
OAuth Working Group T. Spencer
Internet-Draft Curity AB
Intended status: Standards Track November 4, 2019
Expires: May 7, 2020

The OAuth 2.0 Authorization Framework: Claims
draft-spencer-oauth-claims-00

Abstract

 This document extends the OAuth 2.0 framework to include a simple
 query language that can be used by clients to request certain claims
 from an authorization server. This mechanism can be used during the
 authorization request and refresh request. It also defines a
 response parameter of the token and introspection endpoints that
 indicates to the caller which claims were authorized by the resource
 owner. Lastly, it stipulates how this request parameter can be used
 during token exchange, and how clients may request that certain
 claims be placed in an access token intended for a particular
 resource server.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 7, 2020.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents

Spencer Expires May 7, 2020 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft Claims November 2019

 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
1.1. Claims vis-a-vis Scope Tokens 4
1.2. Notational Conventions 4
1.3. Terminology . 4

2. Protocol Flow . 5
2.1. Authorization Request 5
2.2. Refresh Request . 6
2.3. Token Introspection 7
2.4. Token Exchange . 8

3. Claims Request Object . 8
3.1. Requesting Particular Claim Names and Claim Values . . . 9
3.2. Critical Members of a Claims Request Object 14
3.3. Special Claims Sinks 16

4. Obtaining Authorization 17
4.1. Authorization Code Grant 17
4.2. Implicit Flow . 19
4.3. Resource Owner Password Credentials Grant 20
4.4. Client Credentials Grant 21

5. Token Refresh . 22
5.1. Token Refresh Request 23
5.2. Access Refresh Response 23

6. Token Exchange . 24
7. Token Introspection . 24
8. Requesting Claims for a Particular Protected Resource 24
9. Authorization Server Metadata 24
10. Security Considerations 26
11. Privacy Considerations 26
12. IANA Considerations . 27
13. References . 27
13.1. Normative References 27
13.2. Informative References 27

Appendix A. Acknowledgements 28
Appendix B. Document History 28

 Author's Address . 28

1. Introduction

 As stated in Section 1.4 of [RFC6749], an access token represents the
 specific scope and duration of access. The requested scope is
 verified by the authorization server according to its policy, and the

https://datatracker.ietf.org/doc/html/rfc6749#section-1.4

Spencer Expires May 7, 2020 [Page 2]

Internet-Draft Claims November 2019

 perhaps-different scope is granted by the resource owner. The
 requested and granted scope may vary due to the authorization
 server's policy and/or the resource owner's limitation of the granted
 scope. The resulting scope is enforced by the resource server. The
 way in which the client indicates the intended scope of access is by
 the "scope" request parameter defined in Section 3.3 of [RFC6749].
 This specification defines a more sophisticated instrument to achieve
 this same purpose.

 At times, this existing mechanism is too limited. In some uses
 cases, for example, a client may need to request particular claims
 from an authorization server. It may also do this to request
 specific claim values. Furthermore, a client may need to indicate to
 the authorization server that certain claims are essential for its
 ability to operate. In such cases, the grant is of little use to the
 client if the resource owner does not comply. Another example of
 when the existing "scope" parameter is insufficient is when the
 client knows that some claim is required by a particular resource
 server. The extent of a client's knowledge is usually limited to
 knowing that a claim is needed in an access token; however, in some
 cases, it may also know that a claim should be restricted to access
 tokens issued to a particular resource server. In these situations,
 the existing mechanism for stipulating the scope of access is
 insufficient.

 To accommodate these use cases and requirements, this specification
 defines a new request parameter that can be used when the client
 obtains an authorization grant, as described in Section 1.3 of
 [RFC6749] and Section 2.1 of [I-D.ietf-oauth-token-exchange]. For
 each request wherein these fix grant types -- authorization code,
 implicit, resource owner password credentials, client credentials,
 and token exchange -- are sought, this specification defines a new
 parameter called "claims". It can be used by a client with any of
 these to request that certain claims and/or particular claim values
 be authorized by the resource owner. The value of this parameter is
 a JavaScript Object Notation (JSON) object [RFC8259]. This can also
 be used to indicate to the authorization server that the client
 considers some or all of the claims to be required. The client can
 also use this object to indicate that certain claim values are
 preferred or essential to its ability to operate on behalf of the
 resource owner.

 During a refresh request (as described in Section 1.5 of [RFC6749]),
 the "claims" parameter defined herein can also be used to alter the
 resulting scope of access. This can be used, for example, to lessen
 the scope by including a certain subset of claims that should be in
 the new access token. After such, a client may increase the scope in
 a subsequent refresh request by including additional claim names in

https://datatracker.ietf.org/doc/html/rfc6749#section-3.3
https://datatracker.ietf.org/doc/html/rfc6749#section-1.3
https://datatracker.ietf.org/doc/html/rfc6749#section-1.3
https://datatracker.ietf.org/doc/html/rfc8259
https://datatracker.ietf.org/doc/html/rfc6749#section-1.5

Spencer Expires May 7, 2020 [Page 3]

Internet-Draft Claims November 2019

 the JSON object value of the "claims" authorization request
 parameter. When it does so, the client cannot, however, expand the
 scope from that which was initially authorized by the resource owner.

 This specification also stipulates how the authorized claim names are
 returned from an authorization request and the result of
 introspecting a token.

 This specification is designed to be compatible with OpenID Connect
 [OpenID.Core] but does not require the authorization server to
 support that protocol.

1.1. Claims vis-a-vis Scope Tokens

 As previously stated, claims relate to scope tokens. How exactly is
 beyond the extent of this specification. Instead, this document
 provides a framework in which these two constructs can be used
 together or independently. That said, however, there are at least
 three common ways that claims will be used:

 1. Not at all (in which case this specification is irrelevant).

 2. In lieu of scope tokens.

 3. Together with scope tokens.

 The first and second option are straightforward. The third, however,
 will require a specification to define the relation between the two
 in order to achieve interoperability. For instance, OpenID Connect
 core [OpenID.Core] specification relates claims to scope tokens by
 grouping certain claims into various scope tokens. This grouping of
 claims into various scope tokens is RECOMMENDED when simultaneously
 using claims and scope tokens to request authorization.

