Internet Draft J. Soininen,
Document: draft-soininen-v6ops-3qpp-cases-00.txt Editor

Document: <u>draft-soininen-v6ops-3gpp-cases-00.txt</u>
Expires: March 2003

xpires: March 2003 Nokia September 2002

Transition Scenarios for 3GPP Networks

Status of this Memo

This document is an Internet-Draft and is in full conformance with all provisions of <u>Section 10 of RFC2026</u>.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at http://www.ietf.org/ietf/lid-abstracts.txt

The list of Internet-Draft Shadow Directories can be accessed at http://www.ietf.org/shadow.html.

Abstract

This document describes different scenarios in Third Generation Partnership Project (3GPP) defined packet network, i.e. General Packet Radio Service (GPRS) that would need IP version 6 and IP version 4 transition. The focus of this document is on the scenarios where the User Equipment (UE) connects to nodes in other networks, e.g. in the Internet. GPRS network internal transition scenarios, i.e. between different GPRS elements in the network, are out of scope of this document.

The purpose of the document is to list the scenarios for further discussion and study.

Table of Contents

<u>1</u> .	Introduction	2
	Scope of the document	
_	Brief description of the 3GPP network environment	Т
	3.1 GPRS architecture basics	
	3.2 IP Multimedia Core Network Subsystem (IMS)	
	Transition scenarios	
		Т
	4.1 GPRS Scenarios	5

	4.2 Transition scenarios with IMS	<u>8</u>
<u>5</u> .	Security Considerations	. 8
<u>6</u> .	Changes from Last version	. 5
Aut	thors	. 5
Ref	ferences	L1
Ed:	itor's Address	 L1

Copyright

(C) The Internet Society (2002). All Rights Reserved.

1. Introduction

This document will describe the transition scenarios in 3GPP packet data networks that might come up in the deployment phase of IPv6. The main purpose of this document is to identify, and document those scenarios for further discussion, and for study in the V6OPS working group.

This document gives neither an overview, nor an explanation of 3GPP or the 3GPP packet data network, GPRS. A good overview of the 3GPP specified GPRS can be found from $[\underline{1}]$. The GPRS architecture specification is defined in $[\underline{2}]$.

2. Scope of the document

The scope of this document is to describe the possible transition scenarios in the 3GPP defined GPRS network where a UE connects to, or is contacted from, the Internet or another UE. The document describes scenarios with and without the usage of the SIP based IP Multimedia Core Network Subsystem (IMS).

The scope of this document does not include scenarios inside the GPRS network, i.e. on the different interfaces of the GPRS network. This document neither changes 3GPP specifications, nor proposes changes to the current specifications.

In addition, this document describes the possible transition scenarios. The solutions will be documented in a separate document.

These scenarios may or may not be found feasible, or even likely in further study.

3. Brief description of the 3GPP network environment

This section describes the most important concepts of the 3GPP environment for understanding the transition scenarios. The first part of the description gives a brief overview to the GPRS network as such. The second part concentrates on the IP Multimedia Core Network Subsystem (IMS).

3.1 GPRS architecture basics

This section gives an overview to the most important concepts of the 3GPP packet architecture. For more detailed description, please see [2].

From the point of view of this document, the most relevant 3GPP architectural elements are the User Equipment (UE), and the Gateway GPRS Support Node (GGSN). A simplified picture of the architecture is shown in Figure 1.

The UE is the mobile phone. It can either be an integrated device comprised of a combined GPRS part, and the IP stack, or it might be a separate GPRS device, and a separate equipment with the IP stack, e.g. a laptop.

The GGSN serves as an anchor-point for the GPRS mobility management. It also serves as the default router for the UE.

The Peer node mentioned in the picture refers to a node with which the UE is communicating.

Figure 1: Simplified GPRS Architecture

There is a dedicated link between the UE, and the GGSN called the Packet Data Protocol (PDP) Context. This link is created through the PDP Context activation process. During the activation the UE is configured with its IP address, and other information needed to maintain IP access, e.g. DNS server address. There are three different types of PDP Contexts: IPv4, IPv6, and Point-to-Point Protocol (PPP).

A UE can have one or more simultaneous PDP Contexts open to the same or to different GGSNs. The PDP Context can be either of the same, or different types.

3.2 IP Multimedia Core Network Subsystem (IMS)

IP Multimedia Core Network Subsystem (IMS) is a SIP based multimedia service architecture. It is specified in Release 5 of 3GPP. This section provides an overview of the 3GPP IMS and is not intended to be comprehensive. A more detailed description can be found in [3], [4] and [5].

The IMS comprises a set of SIP proxies, servers, and registrars. In addition, there are Media Gateways (MGWs) that offer connections to non-IP networks such as the Public Switched Telephony Network (PSTN). A simplified overview of the IMS is depicted in figure 2.

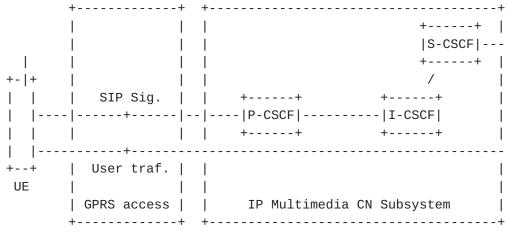


Figure 2: Overview of the 3GPP IMS architecture

The SIP proxies, servers, and registrars shown in Figure 2 are as follows.

