
Network Working Group P. Aranda Gutierrez
Internet-Draft TID
Intended status: Experimental J. Bonnet
Expires: January 6, 2017 Altice Labs
 D. Lopez
 TID
 July 5, 2016

The Role of a Mediation Element in NFV DevOps
draft-sonata-nfvrg-devops-gatekeeper-00

Abstract

 This document describes how a mediation element (a "gatekeeper") can
 be applied to support DevOps practices in the provisioning of network
 services based on Network Function Virtualisation (NFV).

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 6, 2017.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as

Aranda Gutierrez, et al. Expires January 6, 2017 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft A Gatekeeper for NFV DevOps July 2016

 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Requirements Language . 4
3. The Essential Components for NFV DevOps 4
4. The Role of the Gatekeeper 6
4.1. User Management . 6
4.2. Package Management . 6

5. Security Considerations . 8
6. IANA Considerations . 8
7. Acknowledgements . 8
8. References . 9
8.1. Normative References 9
8.2. Informative References 9

 Authors' Addresses . 9

Aranda Gutierrez, et al. Expires January 6, 2017 [Page 2]

Internet-Draft A Gatekeeper for NFV DevOps July 2016

1. Introduction

 The DevOps model is already an established concept in IT industry
 reducing time to market by close collaboration between service
 developers and service operators. The switch to virtualisation
 technologies in the network and its potential for quicker time-to-
 market deployment requires the application of agile development
 cycles supporting a DevOps approach. This kind of approach will
 overcome key inhibitors that network operators face when deploying
 NFV, such as lack of legacy compatibility, resource orchestration,
 automation and multi-vendor interoperability, hence facilitating the
 transition to a software-driven network. The adoption of the DevOps
 model for network services will contribute to interaction between
 development, testing, and operation of network functionalities and
 network services. Both the function/service description formats as
 well as the infrastructure resource descriptions will be able to
 express and use legacy cases, e.g., the case of a non-virtual network
 function bound to a specific place in the network, with the data
 flows routed accordingly.

 Network Service Providers (NSPs) must be able to orchestrate diverse
 network functions from multiple sources for automation and streamline
 them into an inter-organizational DevOps workflow. To embrace the
 DevOps model implies not only to shorten time between deploying,
 testing and validating of services, but also to enable the mechanisms
 for the network to consider application layer requirements and
 reaction to SLAs, and to ease network reconfiguration in order to
 achieve fast reaction in a timely manner.

 Development and operational tools, the two essential pillars of
 DevOps, translate into the need of addressing the interfacing of
 service development tasks and the service platform, which in DevOps
 are closely linked together. It is required to emphasize the need
 for quick turn-around times in service development and operation, and
 materialize it in a mediated interface making a direct collaboration
 on both the development and the platform side possible.

 The branching to multiple stakeholders in the service lifecycle
 creates an inter-organizational dynamics that must be taken into
 account. A realistic NFV DevOps approach has to take into account a
 trustworthy cycle with a mediation element that ensures compliance
 policies set by the NSP considering legacy situation, allowing
 developers across stakeholders to enter the ecosystem. Such a
 mediation element is what we will refer as a "gatekeeper" in the rest
 of this document. The resulting strategy opens collaborating
 opportunities while mitigating liability risks across the network
 service lifecycle.

Aranda Gutierrez, et al. Expires January 6, 2017 [Page 3]

Internet-Draft A Gatekeeper for NFV DevOps July 2016

2. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 In this document, these words will appear with that interpretation
 only when in ALL CAPS. Lower case uses of these words are not to be
 interpreted as carrying RFC-2119 significance.

3. The Essential Components for NFV DevOps

 The collaboration between the development and operational tasks to
 build a service lifecycle according to the DevOps principles requires
 to combine service programming and orchestration frameworks by means
 of the following components:

 o Catalogues, storing static information regarding network functions
 and services: code, executables, configuration data, and specific
 management requirements and preferences. Contents, location,
 organization, and implementation of catalogues for different
 artefacts can vary considerably. However, users of these
 catalogues need to deal with them in a consistent fashion and the
 differences across different catalogues need to be harmonized and
 abstracted away. As a high-level categorization, the following
 three types of catalogues can be considered:

 * Private catalogues of service developers, where they can
 define, access, reuse, and modify services and service
 components.

 * Service platform catalogues made available to authorized
 service developers for reusing existing components in their
 services, and used for storing services and their components
 that need to be deployed by the service platform.