1.2. Notational Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 Unless otherwise noted, all the protocol parameter names and values
 are case sensitive.

1.3. Terminology

 This specification uses the terms "Access Token", "Authorization
 Code", "Authorization Endpoint", "Authorization Grant",
 "Authorization Server", "Client", "Grant Type", "Redirection URI",

https://datatracker.ietf.org/doc/html/rfc2119

Spencer Expires May 7, 2020 [Page 4]

Internet-Draft Claims November 2019

 "Refresh Token", "Resource Owner", "Resource Server", and "Token
 Endpoint" defined by [RFC6749]; "Claim", "Claim Name", and "Claim
 Value" defined by [RFC7519]; and the following defined herein:

 Claims Sink
 The location or destination where the authorization server MAY
 include all requested claims that are authorized by the resource
 owner. An acccess token intended for an unspecified resource
 server or an access token the client intends to send to a
 particular resource server or an ID token (when the OpenID Connect
 profile of this specification is used) are examples of claims
 sinks.

 Claims Request Object
 Has the meaning ascribed to it in Section 3.

 Claims Sink Query Object
 Has the meaning ascribed to it in Section 3.1.

 Claim Value Query Object
 Has the meaning ascribed to it in Section 3.1.

 Critical Claim
 Has the meaning ascribed to it in Section 3.2.

 Essential Claim
 A claim specified by the client as being necessary to ensure a
 smooth authorization experience for a specific task requested by
 the resource owner.

 Scope Token
 A case-sensitive string joined by spaces together with other such
 strings and included in the the "scope" request parameter of an
 authorization request (i.e., a "scope-token" as set forth in the
 ABNF of Section 3.3 of [RFC6749]).

 Voluntary Claim
 A claim specified by the client as being useful but not essential
 for the specific task requested by the resource owner.

2. Protocol Flow

2.1. Authorization Request

 When a client requests authorization from the resource owner
 indirectly via the authorization server, the protocol flow MAY
 include a query for certain claims. Based on the policy of the
 authorization server and the delegated access of the resource owner,

https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc7519
https://datatracker.ietf.org/doc/html/rfc6749#section-3.3

Spencer Expires May 7, 2020 [Page 5]

Internet-Draft Claims November 2019

 certain claims MAY be granted. Given an authorization grant, the
 authorization server informs the client as to which claims were
 actually issued (if different from those requested). This message
 exchange pattern is shown in Figure 1:

 +--------+ +---------------+
Client	--(A)- Authorization request ->	Authorization
	including claims request	Server
	parameter	
	<-(B)-- Authorization grant ---	
	--(C)-- Authorization grant -->	
	<-(D)-Access token including --	
 +--------+ granted claim names +---------------+

 Figure 1: Protocol Flow that Includes Requested and Granted Claims

 The steps in the flow illustrated in Figure 1 are generally the same
 as those described in Section 1.2 of [RFC6749] with a few important
 distinctions:

 o During the authorization request (A), the client includes a claims
 request object as the corresponding value of the "claims" request
 parameter, as described in Section Section 3.1 below.

 o After obtaining (B) and presenting the authorization grant (C),
 the response MAY include an access token and a possibly-empty list
 of claim names that were authorized (D). If the asserted claims
 embodied by the access token differ from those requested (A), then
 the authorization server MUST include a list of authorized claim
 names in the authorization response (D).

2.2. Refresh Request

 As described in Section 1.5 of [RFC6749] and further explained in
section 6 thereof, a client that was issued a refresh token MAY use

 this to narrow the scope of access for an access token. It does this
 by sending the "scope" request parameter in step (G) of Figure 2 of
 [RFC6749]. At times, the client might want to be more explicit about
 which claims should be included in the refreshed access token or
 about where those claims should be asserted.

 To address this need, this document defines an additional input
 parameter that the client may send to the authorization server when
 it presents a refresh token to the token endpoint. This update to

https://datatracker.ietf.org/doc/html/rfc6749#section-1.2
https://datatracker.ietf.org/doc/html/rfc6749#section-1.5
https://datatracker.ietf.org/doc/html/rfc6749

Spencer Expires May 7, 2020 [Page 6]

Internet-Draft Claims November 2019

 the flow wherein a client refreshes an access token to narrow the
 scope of access to a particular set of claims is shown in Figure 2.

 +--------+ +---------------+
Client	--(A)----- Refresh token ----->	Authorization
	including claims request	Server
	parameter	
	<-(B)------ Access token ------	
	including granted claim names	
 +--------+ & optional refresh token +---------------+

 Figure 2: Narrowing the Scope of Access to a Particular Set of Claims

 Downscoping in this flow is achieved when the client requests a
 subset of the claims authorized by the resource owner.

 The client MAY request to change the claims sink where the authorized
 claims should be asserted using this flow. If the client does so, it
 is RECOMMENDED that the authorization server accept this change
 baring any policy to the contrary. The client MAY also send a claim
 value in the claim value query object(s) of the request. When it
 does, the authorization server SHOULD consider this request when
 asserting the claim but it MAY return an error if asserting a
 different claim value is against its policy or exceeds the
 authorization granted by the resource owner. If it is a critical
 claim, the requested claim value MUST be asserted or an error MUST
 result if the authorization server supports critical claims.

 There are many corner cases that can arise when implementing this
 flow. Most stem from policy and configuration changes of the
 authorization server which may happen between the time an access
 token is issued and it is refreshed. Other complications arise when
 claims are used together with scope tokens. Both are beyond the
 scope of this specification and not addressed by this memo.

