
OPSAWG H. Song, Ed.
Internet-Draft J. Gong
Intended status: Informational H. Chen
Expires: December 17, 2017 Huawei Technologies Co., Ltd
 June 15, 2017

Requirements for Interactive Query with Dynamic Network Probes
draft-song-opsa-dnp4iq-00

Abstract

 This document discusses the motivation and requirements for
 supporting interactive network queries and data collection through a
 mechanism called Dynamic Network Probes (DNP). Network applications
 and OAM have various data requirements from the data plane. The
 unpredictable and interactive nature of the query for network data
 analytics asks for dynamic and on-demand data collection
 capabilities. As user programmable data plane is becoming a reality,
 it can be enhanced to support interactive query through DNPs. DNP
 supports node, path, and flow-based data preprocessing and
 collection. For example, in-situ OAM (iOAM) with user-defined flow-
 based data collection can be programmed and configured through DNP.
 DNPs serve as a building block of an integrated network data
 telemetry and analytics platform which involves the network data
 plane as an active component for user-defined data collection and
 preparation.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on December 17, 2017.

Song, et al. Expires December 17, 2017 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft IQ with DNP Requirements June 2017

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
2. Motivation for Interactive Query with DNP 3
3. Use Cases . 5
3.1. In-Situ OAM with User Defined Data Collection 6
3.2. DDoS Detection . 6
3.3. Elephant Flow Identification 6
3.4. Network Congestion Monitoring 7

4. Enabling Technologies for DNP 7
5. Dynamic Network Probes 9
5.1. DNP Types . 11
5.1.1. Node Based . 11
5.1.2. Path Based . 12
5.1.3. Flow Based . 13

6. Interactive Query Architecture 13
7. Requirements for IQ with DNP 14
8. Considerations for IQ with DNP 15
8.1. Technical Challenges 15
8.2. Standard Consideration 16

9. Security Considerations 16
10. IANA Considerations . 16
11. Acknowledgments . 16
12. Informative References 16

 Authors' Addresses . 18

1. Introduction

 Network service provider's pain points are often due to the lack of
 network visibility. For example, network congestion collapse could
 be avoided in many cases if it were known exactly when and where
 congestion is happening or even better, if it could be precisely
 predicted well before any impact is made; sophisticated network

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Song, et al. Expires December 17, 2017 [Page 2]

Internet-Draft IQ with DNP Requirements June 2017

 attacks could be prevented through stateful and distributed network
 behavior analysis.

 In order to provide better application-centric services, user flows
 and their interaction with networks need to be tracked and
 understood.

 The emerging trend of network automation aims to keep people out of
 the OAM and control loop to the greatest extent for automated health
 prediction, fault recovery, demand planning, network optimization,
 and intrusion prevention, based on big data analytics and machine
 learning technologies.

 These applications need all kinds of network data, either passing
 through networks or generated by network devices. For such
 applications to be effective, the data of interest needs to be
 retrieved in real time and on demand in an interactive and iterative
 fashion. Continuous streaming data is often required. Therefore, it
 is valuable to build a unified and general-purpose network telemetry
 and analytics platform with integrated data plane support to provide
 the complete network visibility at the minimum data bandwidth. This
 is in contrast to the piecemeal solutions which only deal with one
 single problem at a time.

 We propose two ideas to enable such a vision. First, we devise the
 Dynamic Network Probe (DNP) as a flexible and dynamic means for data
 plane data collection and preprocessing, which can prepare data for
 data analytics applications (Note that most of the DNPs are so common
 that it makes perfect sense to predefine the standard data models for
 them such that the conventional data plane devices can still be
 designed and configured to support them). Second, we show the
 possibility to build a universal network telemetry and analytics
 platform with an Interactive Query (IQ) interface to the data plane
 which can compile and deploy DNPs at runtime (or configure DNPs
 dynamically based on standard data models). In such a system,
 network devices play an integral and active role. We show a layered
 architecture based on a programmable data plane which supports
 interactive queries on network data.

 In this document We discuss requirements, use cases, working items,
 and challenges, with the hope to trigger community interests to
 develop corresponding technologies and standards.

