
Network Working Group J. Snell
Internet-Draft August 4, 2012
Intended status: Informational
Expires: February 5, 2013

HTTP/2.0 Discussion: SPDY In-Session Key Negotiation
draft-snell-httpbis-keynego-00

Abstract

 This memo describes a proposed modification to SPDY that introduces
 the concepts of In-Session Key Negotiation and Secure Framing.

Status of this Memo

 This Internet-Draft is submitted to IETF in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on February 5, 2013.

Copyright Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Snell Expires February 5, 2013 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft application/merge-patch August 2012

Table of Contents

1. Introduction . 3
2. In-Session Key Negotiation 3
3. Secure Framing . 4
4. Example: Pre-shared Secret Key 6
5. Example: Diffie-Helmman Exchange 7
6. Example: In-Session TLS 8
7. Example: Server-Initiated Key Exchange 10
8. Security Considerations 10
9. Normative References . 11

 Author's Address . 11

Snell Expires February 5, 2013 [Page 2]

Internet-Draft application/merge-patch August 2012

1. Introduction

 In-Session Key Negotiation allows endpoints to dynamically negotiate
 cryptographic keys after a SPDY Session has already been established
 through the exchange of one or more KEY_NEGO control frames.

 There are a number of benefits to such a mechanism:
 1. The ability to negotiate multiple keys over a single TCP/IP
 connection.
 2. The ability to renegotiate keys on the fly without tearing down
 and reestablishing the TCP/IP connection.
 3. Key Negotiation is intermediary friendly while remaining secure.
 Both Hop-by-Hop and End-to-End negotiation schemes would be
 possible.
 4. Support for multiple key negotiation mechanisms, including pre-
 shared key.
 5. Support for server-initiated key negotiation .. allowing
 responses to be secured on-demand by servers even if the client
 did not initiate the secure request. This allows servers to
 enforce secure communication with the client.
 6. The ability to target specific key negotiations at individual
 hosts.
 7. The possibility of using negotiated keys as an alternative to
 basic and digest authentication.

 TODO: More coverage on the needs, benefits

2. In-Session Key Negotiation

 The KEY_NEGO control frame is used to negotiate cryptographic keys
 for use by either endpoint within an established SPDY Session.

 The KEY_NEGO Frame

 +---------------------------------+
 |1| version | KEY_NEGO |
 +---------------------------------+
 | Flags (8) | LENGTH (24) |
 +---------------------------------|
 |X| KEY_ID (31) |
 +---------------------------------+
 |X| Associated-To-Stream-ID (31) |
 +---------------------------------+
 | ALG_ID(16) | SEQ(8) | |
 +------------------------+ |
 | (HEADERS BLOCK) |
 | |

Snell Expires February 5, 2013 [Page 3]

Internet-Draft application/merge-patch August 2012

 Flags: Flags related to this frame. Valid flags are:
 0x01 = FLAG_EXPECTS_RESPONSE - Indicates that the sender is
 expecting to receive a KEY_NEGO frame in response to this one.
 0x02 = FLAG_DONE - Indicates that this is the last KEY_NEGO frame
 the sender will send for this key negotiation sequence.
 0x04 = FLAG_WAIT - Indicates that the sender will be sending
 additional KEY_NEGO frames and that the recipient should wait for
 those before responding.
 0x08 = FLAG_ERROR - Indicates that an error has occurred within
 the key negotiation sequence and that the headers contains the
 details of the error.
 0x10 = FLAG_VOID - Indicates that the sender wishes for a
 previously negotiated key to be voided, making it unavailable for
 further use within the same SPDY Session.

 Length: The length is the number of bytes which follow the length
 field in the frame. For KEY_NEGO frames, this is 7 bytes plus the
 length of Headers block.

 KEY_ID: The 31-bit identifier for the key being negotiated. KEY_NEGO
 frames initiated by the client MUST have an odd-numbered ID.
 KEY_NEGO frames initiated by the server MUST have an even-numbered
 ID.

 Associated-To-Stream-ID: The 31-bit identifier for a Stream for which
 this key is to be associated. If this key is independent of all
 other streams, it should be 0.

 If a key is associated with a given stream, the key is destroyed when
 the stream is concluded.

 ALG_ID: The 16-bit identifier of the key negotiation algorithm being
 performed.

 SEQ: An 8-bit unsigned integer incremented for each KEY_NEGO frame
 exchanged for a given KEY_ID.

 HEADERS BLOCK: The block of headers carried as part of the KEY_NEGO
 frame.

 Within any single SPDY session, multiple KEY_NEGO exchanges may
 occur. However, once the range of possible KEY_ID's has been
 exhausted, no further negotiation is possible within that session.