2.3. Token Introspection

 [RFC7662] stipulates that the introspection endpoint of an
 authorization server must return a JSON [RFC8259] document
 representing the meta information surrounding the token, including
 its scope. This specification extends that object to include the
 claim names that the resource owner authorized the client for. This
 request/response interaction pattern is shown in Figure 3.

https://datatracker.ietf.org/doc/html/rfc8259

Spencer Expires May 7, 2020 [Page 7]

Internet-Draft Claims November 2019

 +--------+ +---------------+
Client	--(A)----- Access token ----->	Authorization
	send to introspection endpoint	Server
	<-(B)------ JSON object -------	
	including granted claim	
 +--------+ names +---------------+

 Figure 3: Introspecting an Access Token and Obtaining Granted Claims

 Using this flow, a client will be informed about the authorized claim
 names in the same way it is informed about the scope of access by way
 of the "scope" response member.

2.4. Token Exchange

 TBD

3. Claims Request Object

 The "claims" request parameter value is a UTF-8 encoded JSON object
 ("Claims Request Object") specifying requested claims. Prior to
 transmission to the authorization server it is also form-URL-encoded
 as appropriate. The claims request object is not intended to be a
 mechanism that the client may use to instruct the authorization
 server to assert specific claims. Instead, it is a simple query
 language that a client can use to request certain claims or to
 specify that it would like the authorization server to obtain
 authorization from the resource owner for a claim, perhaps with a
 particular claim value. The claims request object provides a client
 with a more structured method of requesting the scope of access that
 the resource owner authorizes it for.

 The top-level members of the claims request object SHOULD include at
 least one claims sink. The only specific claims sinks defined by
 this specification are "access_token", "*", and "?". Additionally,
 this specification also sets forth a mechanism by which a client may
 signal to the authorization server which claims it prefers to be
 included in an access token that it intends to be furnished to a
 particular resource server; this is done by using an absolute URI of
 the target service or resource as a claims sink. A claims request
 object MAY also contain the member "crit" to indicate parts of the
 claims request object that the authorization server MUST understand
 if the "crit" member itself is understood. Other members of a claims
 request object MAY be present; any that are not understood by the
 authorization server MUST be ignored.

Spencer Expires May 7, 2020 [Page 8]

Internet-Draft Claims November 2019

 An example of a claims request object that is sent to the
 authorization server as the value of the "claims" request parameter
 provided during an authorization request, refresh request or token
 exchange request is shown in Figure 4.

 {
 "access_token" : {

 }
 }

 Figure 4: Example of a Claims Request Object

 In this non-normative example, the "access_token" member is the
 claims sink. It is the location where the authorization server MAY
 include any of the requested claims that the resource owner
 authorizes. If the authorization server uses the requested claims
 from a particular claims sink to derive or determine alternative
 claims which it asserts, it is RECOMMENDED to consider the client's
 request to include those alternative claims in the same requested
 claims sink.

3.1. Requesting Particular Claim Names and Claim Values

 Within the claims request object, a claims sink is associated with
 another JSON object ("Claims Sink Query Object"). This object
 contains properties that have the name of a claim which the client is
 requesting the authorization server to assert. The possible values
 associated with each of these is "null" or another JSON object
 ("Claim Value Query Object").

 When the value is "null", it indicates that the claim with the
 associated claim name is a voluntary claim, and the client has no
 specific requirements on the claim value. Conversely, when the claim
 value query object is not "null" it is a JSON object with the
 following properties:

 essential
 OPTIONAL. Indicates whether the claim being requested is an
 essential claim. If the value is "true", this indicates that
 the claim is an essential claim. If the value is "false" or
 if this property is not include, then the claim is a
 voluntary claim.

 value
 OPTIONAL. Requests that the claim be returned with a
 particular value.

Spencer Expires May 7, 2020 [Page 9]

Internet-Draft Claims November 2019

 values
 OPTIONAL. Requests that the claim be returned with one of a
 set of values, with the values appearing in order of
 preference.

 The properties "value" and "values" are mutually exclusive. If the
 client sends a claim value query object with both, the authorization
 server MUST return an error as described in Section Section 4 below.

 By requesting essential claims, the client indicates to the
 authorization server (who indicates to the resource owner) that
 releasing these claims will ensure a smooth authorization for the
 specific task requested by that resource owner. If the claims are
 not available because the resource owner did not authorize their
 release or they are not present, the authorization server MUST NOT
 generate an error when claims are not returned.

 Other members of the claim value query object MAY be defined to
 provide additional information about the requested claims. Any
 members of the claims value query object that are not understood by
 the authorization server MUST be ignored.

 A non-normative example of the two possible types of values for a
 claim value query object is shown in Figure 5.

 {
 "access_token" : {
 "https://example.com/claim1" : null,
 "fname" : {
 "value" : "John"
 }
 }
 }

 Figure 5: Example of a Claim Value Query Object

 In this example, there are two claim names which the client is
 requesting "https://example.com/claim1" and "fname". The values
 associated with these are claim value query objects. The former is a
 simple query where the client has no preference on a particular
 value. For this reason, the client specifies the value "null". In
 the later case, the client has more precise needs: it desires the
 authorization server to assert a claim value of "John" for the claim
 name "fname". In such situations the authorization server MAY issue
 a claim with the claim name "fname" but with some other claim value
 than "John". Both are voluntary claims.

Spencer Expires May 7, 2020 [Page 10]

Internet-Draft Claims November 2019

 An example of an essential claim is shown in the non-normative
 listing of Figure 6.

 {
 "access_token" : {
 "consentId" : {
 "essential" : true
 }
 }
 }

 Figure 6: Example of querying for an Essential Claim

 This query indicates that the client would like the authorization
 server to issue an access token with a scope that includes a claim
 with the claim name "consentId". To ensure a smooth authorization
 experience at the resource server where the client will present the
 resulting access token, the client has indicated that the "consentId"
 claim is required, making it an essential claim.

 As described above, a client may also indicate that it wishes the
 authorization server to assert a claim having a claim value that the
 client has some preference for. A non-normative example of such a
 query is show in Figure 7.