2. Motivation for Interactive Query with DNP

 Network applications, such as traffic engineering, network security,
 network health monitoring, trouble shooting, and fault diagnosis,
 require different types of data collection. The data are either

Song, et al. Expires December 17, 2017 [Page 3]

Internet-Draft IQ with DNP Requirements June 2017

 normal traffic packets that are filtered, sampled, or digested, or
 metadata generated by network devices to convey network states and
 status. Broadly speaking, there are three types of data to be
 collected from network data plane: path-based, flow-based, and node-
 based. Path-based data is usually collected through dedicated
 probing packets (e.g., ping and traceroute); Flow-based data
 collection designates user flows to carry data of interest (e.g., in-
 situ OAM [I-D.brockners-inband-oam-requirements]); Node-based data is
 directly retrieved from selected network devices (e.g., ipfix
 [RFC7011]).

 Some data is considered atomic or primitive. For example, a packet's
 arrival timestamp at a particular node cannot be further
 disintegrated. The atomic data can be used to generate synthetic and
 combinational data. For example, a packet's latency on a path can be
 calculated through the packet timestamps at the end of the path.
 Depending on the application, either data may be required. If the
 application's real intent is the latter, it makes sense to directly
 provide such data to reduce the data transfer bandwidth, at the cost
 of a small processing overhead in the data plane and/or control
 plane. Some synthetic and combinational data can be acquired through
 multiple data types, but the most efficient way is preferred for a
 specific network. For the similar purpose of data traffic reduction,
 applications may not need the "raw" data all the time. Instead, they
 may want data that is sampled and filtered, or only when some
 predefined condition is met. Anyway, application's requirements on
 data are diversified and unpredictable. Applications may need some
 data which is not readily available at the time of request.

 Some applications are interactive or iterative. After analyzing the
 initial data, these applications may quickly shift interests to new
 data or need to keep refining the data to be collected based on
 previous observations (e.g., an elephant flow detector continues to
 narrow down the flow granularity and gather statistics). The control
 loop algorithms of these applications continuously interact with the
 data plane and modify the data source and content in a highly dynamic
 manner.

 Ideally, to support all potential applications, we need full
 visibility to know any states anytime anywhere in the entire network
 data plane. In reality, this is extremely difficult if not
 impossible. A strawman option is to mirror all the raw traffic to
 servers where data analytics engine is running. This brute-force
 method requires to double the device port count and the traffic
 bandwidth, and poses enormous computing and storage cost. As a
 tradeoff, Test Access Port (TAP) or Switch Port Analyzer (SPAN) is
 used to selectively mirror only a portion of the overall traffic.
 Network Packet Broker (NPB) is deployed along with TAP or SPAN to

https://datatracker.ietf.org/doc/html/rfc7011

Song, et al. Expires December 17, 2017 [Page 4]

Internet-Draft IQ with DNP Requirements June 2017

 process and distribute the raw data to various data analytics tools.
 There are some other solutions (e.g., sflow [RFC3176] and ipfix
 [RFC7011]) which can provide sampled and digested packet data and
 some traffic statistics. Meanwhile, network devices also generate
 various log files to record miscellaneous events in the system.

 When aggregating all these solutions together, we can gain a
 relatively comprehensive view of the network. However, the main
 problem is the lack of a unified platform to deal with the general
 network telemetry problem and the highly dynamic and unpredictable
 data requirements. Moreover, each piecemeal solution inevitably
 loses information due to data plane resource limitations which makes
 the data analytical results suboptimal.

 Trying to design an omnipotent system to support all possible runtime
 data requests is also unviable because the resources required are
 prohibitive (e.g., even a simple counter per flow is impossible in
 practice). An alternative is to reprogram or reconfigure the data
 plane device whenever an unsupported data request appears. This is
 possible thanks to the recently available programmable chips and the
 trend to open the programmability to service providers.
 Unfortunately, the static programming approach cannot meet the real
 time requirements due to the latency incurred by the programming and
 compiling process. The reprogramming process also risks breaking the
 normal operation of network devices.

 Then a viable solution left to us is: whenever applications request
 data which is yet unavailable in the data plane, the data plane can
 be configured in real time to return the requested data. That is, we
 do not attempt to make the network data plane provide all data all
 the time. Instead, we only need to ensure that any application can
 acquire necessary data instantly whenever it actually needs it. This
 data-on-demand model can support effectively omni network visibility,
 Note that data collection is meant to be passive and should not
 change the network forwarding behavior. The active forwarding
 behavior modification is out of the scope of this draft.