 * Public catalogues storing artefacts developed and maintained by
 third-party developers on arbitrary platforms accessible to
 service developers and service platform operators.

 o Service Development Kit (SDK). The SDK supports service
 developers by providing a service programming model and a
 development tool-chain, designed to support developers in defining
 and testing complex services consisting of multiple network
 functions, and to facilitate custom implementations of individual
 network functions. The implemented artefacts are stored in the
 developer's private catalogues. Moreover, service components can

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Aranda Gutierrez, et al. Expires January 6, 2017 [Page 4]

Internet-Draft A Gatekeeper for NFV DevOps July 2016

 easily be obtained from external catalogues. The obtained
 artefacts can be directly used in a service or after being
 modified and tested using the SDK development tools. The service
 components and all the information necessary for deployment and
 execution of a service are bundled together into a package. The
 service package can be handed over to a service platform for
 actual deployment and for testing, debugging, and profiling
 purposes.

 o Service Platform. The service platform receives the service
 packages implemented and created with the help of the SDK and is
 responsible for placing, deploying, provisioning, scaling, and
 managing the services on existing cloud infrastructures. It can
 also provide direct feedback about the deployed services to the
 SDK, for example, monitoring data about a service or its
 components. The service developer can ship the service package to
 the service platform together with service- or function-specific
 lifecycle management requirements and preferences. A gatekeeper
 module in the service platform is responsible for processing the
 incoming and outgoing requests.

 o Underlying Infrastructure. The infrastructure needs to host and
 execute the actual network functions of a service, e.g., as a
 virtual machine. The service platform sends necessary information
 and instructions for execution and lifecycle management of
 services to the infrastructure. The infrastructure may belong to
 the service platform operator, or to a third-party infrastructure
 operator. The interaction between the service platform and the
 infrastructure is done through a Virtual Infrastructure Manager
 (VIM). In a typical deployment, the service platform runs
 directly on top of an actual infrastructure. However, there can
 be service platforms supporting a recursive deployment model,
 where a service platform can act as an abstraction to the
 underlying infrastructure for another service platform. The
 service platform gatekeeper can play a relevant role to support
 mediated recursion as well.

 The DevOps workflow is supported by the integration between the SDK
 and the service platform. This workflow implies continuous
 deployment and continuous integration during service development.
 The main entity exchanged between the SDK and the service platform is
 the service package to be deployed and runtime information like
 monitoring data and performance measurements regarding the service
 package, which is provided to the service developer during the
 development phase, as well as the runtime. This information can be
 used for optimizing, modifying, and debugging the operation and
 functionality of services.

Aranda Gutierrez, et al. Expires January 6, 2017 [Page 5]

Internet-Draft A Gatekeeper for NFV DevOps July 2016

4. The Role of the Gatekeeper

 The gatekeeper is the module in the service platform that validates
 the services submitted to that platform, mediating the development
 and operational tasks, by performing the basic functions described
 here.

4.1. User Management

 User management allows the service platform owner to control who can
 do what in the platform. This feature is particularly important in
 recursive scenarios, on which we may have a chain of service
 platforms interacting for the implementation of an end-to-end
 service.

 The most basic feature of any user management component will be to
 know who is the user, a feature that is usually called
 authentication. Authentication requires user registration and the
 maintenance of user identity attributes, including not only
 identification attributes (user identifiers, passwords, public keys,
 trusted signing certificates, etc.) but also other information
 supporting different authorization schemas, such as group-based or
 role-based ones.

 The definition of what each (known) user can do is usually called
 authorization. The most common approach nowadays to authorization is
 called role-based, in which each user is assigned one (or more)
 role(s) and different roles have different permissions. This extra
 level of indirection, that is users to roles and roles to
 permissions, simplifies the overall maintenance of the system, when
 compared to a more direct scheme, like users permissions. Specially
 when accessing external APIs, it is common to issue temporary keys
 (then usually called tokens) which enable temporary access to those
 APIs. Real keys therefore do not leave the realm on which they are
 valid and useful, thus increasing the overall level of security.

4.2. Package Management

 The gatekeeper receives the software to be validated in the form of
 packages. Package management is mostly about accepting and
 validating new or updated packages. The metadata describing such
 packages is called package descriptor, and constitutes the core of
 the gatekeeper interface.

 Only known (i.e., successfully authenticated) and authorized users
 will be able to submit new or revised services through the
 gatekeeper. On-boarding of a package can only be considered
 successful when package validation and attestation is successful.

Aranda Gutierrez, et al. Expires January 6, 2017 [Page 6]

Internet-Draft A Gatekeeper for NFV DevOps July 2016

 Only then the (new version of) the package will become part of the
 catalogue. On-boarding requests are usually processed in a first
 come, first served way, otherwise contradictory requests may
 jeopardize the whole system. The usual solution for this problem is
 to use a queue mechanism that guarantees this sequence.