 {
 "access_token" : {
 "accountId" : {
 "values" : ["act-123", "act-456"],
 "essential" : true
 },
 "paymentId" : {
 "value" : "pid-123456",
 "essential" : true
 }
 }
 }

 Figure 7: Example of querying for an Essential Claim with Certain
 Values

 In this example, the client is requesting that the authorization
 server assert two essential claims: one named "accountId" and another
 named "paymentId". In the former case, the client requests that the
 claim value be "act-123" or "act-456". In the later case, a claim
 named "paymentId" is requested by the client to have a claim value of

Spencer Expires May 7, 2020 [Page 11]

Internet-Draft Claims November 2019

 "pid-123456". Again, the authorization server MUST NOT return an
 error if the resource owner does not authorize both of these claims
 or if they are non-existent. This is merely a request for a certain
 scope of access.

 Another example inspired by the Revised Directive on Payment Services
 (PSD2) is shown in the non-normative listing of Figure 8.

 {
 "access_token" : {
 "instructedAmount" : {
 "value" : {
 "amount" : 123.50,
 "currency" : "EUR"
 },
 "essential" : true
 },
 "debtorAccount/iban" : {
 "value" : "DE40100100103307118608",
 "essential" : true
 },
 "creditorName" : {
 "value" : "Merchant123",
 "essential" : true
 },
 "creditorAccount/iban" : {
 "value" : "DE02100100109307118603",
 "essential" : true
 },
 "remittanceInformationUnstructured" : {
 "value" : "Ref Number Merchant",
 "essential" : true
 }
 }
 }

 Figure 8: PSD2-related Example

 In this example, the client is requesting (but not forcing) the
 authorization server to obtain authorization from the resource owner
 for five essential claims: "instructedAmount", "debtorAccount/iban",
 "creditorName", "creditorAccount/iban", and
 "remittanceInformationUnstructured". The claim value query object
 associated with each of these claim names has a particular value the
 client strongly prefers. One interesting case is the value of the
 "instructedAmount" essential claim; the query for the value of this
 claim is a JSON object with two properties. The authorization server

Spencer Expires May 7, 2020 [Page 12]

Internet-Draft Claims November 2019

 might use this claims request object to obtain the resource owner's
 consent before granting them, for instance. It might also check
 these values against a data source before asserting them. Based on
 the resource owner's choice or the data source lookup results, the
 authorization server may not issue the claims at all or may do so
 with some other value. For example, the authorization server may
 actually find that the "instructedAmount" value requested exceeds its
 policy's allowed limit and only prompt the resource owner to
 authorize EUR100.

 Another interesting example of how structured scope of access can be
 requested is shown in the listing of Figure 9.

 {
 "access_token" : {
 "credentialID" : {
 "value" : "qes_eidas",
 "essential" : true
 },
 "documentDigests" : {
 "value" : {
 "hash":"sTOgwOm+474gFj0q0x1iSNspKqbcse4IeiqlDg/HW=",
 "label":"Mobile Subscription Contract"
 },
 "essential" : true
 },
 "hashAlgorithmOID" : {
 "value" : "2.16.840.1.101.3.4.2.1"
 }
 }
 }

 Figure 9: ESI-related Example

 This example shows how a client may request claims defined by the
 Electronic Signatures and Infrastructures (ESI) Protocols for remote
 digital signature creation. Like the previous example, the claims
 request object for the "access_token" claims sink includes a claim
 value query object for the "documentDigests" claim that includes a
 JSON object with multiple properties.

 These illustrative examples hopefully impress upon the reader the
 versatility of this query language and the authorization server's
 prerogative to assert any claims with any claim values it chooses in
 its sole discretion. If the client's needs are stronger than
 preferential, it MAY use the "crit" member of the claims request
 object which the authorization server MAY understand.

Spencer Expires May 7, 2020 [Page 13]

Internet-Draft Claims November 2019

3.2. Critical Members of a Claims Request Object

 As described previously, the client can indicate to the authorization
 server that certain claims are preferential or essential to the
 smooth operation of the client. At times, however, the client's
 needs are stronger and require certain claims to be asserted. In
 such situations, the client would rather the authorization server
 return an error than grant access with different claims than those
 requested. This is not always possible for an authorization server,
 however, and a client MUST NOT assume that the authorization server
 can be controlled in this manner. To know if this interaction
 pattern in supported, the client must have a priori knowledge gained
 by some means not defined by this specification or by the presence of
 a "true" value in the authorization server's
 "critical_claims_supported" metadata (see section Section 9 below).
 An authorization server is RECOMMENDED to support this capability
 unless it cannot. When it does, the authorization server MUST issue
 any claim denoted as critical or it MUST return an error. The error
 must be "invalid_claims" as described below in Section 4.

 A client indicates to the authorization server that it must
 understand certain claims and be able to assert them by including a
 list of JSON Pointers [RFC6901] associated with the "crit" member of
 the claims request object. Each such claim that the elements of this
 list point to is a "Critical Claim". The JSON Pointers in this list
 MUST refer to members of the claims request object and MUST NOT point
 to elements within the list itself. If any JSON Pointer refers to an
 element of the JSON Pointer list, the authorization server MUST
 return an error with a code of "invalid_request" if it supports
 critical claims. When the JSON Pointers are valid, if the
 authorization server does not understand any of the claims pointed to
 by any of the elements of this list, the authorization server MUST
 return an error of "invalid_claims". Likewise, if the authorization
 server is unable to assert a critical claim (and it supports critical
 claims), it MUST return the same error. If a critical claim is
 requested with a certain value (as in the following example), the
 authorization server MUST assert the claim with that exact claim
 value. If it's not able to (e.g., because the resource owner does
 not have an attribute with that particular value), the authorization
 server MUST return an error with a code of "invalid_claims" unless it
 does not support critical claims.