 Data can be customized dynamically and polled or pushed based on
 application's request. Moderate data preprocessing and preparation
 by data plane devices may be needed. Such "in-network" processing
 capability can be realized through DNP.

3. Use Cases

https://datatracker.ietf.org/doc/html/rfc3176
https://datatracker.ietf.org/doc/html/rfc7011

Song, et al. Expires December 17, 2017 [Page 5]

Internet-Draft IQ with DNP Requirements June 2017

3.1. In-Situ OAM with User Defined Data Collection

 In-situ OAM [I-D.brockners-inband-oam-requirements] collects data on
 user traffic's forwarding path. From the control and management
 plane point of view, each data collection task is a query from the
 OAM application. In case the data collection function is not hard
 coded in network devices, DNP can be dynamically deployed to support
 the in-situ OAM.

 While the current in-situ OAM drafts only concern the data plane
 packet format and use cases, the applications still need a control
 and management interface to dynamically enable and disable the in-
 situ OAM functions, which involves the tasks such as choosing the
 source and destination nodes on the path, the flow to carry the OAM
 data, and the way to handle the data at the path end. These
 configuration tasks can be done through DNP.

 More importantly, in-situ OAM [I-D.brockners-inband-oam-data] may
 collect user-defined data which are not available at device
 configuration time. In this case, the data can be defined by DNP.
 DNP can further help to preproess the data before sending the data to
 the subscribing application. This can help to reduce the OAM header
 size and the application's work load.

3.2. DDoS Detection

 In a data center the security application wants to find the servers
 under possible DDoS attack with a suspiciously large number of
 connections. It can deploy DNPs on all the portal switches to
 periodically report the number of unique flows targeting the set of
 the protected servers. Once the queried data are collected, it is
 easy to aggregate the data to find the potential DDoS attacks.

3.3. Elephant Flow Identification

 An application wants to query the network-wide top-n flows. Various
 algorithms have been developed at each network device to detect local
 elephant flows. These algorithms can be defined as DNPs. A set of
 network devices are chosen to deploy the DNPs so each will
 periodically report the local elephant flows. The application will
 aggregate the data to find the global elephant flows. The elephant
 flow identification can be an interactive process. The application
 may need to adjust the existing DNPs or deploy new DNPs to refine the
 detection results.

 In some cases, the local resource in a network device is not
 sufficient to monitor the entire flow space. We can partition the
 flow space and configure one network device in a group with a DNP to

Song, et al. Expires December 17, 2017 [Page 6]

Internet-Draft IQ with DNP Requirements June 2017

 track only a subset of flows, given the assumption that each device
 can see all the flows.

3.4. Network Congestion Monitoring

 Network congestion is reflected by packet drops at routers or
 switches. While it is easy to get the packet drop count at each
 network device, it is difficult to gain insights on the victims, hot
 spots, and lossy paths. We can deploy DNPs to acquire such
 information. DNPs are deployed on all network devices to collect the
 detailed information about the dropped packet such as its signature
 and the port it is dropped. Based on the collected data, the
 application can generate the report on the top victims, hot spots,
 and the most lossy paths.

4. Enabling Technologies for DNP

 Network data plane is becoming user programmable. It means the
 network operators are in control of customizing the network device's
 function and forwarding behavior. Figure 1 shows the industry trend,
 which shapes new forms of network devices and inspires innovative
 ways to use them.

 +-------+ +-------+ +-------+
 | | | | | |
 | NOS | | APP | | APP |
 | | | | | |
 +-------+ +-------+ +-------+
 ^ ^ ^
 | | | runtime
 decouple | ------> | config time ---> | interactive
 | | programming | programming
 V V V
 +----------+ +-------------+ +-------------+
 | box with | | box with | | box with |
 | fixed | | programmable| | interactive |
 | function | | chip | | programmable|
 | ASIC | | | | chip |
 +----------+ +-------------+ +-------------+

 Figure 1: Towards User Programmable Data Plane

 The first trend is led by the OCP networking project, which advocates
 the decoupling of the network operating system and the network device
 hardware. A common Switch Abstract Interface (SAI) allows
 applications to run on heterogeneous substrate devices. However,

Song, et al. Expires December 17, 2017 [Page 7]

Internet-Draft IQ with DNP Requirements June 2017

 such devices are built with fixed function ASICs, which provide
 limited flexibility for application customization.