- P-CSCF (Proxy-Call Session Control Function) is the first contact point within the IMS for the subscriber.
- I-CSCF (Interrogating-CSCF) is the contact point within an operatorÆs network for all connections destined to a subscriber of that network operator, or a roaming subscriber currently located within that network operatorÆs service area.
- S-CSCF (Serving-CSCF) performs the session control services for the subscriber. It also behaves as a SIP Registrar.

IMS UEs use the GPRS as an access network for the IMS. Thus, a UE has to have an activated PDP Context to the IMS before it can proceed to use the IMS services. The PDP Context activation is explained briefly in section 3.1.

The IMS is exclusively IPv6. Thus, the activated PDP Context is of PDP Type IPv6. This means that an 3GPP IP Multimedia terminal uses exclusively IPv6 to access the IMS, and the IMS SIP server and proxy support exclusively IPv6. Hence, all the traffic going to the IMS is IPv6, even if the UE is dual stack capable - this comprises both signaling and user traffic.

This, of course, does not prevent the usage of other unrelated services (e.g. corporate access) on IPv4.

4. Transition scenarios

This section is divided into two main parts - GPRS scenarios, and scenarios with the IP Multimedia Subsystem (IMS). The first part - GPRS scenarios - concentrates on scenarios with a User Equipment (UE) connecting to services in the Internet, e.g. mail, web. The second part - IMS scenarios - then describes how an IMS capable UE can connect to other SIP capable nodes in the Internet using the IMS services.

4.1 GPRS Scenarios

This section describes the scenarios that might occur when a GPRS UE contacts services, or nodes outside the GPRS network, e.g. web-server in the Internet.

Transition scenarios of the GPRS internal interfaces are outside of the scope of this document.

The following scenarios are described here. In all of the scenarios, the UE is part of a network where there is at least one router of the same IP version, i.e. GGSN, and it is connecting to a node in a different network.

The scenarios here apply also for PDP Context type Point-to-Point Protocol (PPP) where PPP is terminated at the GGSN. On the other hand, where the PPP PDP Context is terminated e.g. at an external ISP, the environment is the same as for general ISP cases.

- 1) Dual Stack UE connecting to IPv4 and IPv6 nodes
- 2) IPv6 UE connecting to an IPv6 node through an IPv4 network
- 3) IPv4 UE connecting to an IPv4 node through an IPv6 network
- 4) IPv6 UE connecting to an IPv4 node
- 5) IPv4 UE connecting to an IPv6 node

1) Dual Stack UE connecting to IPv4 and IPv6 nodes

The GPRS system has been designed in a manner that there is the possibility to have simultaneous IPv4, and IPv6 PDP Contexts open. Thus, in cases where the UE is dual stack capable, and in the network there is a GGSN (or separate GGSNs) that supports both connection to IPv4 and IPv6 networks, it is possible to connect to both at the same time. Figure 3 depicts this scenario.

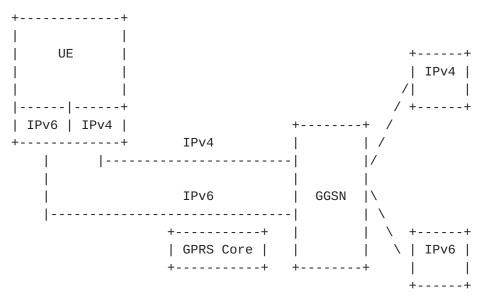


Figure 3: Dual-Stack Case

However, the IPv4 addresses might be a scarce resource for the mobile operator or an ISP. In that case, it might not be possible for the UE to have a globally unique IPv4 address allocated all the time. Hence, the UE should either activate the IPv4 PDP Context only when needed, or be allocated an IPv4 address from a private address space.

2) IPv6 UE connecting to an IPv6 node through an IPv4 network

Especially in the first stages of IPv6 deployment, there are cases where an IPv6 node would need to connect to the IPv6 Internet through a network that is IPv4. For instance, this can be seen in current fixed networks, where the access is provided in IPv4 only, but there is an IPv6 network deeper in the Internet. This scenario is shown in the Figure 4.

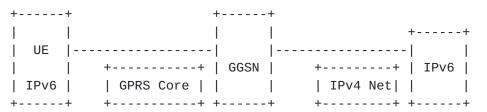


Figure 4: IPv6 nodes communicating over IPv4

In this case, in the GPRS system, the UE would be IPv6 capable, and the GPRS network would provide an IPv6 capable GGSN in the network. However, there is an IPv4 network between the GGSN, and the peer node.

3) IPv4 UE connecting to an IPv4 node through an IPv6 network

Further in the future, there are cases where the legacy UEs are still IPv4 only, capable of connecting only to the legacy IPv4 Internet. However, the GPRS operator network has already been upgraded to IPv6. Figure 5 represents this scenario.