 A non-normative example of a claims request object with a critical
 claim is shown in Figure 10.

https://datatracker.ietf.org/doc/html/rfc6901

Spencer Expires May 7, 2020 [Page 14]

Internet-Draft Claims November 2019

 {
 "crit" : [
 "/access_token/verified_claims/verification/trust_framework/value"
],
 "access_token" : {
 "verified_claims" : {
 "verification" : {
 "trust_framework" : {
 "value" : "de_aml"
 }
 }
 }
 }
 }

 Figure 10: Example of a Request Containing a Critical Claim

 In this example, the "value" member of the JSON object associated
 with "trust_framework" must be understood by the authorization server
 because it is pointed by the element of the critical claims list.
 The way in which the authorization server understands this particular
 query is beyond the scope of this specification. The only part of
 this example that is germane is the "crit" member of the claims
 request object which requires the authorization server to understand
 and assert a particular claim value (provided it understands the
 "crit" itself). If it cannot and if it supports critical claims, it
 must return an error.

 It is not uncommon for a claim name to defined as a URI containing
 slashes ("/", %x2F). When such a claim is critical, the escaping
 described in Section 3 of [RFC6901] MUST be used, as in the non-
 normative listing of Figure 11.

 {
 "crit" : ["/access_token/https:~1~1example.com~1claim1"],
 "access_token" : {
 "https://example.com/claim1" : null,
 }
 }

 Figure 11: Example of Escaping the JSON Pointer used to Refer to a
 Critical Claim with a Name Containing Slashes

https://datatracker.ietf.org/doc/html/rfc6901#section-3

Spencer Expires May 7, 2020 [Page 15]

Internet-Draft Claims November 2019

3.3. Special Claims Sinks

 A client may know that it needs a particular claim; however, it may
 not be aware which claims sink the claim should be included in. The
 client may prefer to leave this determination to the authorization
 server. In such cases, the client MAY use the claims sink "?" (%x3F)
 as mentioned in Section Section 3 above. This special claim sink may
 result in the claim being issued in the access token or any other
 claims sink that the authorization server deems appropriate. A non-
 normative example of a claims request object indicating that a
 particular claim be asserted in any claims sink is shown in
 Figure 12.

 {
 "?" : {
 "https://example.com/claim1" : null,
 }
 }

 Figure 12: Example Requesting a Claim to be Asserted in Any Claims
 Sink

 Similarly, there are situations where the client wishes claims to be
 asserted in all claims sinks the authorization server supports.
 Rather than requiring the the client to repeat its requirement for
 each claims sink, it MAY use the special claims sink "*" (%x2A).
 This claims sink indicates to the authorization server that the
 client prefers all claims included in the claims request object to be
 asserted in each claim sink that the authorization server supports.
 The two claims request objects shown in Figure Figure 13 and
 Figure 14 are equivalent (if the authorization server only supports
 the two claims sinks shown in the latter).

 {
 "*" : {
 "https://exmaple.com/claim1" : null,
 }
 }

 Figure 13: Example Requesting a Claim to be Asserted in All Claims
 Sinks

Spencer Expires May 7, 2020 [Page 16]

Internet-Draft Claims November 2019

 {
 "access_token" : {
 "https://exmaple.com/claim1" : null,
 },
 "my-good-claims-sink" : {
 "https://exmaple.com/claim1" : null,
 }
 }

 Figure 14: Equivalent Example of Requesting a Claim to be Asserted in
 All Claims Sinks

 The use of either the claims sink "?" and "*" with any other claims
 sink in the same claims request object is undefined. The
 authorization server SHOULD return an error or apply some other logic
 not defined by this specification. The client SHOULD NOT make such
 queries unless it has some knowledge gained a priori about the
 authorization server's support of such a query.

4. Obtaining Authorization

 As stated in Section 4 of [RFC6749], a request for an access token
 requires the client to obtain authorization from the resource owner.
 As described there, this can be done using various grant types. To
 make a request for certain claims, the "claims" request parameter
 defined herein is used when requesting an authorization code,
 implicit, resource owner password credentials, or client credentials
 grant type. The "claims" request parameter MAY also be used with
 additional grant type that use the extension mechanism defined in

Section 4.5 of [RFC6749] if so profiled by some other specification.

4.1. Authorization Code Grant

4.1.1. Authorization Request

 When a client seeks to obtain authorization using the authorization
 code grant type defined in Section 4.1 of [RFC6749], the client MAY
 include the following additional query component that it sends to the
 authorization endpoint URI:

 claims
 OPTIONAL. A claims request object as described in Section 3.

 The value of this parameter must use the "application/x-www-form-
 urlencoded" format defined in Appendix B of [RFC6749].

https://datatracker.ietf.org/doc/html/rfc6749#section-4
https://datatracker.ietf.org/doc/html/rfc6749#section-4.5
https://datatracker.ietf.org/doc/html/rfc6749#section-4.1
https://datatracker.ietf.org/doc/html/rfc6749#appendix-B

Spencer Expires May 7, 2020 [Page 17]

Internet-Draft Claims November 2019

 A non-normative example of a request to the authorization endpoint
 with a URL-encoded value of the claims parameter is shown in
 Figure 15 (with extra line breaks for display purposes only):

 GET /authorize?client_id=s6BhdRkqt3&response_type=code&
 claims=%7B%0A%20%20%22access_token%22%20%3A%20%7B%20%0A
 %20%20%20%20%22https%3A%2F%2Fexample.com%2Fclaim1%22%20%3A
 %20null%2C%0A%20%20%20%20%22fname%22%20%3A%20%7B%0A%20%20
 %20%20%20%20%22value%22%20%3A%20%22John%22%0A%20%20%20%20
 %7D%0A%20%20%7D%0A%7D
 Host: server.example.com

 Figure 15: Example of Using the Claims Request Parameter on the
 Authorize Endpoint

4.1.2. Error Response

 If the authorization server understands the "claims" request
 parameter, it MUST redirect the user-agent of the resource owner to
 the client's redirection endpoint as described in Section 4.1.2.1 of
 [RFC6749] with one of the following "error" values:

 claims_not_supported
 The authorization server understands but does not support the
 "claims" request parameter, and the client SHOULD NOT use it
 when requesting authorization.