 The second trend is built upon the first one yet makes a big leap.
 Chip and device vendors are working on opening the programmability of
 the NPU, CPU, and FPGA-based network devices to network operators.
 Most recently, programmable ASIC has been proven feasible. High
 level languages such as P4 [DOI_10.1145_2656877.2656890] have been
 developed to make the network device programming easy and fast. Now
 a network device can be programmed into different functioning boxes
 depending on the program installed.

 However, such programming process is considered static. Even a minor
 modification to the existing application requires to recompile the
 updated source code and reinstall the application. This incurs long
 deployment latency and may also temporarily break the normal data
 plane operation.

 User programmable data plane should be stretched further to support
 runtime interactive programming in order to extend its scope of
 usability, as proposed in POF [DOI_10.1145_2491185.2491190] Dynamic
 application requirements cannot be foreseen at design time, and
 runtime data plane modifications are required to be done in real time
 (for agile control loop) and on demand (to meet data plane resource
 constraints). Meanwhile, the data plane devices are capable of doing
 more complex things such as stateful processing without always
 resorting to a controller for state tracking. This allows network
 devices to offload a significant portion of the data processing task
 and only hand off the preprocessed data to the data-requesting
 applications.

 We can still use static programming with high level languages such as
 P4 to define the main data plane processing and forwarding function.
 But at runtime, whenever an application requires to make some
 modification to the data plane, we deploy the incremental
 modification directly through the runtime control channel. The key
 to make this dynamic and interactive programming work is to maintain
 a unified interface to devices for both configuration and runtime
 control, because both programming paths share the same data plane
 abstraction and use the same back-end adapting and mapping method.

 NPU-based network devices and virtual network devices running on CPU/
 GPU can easily support the static and runtime in-service data plane
 programmability. ASIC and FPGA-based network devices may be
 difficult to support runtime programming and update natively.
 However, for telemetry data collection tasks, the device local
 controller (or even remote servers) can be used in conjunction with
 the forwarding chip to complete the data preprocessing and

Song, et al. Expires December 17, 2017 [Page 8]

Internet-Draft IQ with DNP Requirements June 2017

 preparation. After all, applications do not care how the data probes
 are implemented as long as the same API is maintained.

5. Dynamic Network Probes

 Network probes are passive monitors which are installed at specific
 forwarding data path locations to process and collect specific data.
 DNPs are dynamically deployed and revoked probes by applications at
 runtime. The customizable DNPs can collect simple statistics or
 conduct more complex data preprocessing. Since DNPs may require
 actively modifying the existing data path pipeline beyond simple flow
 entry manipulation, these operations need to be done through
 interactive programming process. When a DNP is revoked, the involved
 shared resources are automatically recycled and returned back to the
 global resource pool.

 DNPs can be deployed at various data path locations including port,
 queue, buffer, table, and table entry. When the data plane
 programmability is extended to cover other components (e.g., CPU
 load, fan speed, GPS coordination, etc.), DNPs can be deployed to
 collect corresponding data as well. A few data plane objectives can
 be composed to form probes. These objectives are counter, meter,
 timer, timestamp, register, and table. Combining these with the
 packet filter through flow table entry configuration, one can easily
 monitor and catch arbitrary states on the data plane.

 In practice, DNP can be considered a virtual concept. Its deployment
 can be done through either configuration or programming. For less
 flexible platforms, probes can be predefined but support on-demand
 runtime activation. Complex DNP functions can also be achieved
 through collaboration between data plane and control plane. Most
 common DNPs can be modeled for easy implementation. The goal is to
 make DNP implementation transparent to upper layer applications.

 The simplest probe is just a counter. The counter can be configured
 to count bytes or packets and the counting can be conditional. The
 more complex probes can be considered as Finite State Machines (FSM)
 which are configured to capture specific events. FSMs essentially
 preprocess the raw stream data and only report the necessary data to
 subscribing applications.

 Applications can use poll mode or push mode to access probes and
 collect data. The normal counter probes are often accessed via poll
 mode. Applications decide what time and how often the counter value
 is read. On the other hand, the complex FSM probes are usually
 accessed in push mode. When the target event is triggered, a report
 is generated and pushed to the application.