3. Secure Framing

 Obviously, negotiating a key is pointless if it cannot be

Snell Expires February 5, 2013 [Page 4]

Internet-Draft application/merge-patch August 2012

 subsequently used to secure communications. For this, we can either
 modify the existing SPDY frames defined in
 [draft-mbelshe-httpbis-spdy-00] or introduce additional extension
 Control Frames. Currently, this memo adopts the latter approach.

 Three new Control Frames would be introduced:
 o SYN_SEC_STREAM
 o SYN_SEC_REPLY
 o INTEGRITY

 The SYN_SEC_STREAM and SYN_SEC_REPLY control frames are generally
 identical to the existing SYN_STREAM and SYN_REPLY frames, but
 include an additional 31-bit KEY_ID field that identifies the
 negotiated key used to encrypt the contents of both the block of
 headers (within the SYN_* frame as well as subsequent HEADERS frames)
 and all data frames within the stream.

 SYN_SEC_STREAM Control Frame:

 +------------------------------------+
 |1| version | SYN_SEC_STREAM |
 +------------------------------------+
 | Flags (8) | Length (24 bits) |
 +------------------------------------+
 |X| Stream-ID (31bits) |
 +------------------------------------+
 |X| Associated-To-Stream-ID (31bits) |
 +------------------------------------+
 | Pri|Unused | Slot |X| KEY_ID (31) |
 +------------------------------------|
 | (Headers Block) |
 | ... |

 SYN_SEC_REPLY:

 +------------------------------------+
 |1| version | SYN_SEC_REPLY |
 +------------------------------------+
 | Flags (8) | Length (24 bits) |
 +------------------------------------+
 |X| Stream-ID (31bits) |
 +------------------------------------+
 |X| KEY-ID (31) |
 +------------------------------------+
 | (Headers Block) |
 | ... |

 Additional, a new Stream Integrity Control frame is proposed that

https://datatracker.ietf.org/doc/html/draft-mbelshe-httpbis-spdy-00

Snell Expires February 5, 2013 [Page 5]

Internet-Draft application/merge-patch August 2012

 allows a sender to periodically insert a checksum into the stream.
 The checksum is calculated over the bytes of all HEADERS and Data
 frames sent since (and including) the initial SYN_* control frame or
 the previously sent INTEGRITY frame. If a key is used to generate
 the digest, the KEY_ID field can be used to reference the key. If
 the SYN_SEC_STREAM or SYN_SEC_REPLY contained a KEY_ID, then the
 digest is encrypted using the identified key..

 INTEGRITY Frame:

 +----------------------------------+
 |0| version | INTEGRITY |
 +----------------------------------+
 |X| Stream-ID (31bits) |
 +----------------------------------+
 |X| KEY-ID (31bits) |
 +----------------------------------+
 | ALG_ID (8) | SEQ(8) |Length (24) |
 +----------------------------------+
 | Digest |
 +----------------------------------+

 If the recipient receives an INTEGRITY frame that does not validate,
 it can choose to terminate the stream with a RST_STREAM.

4. Example: Pre-shared Secret Key

 Consider a scenario where user, Tom, is accessing a service on host
 "example.org". As part of the out of band registration process, a
 shared secret key is generated and shared by Tom and the hosted
 service. This key is tied to Tom's user account name: "tom".

 In this example, only a single KEY_NEGO frame needs to be exchanged,
 sent by Tom to the Server to identify the name of the pre-shared key.

Snell Expires February 5, 2013 [Page 6]

Internet-Draft application/merge-patch August 2012

 Tom Server
 | |
 |=====================>|
 | 1) SYN |
 |<=====================|
 | 2) SYN_ACK |
 |=====================>|
 | 3) ACK |
 | |
 |=====================>|
 | 4) KEY_NEGO |
 | ID=1 |
 | ALG_ID=1 (PSK) |
 | FLAGS=0x02 |
 | SEQ=1 |
 | :host=example.org |
 | :key=tom |
 | |
 |=====================>|
 | 5) SYN_SEC_STREAM |
 | ID=1 |
 | KEY_ID=1 |
 | :method=POST |
 | :host=example.org |
 | |
 |=====================>|
 | 6) DATA |
 | ID=1 |
 | (encrypted data) |
 | |
 | ...

 The SYN_SEC_STREAM establishes a secured stream that references the
 established key, and all headers and data transmitted would be
 encrypted using the identified key.

 The server MAY choose to respond with either a SYN_REPLY or
 SYN_SEC_REPLY.