 invalid_request
 The authorization server MAY use this less-descriptive error
 code to indicate that the claims request parameter value is
 not accepted, e.g., because it is syntactically incorrect.
 It is, however, RECOMMENDED that the authorization server
 return "claims_not_supported" or "invalid_claims" as
 appropriate.

 invalid_claims
 When a client makes a request for a critical claim, and the
 authorization server cannot assert such a claim because it is
 invalid, unknown, or malformed, this error results. If the
 request includes only claim names in the claims request
 object which are disallowed according to the authorization
 server's policy, this error (or the less-descriptive
 alternative, "invalid_request") MUST result.

https://datatracker.ietf.org/doc/html/rfc6749#section-4.1.2.1
https://datatracker.ietf.org/doc/html/rfc6749#section-4.1.2.1

Spencer Expires May 7, 2020 [Page 18]

Internet-Draft Claims November 2019

4.1.3. Access Token Response

 In a non-error case, the authorization server MAY include details
 about the claims that the client is authorized for. This is done by
 augmenting the response defined in Section 4.1.4 of [RFC6749]. In
 particular, the authorization server MAY include the following
 response member in the JSON object returned from the token endpoint:

 claims
 OPTIONAL, if identical to the claims requested by the client;
 otherwise, REQUIRED. The space-separated claim names granted
 by the resource owner which denote the scope of the access
 token that is returned in the same response.

4.2. Implicit Flow

4.2.1. Authorization Request

 When a client seeks to obtain authorization using the implicit grant
 type defined in Section 4.2 of [RFC6749], the client MAY include the
 following additional query component that it sends to the
 authorization endpoint URI:

 claims
 OPTIONAL. A claims request object as described in Section 3.

 The value of this parameter must use the "application/x-www-form-
 urlencoded" format defined in Appendix B of [RFC6749].

4.2.2. Access Token Response

 In a non-error case, the authorization server MAY include details
 about the claims that the client is authorized for. This is done by
 augmenting the response defined in Section 4.2.2 of [RFC6749]. In
 particular, the authorization server MAY include the following
 response parameter included on the fragment component of the
 redirection URI:

 claims
 OPTIONAL, if identical to the claims requested by the client;
 otherwise, REQUIRED. The space-separated claim names granted
 by the resource owner which denote the scope of the access
 token that is returned in the same response.

https://datatracker.ietf.org/doc/html/rfc6749#section-4.1.4
https://datatracker.ietf.org/doc/html/rfc6749#section-4.2
https://datatracker.ietf.org/doc/html/rfc6749#appendix-B
https://datatracker.ietf.org/doc/html/rfc6749#section-4.2.2

Spencer Expires May 7, 2020 [Page 19]

Internet-Draft Claims November 2019

4.2.3. Error Response

 If the authorization server understands the "claims" request
 parameter, it MUST redirect the user-agent of the resource owner to
 the client's redirection URI as described in Section 4.2.2.1 of
 [RFC6749] with one of the following "error" values:

 claims_not_supported
 The authorization server understands but does not support the
 "claims" request parameter, and the client SHOULD NOT use it
 when requesting authorization.

 invalid_request
 The authorization server MAY use this less-descriptive error
 code to indicate that the claims request parameter value is
 not accepted, e.g., because it is syntactically. incorrect.
 It is, however, RECOMMENDED that the authorization server
 return "claims_not_supported" or "invalid_claims" as
 appropriate.

 invalid_claims
 When a client makes a request for a critical claim, and the
 authorization server cannot assert such a claim because it is
 invalid, unknown, or malformed, this error results. If the
 request includes only claim names in the claims request
 object which are disallowed according to the authorization
 server's policy, this error (or the less-descriptive
 alternative, "invalid_request") MUST result.

4.3. Resource Owner Password Credentials Grant

4.3.1. Access Token Request

 When a client seeks to obtain authorization using the resource owner
 password credentials grant type defined in Section 4.3 of [RFC6749],
 the client MAY include the following additional parameter using the
 "application/x-www-form-urlencoded" format per Appendix B of
 [RFC6749] with a character encoding of UTF-8 in the HTTP request
 entity-body:

 claims
 OPTIONAL. A claims request object as described in Section 3.

4.3.2. Access Token Response

 In a non-error case, the authorization server MAY include details
 about the claims that the client is authorized for. This is done by
 augmenting the response defined in Section 4.3.3 of [RFC6749]. In

https://datatracker.ietf.org/doc/html/rfc6749#section-4.2.2.1
https://datatracker.ietf.org/doc/html/rfc6749#section-4.2.2.1
https://datatracker.ietf.org/doc/html/rfc6749#section-4.3
https://datatracker.ietf.org/doc/html/rfc6749#appendix-B
https://datatracker.ietf.org/doc/html/rfc6749#appendix-B
https://datatracker.ietf.org/doc/html/rfc6749#section-4.3.3

Spencer Expires May 7, 2020 [Page 20]

Internet-Draft Claims November 2019

 particular, the authorization server MAY include the following
 response member in the JSON object returned from the token endpoint:

 claims
 OPTIONAL, if identical to the claims requested by the client;
 otherwise, REQUIRED. The space-separated claim names the
 client is authorized for which denote the scope of the access
 token that is returned in the same response.

 If the request is invalid due to the value of the "claims" parameter,
 the authorization server returns an error with one of the following
 error codes:

 claims_not_supported
 The authorization server understands but does not support the
 "claims" request parameter, and the client SHOULD NOT use it
 when requesting an access token.

 invalid_request
 The authorization server MAY use this less-descriptive error
 code to indicate that the claims request parameter value is
 not accepted, accepted, e.g., because it is syntactically
 incorrect. It is, however, RECOMMENDED that the
 authorization server return "claims_not_supported" or
 "invalid_claims" as appropriate.

 invalid_claims
 When a client makes a request for a critical claim, and the
 authorization server cannot assert such a claim because it is
 invalid, unknown, or malformed, this error results. If the
 request includes only claim names in the claims request
 object which are disallowed according to the authorization
 server's policy, this error (or the less-descriptive
 alternative, "invalid_request") MUST result.