Song, et al. Expires December 17, 2017 [Page 9]

Internet-Draft IQ with DNP Requirements June 2017

 Timer is a special global resource. A timer can be configured to
 link to some action. When the time is up, the corresponding action
 is executed. For example, to get notification when a port load
 exceeds some threshold, we can set a timer with a fixed time-out
 interval, and link the timer to an action which reads the counter and
 generates the report packet if the condition is triggered. This way,
 the application avoids the need to keep polling statistics from the
 data plane.

 With the use of global registers and state tables, more complex FSM
 probes can be implemented. For example, to monitor the half-open TCP
 connections, for each SYN request, we store the flow signature to a
 state table. Then for each ACK packet, the state table is checked
 and the matched entry is removed. The state table can be
 periodically polled to acquire the list of half-open connections.
 The application can also choose to only retrieve the counter of half-
 open connections. When the counter exceeds some threshold, further
 measures can be taken to examine if a SYN flood attack is going on.

 Registers can be considered mini state tables which are good to track
 a single flow and a few state transitions. For example, to get the
 duration of a particular flow, when the flow is established, the
 state and the timestamp are recorded in a register; when the flow is
 torn down, the flow duration can be calculated with the old timestamp
 and the new timestamp. In another example, we want to monitor a
 queue by setting a low water mark and a high water mark for the fill
 level. Every time when an enqueue or a dequeue event happens, the
 queue depth is compared with the marks and a report packet is
 generated when a mark is crossed.

 Some probes are essentially packet filters which are used to filter
 out a portion of the traffic and mirrored the traffic to the
 application or some other target port for further processing. There
 are two ways to implement a packet filter: use a flow table that
 matches on the filtering criteria and specify the associated action;
 or directly make a decision in the action. An example of the former
 case is to filter all packets with a particular source IP address.
 An example of the latter case is to filter all TCP FIN packets at the
 edge. Although we can always use a flow table to filter traffic,
 sometimes it is more efficient and convenient to directly work on the
 action. As being programmed by the application, the filtered traffic
 can be further processed before being sent. Two most common
 processes are digest and sample, both aiming to reduce the quantity
 of raw data. The digest process prunes the unnecessary data from the
 original packet and only packs the useful information in the digest
 packet. The sample process picks a subset of filtered traffic to
 send based on some predefined sampling criteria. The two processes
 can be used jointly to maximize the data reduction effect.

Song, et al. Expires December 17, 2017 [Page 10]

Internet-Draft IQ with DNP Requirements June 2017

 An application may need to install multiple DNPs in one device or
 across multiple devices to finish one data analytical task. For
 example, to measure the latency of any link in a network. We install
 a DNP on the source node to generate probe packets with timestamp.
 We install another DNP at the sink node to capture the probe packets
 and report both the source timestamp and the sink timestamp to the
 application for link latency calculation. The probe packets are also
 dropped by the sink DNP. The source DNP can be configured to
 generate probe packets at any rate. It can also generate just one
 probe packet per application request.

 Using the similar idea, we can deploy DNPs to measure the end-to-end
 flow latency or trace exact flow paths. In this case, the DNPs can
 be deployed to enable the corresponding iOAM in-situ data collection
 service. At the path end, the DNP calculates the desired output
 based on the collected data.

 Applications could have many such custom data requests. Each request
 lasts various time and consumes various network resources. Dynamic
 probe configuration or programming is not only efficient but also
 necessary. In summary, DNP is a versatile tool to prepare and
 generate just-in-time telemetry data for data analytical
 applications.

5.1. DNP Types

 DNP can be roughly grouped into three types: node-based, path-based,
 and flow-based. Following is the list of DNPs. Some are atomic and
 the others can be derived from the atomic ones. Note that the list
 is by no means comprehensive. The list does not include the device
 state and status data that is steadily available. Depending on the
 device capability, more complex DNPs can be implemented.
 Applications can subscribe data from multiple DNPs to meet their
 needs. The flow-based data can be directly provided by iOAM data or
 derived from iOAM data.

5.1.1. Node Based

 o Streaming Packets

 * Filter flow by user-defined flow definition.

 * Sample with user-defined sample rate. The sample can be based
 on interval or probability.