 A package descriptor is validated in several ways:

 o Syntax, comprising the validation against the expected package
 descriptor format.

 o Semantics, which includes the validation of at least the basic
 parameters. The exact semantic aspects to be validated will
 depend on the content and format chosen for the package
 descriptor.

 o Licensing, by checking that all external dependencies (i.e.,
 packages, libraries or services) have to have their licenses
 checked before being used.

 o Tests availability. Although this might be seen as part of the
 syntactic/semantic correction, there must be a set of tests that
 can be executed when validating the package. Depending of the
 scope and complexity of the Service, these tests may be a subset
 of the unit tests or a more elaborate suit of integration tests.

 o Tests execution. Besides providing a suit of tests, these have to
 be successfully executed. This execution may (usually will) imply
 the creation and initialization of at least one test environment.
 When the package under test depends on other packages, libraries
 or services, those too should be taken into account in the
 execution of the package tests.

 The service package must include some signatures that allows validate
 its content and the component VNFs and other components (forwarding
 graphs, test suites, etc.

 Requests for a change in the life-cycle of a package must be
 validated. This might be a simple authorization configuration.

 o Deployment. Valid packages, available at the service platform
 repository, may receive a request for deployment. Package
 deployment implies the creation of all the environments and
 connections needed for the package and its dependencies to work
 and of an instance of that package.

 o Instance (re)-configuration. A deployed package instance may need
 to be configured. A special kind of configuration might be, for

Aranda Gutierrez, et al. Expires January 6, 2017 [Page 7]

Internet-Draft A Gatekeeper for NFV DevOps July 2016

 packages supporting multi-tenancy, adding a new tenant. The
 package may have "open parameters" that can only be closed upon
 instantiation (e.g., an IP address). If a Package upgrade
 happens, a reconfiguration of the instance must also be made.

 o Instance (re-)start. When, e.g., configuration changes.

 o Instance monitoring. This is not strictly a change in the life-
 cycle, but would require the execution of certain aspects
 identified by the package descriptor or its components.

 o Instance stop. Includes soft-stop (i.e., not accepting new
 requests and letting currently running request reach their end of
 life normally, with a pre-defined time-out) and hard-stop (i.e., a
 sudden stop, with requests still being answered by the service).

 o Instance termination. Frees any resource(s) that were being used,
 taking care of dependencies.

 o Removal. It requieres an evaluation of currently running
 instances and dependencies.

5. Security Considerations

 The gatekeeper acts as the security enforcement point for all DevOps
 interactions between the development and operational tasks, and even
 between different layers in recursive structure.

 Gatekeeper APIs will have to be secured, providing identification,
 confidentiality, integrity and non-repudiation.

 Other potential threats are related to denial-of-service, whereby an
 adversary could make the whole NFV environment unusable by
 overloading the gatekeeper with a high number of requests or requests
 tailored to exhaust its resources. Mechanisms for overload detection
 and mitigation should be put in place.

6. IANA Considerations

 This document requires no IANA actions.

7. Acknowledgements

 This work has been partially performed in the scope of the SONATA
 project [SONATA], which has received funding from the European

Aranda Gutierrez, et al. Expires January 6, 2017 [Page 8]

Internet-Draft A Gatekeeper for NFV DevOps July 2016

 Union's Horizon 2020 research and innovation programme. The authors
 would like to acknowledge the contributions of their colleagues.
 This information reflects the consortium's view, but the consortium
 is not liable for any use that may be made of any of the information
 contained therein.

8. References

8.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

8.2. Informative References

 [SONATA] "Project SONATA", <http://www.sonata-nfv.eu/>.

Authors' Addresses

 Pedro A. Aranda Gutierrez
 Telefonica I+D
 Zurbaran, 12
 Madrid 28010
 Spain

 Email: pedroa.aranda@telefonica.com

 Jose Bonnet
 Altice Labs
 Rua Eng. Jose Ferreira Pinto Basto
 Aveiro, 3810-106
 Portugal

 Phone: +351 234 403 200
 Email: jbonnet@alticelabs.com

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119
http://www.sonata-nfv.eu/

Aranda Gutierrez, et al. Expires January 6, 2017 [Page 9]

Internet-Draft A Gatekeeper for NFV DevOps July 2016

 Diego R. Lopez
 Telefonica I+D
 Zurbaran, 12
 Madrid, 28010
 Spain

 Phone: +34 913 129 041
 Email: diego.r.lopez@telefonica.com

Aranda Gutierrez, et al. Expires January 6, 2017 [Page 10]