4.4. Client Credentials Grant

4.4.1. Access Token Request

 When a client seeks to obtain authorization using the client
 credentials grant type defined in Section 4.4 of [RFC6749], the
 client MAY include the following additional parameter using the
 "application/x-www-form-urlencoded" format per Appendix B of
 [RFC6749] with a character encoding of UTF-8 in the HTTP request
 entity-body:

 claims
 OPTIONAL. A claims request object as described in Section 3.

https://datatracker.ietf.org/doc/html/rfc6749#section-4.4
https://datatracker.ietf.org/doc/html/rfc6749#appendix-B
https://datatracker.ietf.org/doc/html/rfc6749#appendix-B

Spencer Expires May 7, 2020 [Page 21]

Internet-Draft Claims November 2019

4.4.2. Access Token Response

 In a non-error case, the authorization server MAY include details
 about the claims that the client is authorized for. This is done by
 augmenting the response defined in Section 4.4.3 of [RFC6749]. In
 particular, the authorization server MAY include the following
 response member in the JSON object returned from the token endpoint:

 claims
 OPTIONAL, if identical to the claims requested by the client;
 otherwise, REQUIRED. The space-separated claim names the
 client is authorized for which denote the scope of the access
 token that is returned in the same response.

 If the request is invalid due to the value of the "claims" parameter,
 the authorization server returns an error with one of the following
 error codes:

 claims_not_supported
 The authorization server understands but does not support the
 "claims" request parameter, and the client SHOULD NOT use it
 when requesting an access token.

 invalid_request
 The authorization server MAY use this less-descriptive error
 code to indicate that the claims request parameter value is
 not accepted, e.g., because it is syntactically incorrect.
 It is, however, RECOMMENDED that the authorization server
 return "claims_not_supported" or "invalid_claims" as
 appropriate.

 invalid_claims
 When a client makes a request for a critical claim, and the
 authorization server cannot assert such a claim because it is
 invalid, unknown, or malformed, this error results. If the
 request includes only claim names in the claims request
 object which are disallowed according to the authorization
 server's policy, this error (or the less-descriptive
 alternative, "invalid_request") MUST result.

5. Token Refresh

 As defined in Section 6 of [RFC6749], a client may be provided with a
 refresh token. When it is, it can present this to the token endpoint
 of the authorization server in a refresh request. This specification
 extends the request and response of this flow as described in the
 following subsections.

https://datatracker.ietf.org/doc/html/rfc6749#section-4.4.3
https://datatracker.ietf.org/doc/html/rfc6749#section-6

Spencer Expires May 7, 2020 [Page 22]

Internet-Draft Claims November 2019

5.1. Token Refresh Request

 When performing a token refresh request, the client MAY send the
 following parameter using the "application/x-www-form-urlencoded"
 format per Appendix B of [RFC6749] with a character encoding of UTF-8
 in the HTTP request entity-body:

 claims
 OPTIONAL. A claims request object as described in Section 3.

 If the client includes a claims request object in the request, it
 SHOULD ensure that the claim names in the claims value query
 object(s) are ones that were authorized by the resource owner. It
 can do this by remembering what was originally requested and/or from
 the authorization server's response to its authorization request
 which will include the list of claim names if they differ from those
 originally requested.

5.2. Access Refresh Response

 In a non-error case, the authorization server MAY include details
 about the claims that the client is authorized for. This is done by
 augmenting the response defined in Section 5.1 of[RFC6749]. In
 particular, the authorization server MAY include the following
 response member in the JSON object returned from the token endpoint:

 claims
 OPTIONAL, if identical to the claims requested by the client;
 otherwise, REQUIRED. The space-separated claim names the
 client is authorized for which denote the scope of the access
 token that is returned in the same response.

 If the request is invalid due to the value of the value of the
 "claims" parameter, the authorization server returns an error with
 one of the following error codes:

 claims_not_supported
 The authorization server understands but does not support the
 "claims" request parameter, and the client SHOULD NOT use it
 when requesting an access token.

 invalid_request
 The authorization server MAY use this less-descriptive error
 code to indicate that the claims request parameter value is
 not accepted, e.g., because it is syntactically incorrect.
 It is, however, RECOMMENDED that the authorization server
 return "claims_not_supported" or "invalid_claims" as
 appropriate.

https://datatracker.ietf.org/doc/html/rfc6749#appendix-B

Spencer Expires May 7, 2020 [Page 23]

Internet-Draft Claims November 2019

 invalid_claims
 When a client makes a request for a critical claim, and the
 authorization server cannot assert such a claim because it is
 invalid, unknown, or malformed, this error results. If the
 request includes only claim names in the claims request
 object which are disallowed according to the authorization
 server's policy, this error (or the less-descriptive
 alternative, "invalid_request") MUST result.

6. Token Exchange

 TBD

7. Token Introspection

 This specification defines an additional top-level member in the JSON
 [RFC8259] object of the authorization server's introspection endpoint
 response as stipulated in Section 2.2 of [RFC7662].

 claims
 OPTIONAL. The space-separated claim names granted by the
 resource owner which denote the scope of the access token.

8. Requesting Claims for a Particular Protected Resource

 TBD

9. Authorization Server Metadata

 An authorization server that supports the "claims" request parameter
 SHOULD declare this fact by including the following property in the
 authorization server metadata response [RFC8414]:

 claims_parameter_supported
 OPTIONAL. A boolean value indicating that the authorization
 server supports the "claims" request parameter or not. A value of
 "true" indicates that it is supported. A value of "false", a
 "null" value, or the absence of the property means that the
 "claims" request parameter is not supported by the authorization
 server.

 claims_supported
 RECOMMENDED. JSON array containing a list of the claim names of
 the Claims that the authorization server MAY be able to supply
 values for. Note that for privacy or other reasons, this might
 not be an exhaustive list.

 critical_claims_supported

https://datatracker.ietf.org/doc/html/rfc8259
https://datatracker.ietf.org/doc/html/rfc7662#section-2.2
https://datatracker.ietf.org/doc/html/rfc8414

Spencer Expires May 7, 2020 [Page 24]

Internet-Draft Claims November 2019

 OPTIONAL. A boolean value indicating that the authorization
 server supports the possibility for the client to indicate that
 certain parts of a claims request object MUST be understood by the
 authorization server. A value of "false", a "null" value, or the
 absence of this member means that the authorization server MAY not
 support this interaction pattern, and the client MUST NOT assume
 that it does.