 * Generate packet digest with user defined format.

 o Flow Counter

Song, et al. Expires December 17, 2017 [Page 11]

Internet-Draft IQ with DNP Requirements June 2017

 * Associate poll-mode counter for user-defined flow.

 * Associate push-mode counter for user-defined flow. The counter
 value is pushed at user-defined threshold or interval.

 o Flow Meter

 * Associate poll-mode meter for user-defined flow.

 * Associate push-mode meter for user-defined flow. The meter
 value is pushed at user-defined threshold or interval.

 o Queue

 * Queue depth for designated queue is polled or pushed at user-
 defined threshold or interval.

 * Designated buffer depth is polled or pushed at user-defined
 threshold or interval.

 o Time

 * Time gap between user-defined flow packets is polled or pushed
 in streaming data or at user-defined threshold.

 * Arrival/Departure/Sojourn time of user-defined flow packets is
 polled or pushed streaming data or at user defined threshold.

 o Statistics

 * Number of active flows, elephant flows, and mice flows.

5.1.2. Path Based

 o Number of active flows per node on the path.

 o Path latency.

 o Round trip time of the path.

 o Node ID and ingress/egress port of the path.

 o Hop count of the path.

 o Buffer/queue depth of the nodes on the path.

 o Workload of the nodes on the path.

Song, et al. Expires December 17, 2017 [Page 12]

Internet-Draft IQ with DNP Requirements June 2017

5.1.3. Flow Based

 o Flow Latency: Latency at each hop or cumulative E2E latency for
 user-defined flow.

 o Flow Jitter: Jitter at each hop or on the entire path for user-
 defined flow.

 o Flow Bandwidth: Bandwidth at each hop or the bottleneck bandwidth
 on the entire path for user-defined flow.

 o Flow Path Trace: Port and Node ID, and other data of the path for
 user-defined flow.

 o Proof of Transit (PoT) for particular set of nodes.

6. Interactive Query Architecture

 In the past, network data analytics is considered a separate function
 from networks. They consume raw data extracted from networks through
 piecemeal protocols and interfaces. With the advent of user
 programmable data plane, we expect a paradigm shift that makes the
 data plane be an active component of the data analytics solution.
 The programmable in-network data preprocessing is efficient and
 flexible to offload some light-weight data processing through dynamic
 data plane programming or configuration. A universal network data
 analytics platform built on top of this enables a tight and agile
 network control and OAM feedback loop.

 While DNP is a passive data plane data collection mechanism, we need
 to provide a query interface for applications to use the DNPs for
 data analytics. A proposed dynamic networking data analytical system
 architecture is illustrated in Figure 2. An application translates
 its data requirements into some dynamic transactional queries. The
 queries are then compiled into a set of DNPs targeting a subset of
 data plane devices (Note that in a less flexible target with
 predefined models, DNPs are configured). After the DNPs are
 deployed, each DNP conducts in-network data preprocessing and feeds
 the preprocessed data to the collector. The collector finishes the
 data post-processing and presents the results to the data-requesting
 application.

Song, et al. Expires December 17, 2017 [Page 13]

Internet-Draft IQ with DNP Requirements June 2017

 +------------------------------------+
 |network data analytics applications |
 +----------- ------------------------+
 ^
 V
 +------------------------------------+
 |dynamic and interactive query |
 +------------------------------------+
 ^ |
 | V
 +---------------+ +------------------+
 |post process | |DNP compile/config|
 +---------------+ +------------------+
 ^ |
 | V
 +---------------+ +---------------+
 |data collection| |DNP deployment |
 +---------------+ +---------------+
 ^ ^ ^ | | |
 | | | V V V
 +------------------------------------+
 |network data plane |
 |(in-network data preprocessing) |
 +------------------------------------+

 Figure 2: Architecture of IQ with DNP

 A query can be either continuous or one-shot. The continuous query
 may require the application to refine the existing DNPs or deploy new
 DNPs. When an application revokes its queries, the idle DNP resource
 is released. Since one DNP may be subscribed by multiple
 applications, the runtime system needs to keep track of the active
 DNPs.

7. Requirements for IQ with DNP

 This section lists the requirements for interactive query with DNP:

 o Applications should conduct interactive query through a standard
 interface (i.e., API). The system is responsible to compile the
 IQ into DNPs and deploy the DNPs to the corresponding network
 nodes.

 o DNPs can be deployed through some standard south bound interface
 and protocols such as gRPC, NETCONF, etc.

 o The interactive query should not modify the forwarding behavior.
 The API should provide the necessary isolation.