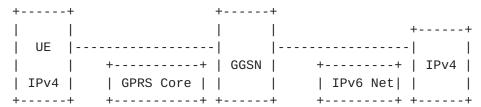


Figure 5: IPv4 nodes communicating over IPv6

In this case, the operator would still provide an IPv4 capable GGSN, and a connection through the IPv6 network to the IPv4 Internet.

4) IPv6 UE connecting to an IPv4 node

In this scenario an IPv6 UE connects to an IPv4 node in the IPv4 Internet. As an example, an IPv6 UE connects to an IPv4 web server in the legacy Internet. In the figure 6, this kind of possible installation is described.

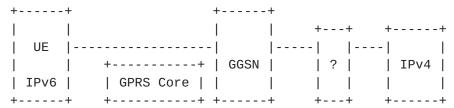


Figure 6: IPv6 node communicating with IPv4 node

5) IPv4 UE connecting to an IPv6 node

This is similar to the case above, but in the opposite direction. Here an IPv4 UE connects to an IPv6 node in the IPv6 Internet. As an example, a legacy IPv4 UE is connected to an IPv6 server in the IPv6 Internet. Figure 7 depicts this configuration.

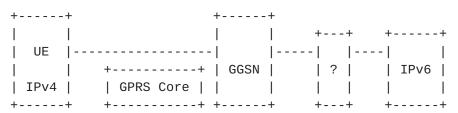


Figure 7: IPv4 node communicating with IPv6 node

4.2 Transition scenarios with IMS

As described in <u>section 3.2</u>, IMS is exclusively IPv6. Thus, the number of possible transition scenarios is reduced dramatically. In the following, the possible transition scenarios are listed.

- 1) UE connecting to a node in an IPv4 network through IMS
- 2) Two IPv6 IMS connected via an IPv4 network
- 1) UE connecting to a node in an IPv4 network through IMS

This scenario occurs when an IMS UE (IPv6) connects to a node in the IPv4 Internet through the IMS, or vice versa. This happens when the other node is a part of a different system than 3GPP, e.g. a fixed PC, with only IPv4 capabilities. This scenario is shown in the Figure 8.

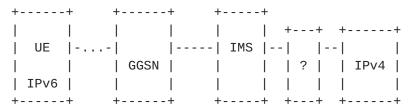


Figure 8: IMS UE connecting to an IPv4 node

2) Two IPv6 IMS connected via an IPv4 network

At the early stages of IMS deployment, there may be cases where two IMS islands are only connected via an IPv4 network such as the legacy Internet. See Figure 9 for illustration.

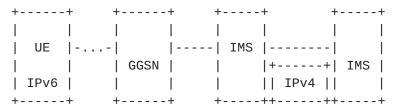


Figure 9: Two IMS islands connected over IPv4

Security Considerations

This document does not generate any additional security considerations.

6. Changes from Last version

The name of the document has changed from <u>draft-soininen-ngtrans-</u> 3gpp-cases-00.txt to the current name.

Description of the 3GPP environment has been added - brief overview of both GPRS, and IMS.

Pictures added to scenarios for better explanation.

Authors deleted from the header, and design team members added to the end of the document instead.

Authors

This is document is a result of a joint effort of a design team. The members of the design team are listed in the following.

Alain Durand, Sun Microsystems <Alain.Durand@sun.com>

Karim El-Malki, Ericsson Radio Systems
<Karim.El-Malki@era.ericsson.se>

Paul Francis, Tahoe Networks
<francis@tahoenetworks.com>

Niall Richard Murphy, Enigma Consulting Limited <niallm@enigma.ie>

Hugh Shieh, AT&T Wireless
<hugh.shieh@attws.com>

Jonne Soininen, Nokia <jonne.soininen@nokia.com>

Hesham Soliman, Ericsson Radio Systems
<hesham.soliman@era.ericsson.se>

Margaret Wasserman, Wind River <mrw@windriver.com>

Juha Wiljakka, Nokia <juha.wiljakka@nokia.com>

Acknowledgements

The authors would like to thank Basavaraj Patil, Tuomo Sipila, Fred Templin, Rod Van Meter, and Jens Staack for good input, and comments that helped writing this document.

References

- [1] Wasserman, M. et al, "Recommendations for IPv6 in 3GPP Standards", January 2002, draft-ietf-ipv6-3gpp-recommend-00.txt.
- [2] 3GPP TS 23.060 v 5.2.0, "General Packet Radio Service (GPRS); Service description; Stage 2(Release 5)", June 2002.
- [3] 3GPP TS 23.228 v 5.3.0, " IP Multimedia Subsystem (IMS); Stage 2(Release 5)", January 2002.
- [4] 3GPP TS 24.228 V5.0.0, "Signalling flows for the IP multimedia call control based on SIP and SDP; Stage 3 (Release 5)", March 2002.
- [5] 3GPP TS 24.229 V5.0.0, "IP Multimedia Call Control Protocol based on SIP and SDP; Stage 3 (Release 5)", March 2002.

Editor's Address

Jonne Soininen Nokia

313 Fair Child Dr. Phone: +1-650-864-6794

Mountain View, CA, USA Email: jonne.Soininen@nokia.com