111 10xxxxxx 8OCTET
 ...

 The number of leading 1 bits specify the number of additional bytes
 used to serialize the value. A single 0 bit is used to mark the end
 of this prefix, the remaining bits are used to encode the minimum
 bits necessary to encode the value (with appropriate leading 0 bits
 to ensure proper byte-alignment).

 For instance, the integer value 500, which is represented in binary
 as 00000001 11110100, can be encoded using two bytes, 10000001
 11110100

 The integer value 9770098, which is represented in binary as 10010101
 00010100 01110010, can be encoded using four bytes: 11100000 10010101
 00010100 01110010

E.2. Option 2:

Snell Expires December 11, 2013 [Page 28]

Internet-Draft Stored Header Encoding June 2013

 This option is generally identical to the previous with the exception
 of being capped at a maximum of nine encoded octets total. Rather
 than growing indefinitely, the encoded value must never require more
 then eight continuation bytes to encode. Because of this
 restriction, there is no need for a trailing 0-bit spilling over past
 the first leading byte.

 0 xxxxxxx
 10 xxxxxx OCTET
 110 xxxxx 2OCTET
 1110 xxxx 3OCTET
 11110 xxx 4OCTET
 111110 xx 5OCTET
 1111110 x 6OCTET
 11111110 7OCTET
 11111111 8OCTET
 ...

 The number of leading 1 bits specify the number of additional bytes
 used to serialize the value. If the number of bytes required is less
 than 8, a single 0 bit is used to mark the end of this prefix, the
 remaining bits are used to encode the minimum bits necessary to
 encode the value (with appropriate leading 0 bits to ensure proper
 byte-alignment).

 For instance, the integer value 500, which is represented in binary
 as 00000001 11110100, can be encoded using two bytes, 10000001
 11110100

 The integer value 9770098, which is represented in binary as 10010101
 00010100 01110010, can be encoded using four bytes: 11100000 10010101
 00010100 01110010

 This format is not capable of encoding any number requiring more than
 64-bits.

Author's Address

 James M Snell

 Email: jasnell@gmail.com

Snell Expires December 11, 2013 [Page 29]