 If the authorization server returns a value of "false" for
 "claims_parameter_supported" and true for
 "critical_claims_supported", the interpretation by the client is
 undefined. It is RECOMMENDED that the client assume that the
 authorization server is misconfigured and that it not attempt to
 request claims in a manner defined by this specification.

 A non-normative example of an authorization server metadata response
 which indicates that the "claims" request parameter and critical
 claims are supported by the server is shown in Figure 16.

Spencer Expires May 7, 2020 [Page 25]

Internet-Draft Claims November 2019

 HTTP/1.1 200 OK
 Content-Type: application/json

 {
 "issuer" :
 "https://server.example.com",
 "authorization_endpoint" :
 "https://server.example.com/authorize",
 "token_endpoint" :
 "https://server.example.com/token",
 "token_endpoint_auth_methods_supported" :
 ["client_secret_basic", "private_key_jwt"],
 "token_endpoint_auth_signing_alg_values_supported" :
 ["RS256", "ES256"],
 "userinfo_endpoint" :
 "https://server.example.com/userinfo",
 "jwks_uri" :
 "https://server.example.com/jwks.json",
 "registration_endpoint" :
 "https://server.example.com/register",
 "scopes_supported" :
 ["openid", "profile", "email", "address", "phone",
 "offline_access"],
 "response_types_supported" :
 ["code", "code token"],
 "service_documentation" :
 "http://server.example.com/service_documentation.html",
 "ui_locales_supported" :
 ["en-US", "en-GB", "en-CA", "fr-FR", "fr-CA"],
 "claims_parameter_supported" : true,
 "critical_claims_supported" : true,
 "claims_supported" : ["sub", "http://example.com/monkey"]
 }

 Figure 16: Example of Metadata of an Authorization Server that
 Supports the Claims Request Parameter and Critical Claims

 Note the last three members in particular.

10. Security Considerations

 TBD

11. Privacy Considerations

 TBD

Spencer Expires May 7, 2020 [Page 26]

Internet-Draft Claims November 2019

12. IANA Considerations

 TBD

13. References

13.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC6749] Hardt, D., Ed., "The OAuth 2.0 Authorization Framework",
RFC 6749, DOI 10.17487/RFC6749, October 2012,

 <https://www.rfc-editor.org/info/rfc6749>.

 [RFC6901] Bryan, P., Ed., Zyp, K., and M. Nottingham, Ed.,
 "JavaScript Object Notation (JSON) Pointer", RFC 6901,
 DOI 10.17487/RFC6901, April 2013,
 <https://www.rfc-editor.org/info/rfc6901>.

 [RFC7519] Jones, M., Bradley, J., and N. Sakimura, "JSON Web Token
 (JWT)", RFC 7519, DOI 10.17487/RFC7519, May 2015,
 <https://www.rfc-editor.org/info/rfc7519>.

 [RFC7662] Richer, J., Ed., "OAuth 2.0 Token Introspection",
RFC 7662, DOI 10.17487/RFC7662, October 2015,

 <https://www.rfc-editor.org/info/rfc7662>.

 [RFC8259] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", STD 90, RFC 8259,
 DOI 10.17487/RFC8259, December 2017,
 <https://www.rfc-editor.org/info/rfc8259>.

 [RFC8414] Jones, M., Sakimura, N., and J. Bradley, "OAuth 2.0
 Authorization Server Metadata", RFC 8414,
 DOI 10.17487/RFC8414, June 2018,
 <https://www.rfc-editor.org/info/rfc8414>.

13.2. Informative References

 [I-D.ietf-oauth-token-exchange]
 Jones, M., Nadalin, A., Campbell, B., Bradley, J., and C.
 Mortimore, "OAuth 2.0 Token Exchange", draft-ietf-oauth-

token-exchange-19 (work in progress), July 2019.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc6749
https://www.rfc-editor.org/info/rfc6749
https://datatracker.ietf.org/doc/html/rfc6901
https://www.rfc-editor.org/info/rfc6901
https://datatracker.ietf.org/doc/html/rfc7519
https://www.rfc-editor.org/info/rfc7519
https://datatracker.ietf.org/doc/html/rfc7662
https://www.rfc-editor.org/info/rfc7662
https://datatracker.ietf.org/doc/html/rfc8259
https://www.rfc-editor.org/info/rfc8259
https://datatracker.ietf.org/doc/html/rfc8414
https://www.rfc-editor.org/info/rfc8414
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-token-exchange-19
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-token-exchange-19

Spencer Expires May 7, 2020 [Page 27]

Internet-Draft Claims November 2019

 [OpenID.Core]
 Sakimura, N., Bradley, J., Jones, M., de Medeiros, B., and
 C. Mortimore, "OpenID Connect Core 1.0", OpenID
 Foundation Standards, February 2014,
 <http://openid.net/specs/openid-connect-core-1_0.html>.

Appendix A. Acknowledgements

 The following individuals contributed ideas, feedback, and wording to
 this specification:

 Mark Dobrinic, Jacob Ideskog

Appendix B. Document History

 [[to be removed by the RFC editor before publication as an RFC]]

 -00

 o Initial draft.

Author's Address

 Travis Spencer
 Curity AB

 Email: travis@curity.io

http://openid.net/specs/openid-connect-core-1_0.html

Spencer Expires May 7, 2020 [Page 28]