5. Example: Diffie-Helmman Exchange

 Multi-step key negotiation mechanisms, such as the popular Diffie-
 Hellman mechanism, can also be implemented through the exchange of
 multiple KEY_NEGO frames.

Snell Expires February 5, 2013 [Page 7]

Internet-Draft application/merge-patch August 2012

 Tom Server
 | |
 |=====================>|
 | 1) SYN |
 |<=====================|
 | 2) SYN_ACK |
 |=====================>|
 | 3) ACK |
 | |
 |=====================>|
 | 4) KEY_NEGO |
 | ID=1 |
 | ALG_ID=2 (DH) |
 | FLAGS=0x01 |
 | SEQ=1 |
 | :host=example.org |
 | :p={p} |
 | :g={g} |
 | :A={A} |
 | |
 |<=====================|
 | 5) KEY_NEGO |
 | ID=1 |
 | ALG_ID=2 (DH) |
 | FLAGS=0x02 |
 | SEQ=2 |
 | :B={B} |
 | |
 |<====================>|
 | STREAM / REPLY |
 | (secured w/Key 1) |
 | |

6. Example: In-Session TLS

 KEY_NEGO frames can even be orchestrated to mimic the existing TLS-
 Handshake protocol:

 Tom Server
 | |
 |=====================>|
 | 1) SYN |
 |<=====================|
 | 2) SYN_ACK |
 |=====================>|
 | 3) ACK |
 | |

Snell Expires February 5, 2013 [Page 8]

Internet-Draft application/merge-patch August 2012

 |=====================>|
 | 4) KEY_NEGO | // CLIENT_HELLO
 | ID=1 |
 | ALG_ID=3 (IS-TLS) |
 | FLAGS=0x01 |
 | SEQ=1 |
 | :host=example.org |
 | :gmt_unix_time={X} |
 | :random:... |
 | :session:... |
 | :ciphers:... |
 | :extensions:... |
 | |
 |<=====================|
 | 5) KEY_NEGO | // SERVER_HELLO
 | ID=1 |
 | ALG_ID=3 |
 | FLAGS=0x04 |
 | SEQ=2 |
 | :random:... |
 | :session:... |
 | :cipher:... |
 | :extensions:... |
 | :cert:... |
 | ... | <==| Certificate
 | | <==| ServerKeyExchange
 | | <==| CertificateRequest
 |<=====================|
 | 6) KEY_NEGO | // SERVER_FINISHED
 | ID=1 |
 | ALG_ID=3 |
 | FLAGS=0x2 |
 | | |==> Certificate
 | | |==> ClientKeyExchange
 | | |==> CertificateVerify
 | | <==> Change Cipher Spec
 |=====================>|
 | 7) KEY_NEGO | // CLIENT_FINISHED
 | ID=1 |
 | ALG_ID=3 |
 | FLAGS=0x2 |
 | |
 |<====================>|
 | STREAM / REPLY |
 | (secured w/Key 1) |
 | |

Snell Expires February 5, 2013 [Page 9]

Internet-Draft application/merge-patch August 2012

7. Example: Server-Initiated Key Exchange

 One of the more interesting cases enabled by In-Session Key
 Negotiation is the possibility of server-initiated protection. That
 is, if a client opens an insecured stream with the server, the server
 could choose to upgrade that stream on-the-fly by initiating a
 KEY_NEGO exchange and responding with a SYN_SEC_REPLY. All content
 returned by the server would be encrypted, even if the request was
 not.

 Tom Server
 | |
 |=====================>|
 | 1) SYN |
 |<=====================|
 | 2) SYN_ACK |
 |=====================>|
 | 3) ACK |
 | |
 |=====================>|
 | 4) SYN_STREAM |
 | ID=1 |
 | :method=GET |
 | :path=/ |
 | :host=example.org |
 | |
 |<=====================|
 | 5) KEY_NEGO |
 | ID=2 |
 | ASSOC_STREAM_ID=1 |
 | ALG_ID=1 |
 | FLAGS=0x2 |
 | :key="tom" |
 | |
 |<=====================|
 | 6) SYN_SEC_REPLY |
 | ID=1 |
 | KEY_ID=2 |
 | ... |
 | |

8. Security Considerations

 TBD. TODO: Need to expand this...

 Negotiated Keys should likely be tied to a same-origin policy. The
 same negotiated key could not be used with multiple origins...

Snell Expires February 5, 2013 [Page 10]

Internet-Draft application/merge-patch August 2012

 instead, require the client to negotiate a separate key for each
 origin unless the specific key negotiation protocol allows multi-
 origin operation.

9. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

Author's Address

 James M Snell

 Email: jasnell@gmail.com

Snell Expires February 5, 2013 [Page 11]

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119