Song, et al. Expires December 17, 2017 [Page 14]

Internet-Draft IQ with DNP Requirements June 2017

 o The deployed DNP should not lower the forwarding performance of
 the data plane devices. If the DNP would affect the forwarding
 performance, the query should be denied.

 o The system should support multiple parallel queries from multiple
 applications.

 o One application can deploy different DNPs to a set of network
 nodes and these DNPs work jointly to finish a function.

 o DNP may be revoked and preempted by the controller due to resource
 conflict and application priority.

8. Considerations for IQ with DNP

8.1. Technical Challenges

 Some technical issues need to be addressed to realize interactive
 query with DNP on general network data plane:

 o Allowing applications to modify the data plane has security and
 safety risks (e.g., DoS attack). The counter measure is to supply
 a standard and safe API to segregate applications from the runtime
 system and provide applications limited accessibility to the data
 plane. Each API can be easily compiled and mapped to standard
 DNPs. An SQL-like query language which adapts to the stream
 processing system might be feasible for the applications.

 o When multiple correlated DNPs are deployed across multiple network
 devices or function blocks, or when multiple applications request
 the same DNPs, the deployment consistency needs to be guaranteed
 for correctness. This requires a robust runtime compiling and
 management system which keeps track of the subscription to DNPs
 and controls the DNP execution time and order.

 o The performance impact of DNPs must be evaluated before deployment
 to avoid unintentionally reducing the forwarding throughput.
 Fortunately, the resource consumption and performance impact of
 standard DNPs can be accurately profiled in advance. A device is
 usually over provisioned and is capable of absorbing extra
 functions up to a limit. Moreover, programmable data plane allows
 users to tailor their forwarding application to the bare bones so
 more resources can be reserved for probes. The runtime system
 needs to evaluate the resulting throughput performance before
 committing a DNP. If it is unacceptable, either some old DNPs
 need to be revoked or the new request must be denied.

Song, et al. Expires December 17, 2017 [Page 15]

Internet-Draft IQ with DNP Requirements June 2017

 o While DNP is relatively easy to be implemented in software-based
 platform (e.g., NPU and CPU), it is harder in ASIC-based
 programmable chips. Architectural and algorithmic innovations are
 needed to support a more flexible pipeline which allows new
 pipeline stage, new tables, and new custom actions to be inserted
 at runtime through hitless in-service updates. An architecture
 with shared memory and flexible processor cores might be viable to
 meet these requirements. Alternatively, DNPs can be implemented
 using an "out-of-band" fashion. That is, the slow path processor
 is engaged in conjunction with the forwarding chip to complete the
 DNP function.

8.2. Standard Consideration

 The query API can be potentially standardized. The actually DNP
 deployment interface may consider to reuse or extend the IETF
 standards and drafts such as gRPC [I-D.talwar-rtgwg-grpc-use-cases]
 and NETCONF [RFC6241]. We may also define standard telemetry YANG
 [RFC6020] models for common DNPs so these DNPs can be used in a
 configurable way.

9. Security Considerations

 Allowing applications to modify the data plane has security and
 safety risks (e.g., DoS attack). The counter measure is to supply
 standard and safe API to segregate applications from the runtime
 system and provide applications limited accessibility to the data
 plane. Each API can be easily compiled and mapped to standard DNPs.
 An SQL-like query language which adapts to the stream processing
 system might be feasible and secure for the applications.

10. IANA Considerations

 This memo includes no request to IANA.

11. Acknowledgments

 The authors would like to thank Frank Brockners, Carlos Pignataro,
 Tom Tofigh, Bert Wijnen, Stewart Bryant, James Guichard, and Tianran
 Zhou for the valuable comments and advice.

12. Informative References

 [DOI_10.1145_2491185.2491190]
 Song, H., "Protocol-oblivious forwarding", Proceedings of
 the second ACM SIGCOMM workshop on Hot topics in software
 defined networking - HotSDN '13 ,
 DOI 10.1145/2491185.2491190, 2013.

https://datatracker.ietf.org/doc/html/rfc6241
https://datatracker.ietf.org/doc/html/rfc6020

Song, et al. Expires December 17, 2017 [Page 16]

Internet-Draft IQ with DNP Requirements June 2017

 [DOI_10.1145_2656877.2656890]
 Bosshart, P., Varghese, G., Walker, D., Daly, D., Gibb,
 G., Izzard, M., McKeown, N., Rexford, J., Schlesinger, C.,
 Talayco, D., and A. Vahdat, "P4", ACM SIGCOMM Computer
 Communication Review Vol. 44, pp. 87-95,
 DOI 10.1145/2656877.2656890, July 2014.

 [I-D.brockners-inband-oam-data]
 Brockners, F., Bhandari, S., Pignataro, C., Gredler, H.,
 Leddy, J., Youell, S., Mizrahi, T., Mozes, D., Lapukhov,
 P., and R. <>, "Data Formats for In-situ OAM", draft-

brockners-inband-oam-data-02 (work in progress), October
 2016.

 [I-D.brockners-inband-oam-requirements]
 Brockners, F., Bhandari, S., Dara, S., Pignataro, C.,
 Gredler, H., Leddy, J., Youell, S., Mozes, D., Mizrahi,
 T., <>, P., and r. remy@barefootnetworks.com,
 "Requirements for In-situ OAM", draft-brockners-inband-

oam-requirements-02 (work in progress), October 2016.

 [I-D.talwar-rtgwg-grpc-use-cases]
 Specification, g., Kolhe, J., Shaikh, A., and J. George,
 "Use cases for gRPC in network management", draft-talwar-

rtgwg-grpc-use-cases-01 (work in progress), January 2017.

 [RFC3176] Phaal, P., Panchen, S., and N. McKee, "InMon Corporation's
 sFlow: A Method for Monitoring Traffic in Switched and
 Routed Networks", RFC 3176, DOI 10.17487/RFC3176,
 September 2001, <http://www.rfc-editor.org/info/rfc3176>.

 [RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for
 the Network Configuration Protocol (NETCONF)", RFC 6020,
 DOI 10.17487/RFC6020, October 2010,
 <http://www.rfc-editor.org/info/rfc6020>.

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <http://www.rfc-editor.org/info/rfc6241>.

 [RFC7011] Claise, B., Ed., Trammell, B., Ed., and P. Aitken,
 "Specification of the IP Flow Information Export (IPFIX)
 Protocol for the Exchange of Flow Information", STD 77,

RFC 7011, DOI 10.17487/RFC7011, September 2013,
 <http://www.rfc-editor.org/info/rfc7011>.

https://datatracker.ietf.org/doc/html/draft-brockners-inband-oam-data-02
https://datatracker.ietf.org/doc/html/draft-brockners-inband-oam-data-02
https://datatracker.ietf.org/doc/html/draft-brockners-inband-oam-requirements-02
https://datatracker.ietf.org/doc/html/draft-brockners-inband-oam-requirements-02
https://datatracker.ietf.org/doc/html/draft-talwar-rtgwg-grpc-use-cases-01
https://datatracker.ietf.org/doc/html/draft-talwar-rtgwg-grpc-use-cases-01
https://datatracker.ietf.org/doc/html/rfc3176
http://www.rfc-editor.org/info/rfc3176
https://datatracker.ietf.org/doc/html/rfc6020
http://www.rfc-editor.org/info/rfc6020
https://datatracker.ietf.org/doc/html/rfc6241
http://www.rfc-editor.org/info/rfc6241
https://datatracker.ietf.org/doc/html/rfc7011
http://www.rfc-editor.org/info/rfc7011

Song, et al. Expires December 17, 2017 [Page 17]

Internet-Draft IQ with DNP Requirements June 2017

Authors' Addresses

 Haoyu Song (editor)
 Huawei Technologies Co., Ltd
 2330 Central Expressway
 Santa Clara, 95050
 USA

 Email: haoyu.song@huawei.com

 Jun Gong
 Huawei Technologies Co., Ltd
 156 Beiqing Road
 Beijing, 100095
 P.R. China

 Email: gongjun@huawei.com

 Hongfei Chen
 Huawei Technologies Co., Ltd
 156 Beiqing Road
 Beijing, 100095
 P.R. China

 Email: chenhongfei@huawei.com

Song, et al. Expires December 17, 2017 [Page 18]

