
Network Working Group M. Sporny
Internet-Draft Digital Bazaar
Intended status: Standards Track L. Rosenthol
Expires: November 3, 2021 Adobe Systems
 May 2, 2021

Cryptographic Hyperlinks
draft-sporny-hashlink-07

Abstract

 When using a hyperlink to fetch a resource from the Internet, it is
 often useful to know if the resource has changed since the data was
 published. Cryptographic hashes, such as SHA-256, are often used to
 determine if published data has changed in unexpected ways. Due to
 the nature of most hyperlinks, the cryptographic hash is often
 published separately from the link itself. This specification
 describes a data model and serialization formats for expressing
 cryptographically protected hyperlinks. The mechanisms described in
 the document enables a system to publish a hyperlink in a way that
 empowers a consuming application to determine if the resource
 associated with the hyperlink has changed in unexpected ways.

Feedback

 This specification is a work product of the W3C Digital Verification
 Community Group [1] and the W3C Credentials Community Group [2].
 Feedback related to this specification should be logged in the issue
 tracker [3] or be sent to public-credentials@w3.org [4].

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on November 3, 2021.

Sporny & Rosenthol Expires November 3, 2021 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft Cryptographic Hyperlinks May 2021

Copyright Notice

 Copyright (c) 2021 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document.

Table of Contents

1. Introduction . 2
1.1. Multiple Encodings 4

2. Hashlink Data Model . 4
2.1. The Resource Hash . 4
2.2. The Optional Metadata 4
2.2.1. URLs . 4
2.2.2. Content Type . 4
2.2.3. Experimental Metadata 5

3. Hashlink Serialization 5
3.1. Hashlink URL . 5
3.1.1. Serializing the Resource Hash 5
3.1.2. Serializing the Metadata 6
3.1.3. Deserializing the Metadata 6
3.1.4. A Simple Hashlink Example 7

3.2. Hashlink as a Parameterized URL 7
3.2.1. Hashlink as a Parameterized URL Example 8

4. Hashlink Encoders and Decoders 8
5. Security Considerations 8
5.1. Insecure Hashing Functions 8

6. References . 8
6.1. Normative References 8
6.2. URIs . 9

Appendix A. Security Considerations 9
Appendix B. Test Values . 9
B.1. Simple Hashlink URL 9
B.2. Multi-sourced Hashlink URL 10

Appendix C. Acknowledgements 10
 Authors' Addresses . 10

1. Introduction

 Uniform Resource Locators (URLs) enable software developers to build
 distributed systems that are able to publish information using
 hyperlinks. When a client fetches a resource at the given hyperlink,

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Sporny & Rosenthol Expires November 3, 2021 [Page 2]

Internet-Draft Cryptographic Hyperlinks May 2021

 the result is typically a stream of data that the client may further
 process. Due to the design of most hyperlinks, the data associated
 with a hyperlink may change over time. This design feature is often
 not an issue for systems that do not depend on static data.

 Some software systems expect data published at a specific URL to not
 change. For example, firmware files, operating system releases,
 security upgrades, and other high-risk files are often distributed
 with associated manifest files. These manifest files typically
 utilize a cryptographic hash per URL to ensure that an attack to
 modify the files themselves will be detected:

 b1a653e5...de5d3e8f3 https://example.com/operating-system.iso
 7b23bf52...557a0902c https://example.com/firmware-v4.35.bin

 An unfortunate downside of the manifest file approach is that a
 separate system from the URL itself must be utilized to add this
 level of content integrity protection. In addition, the
 cryptographic hash format for the files are often application
 specific and are not easily upgradeable once newer and more advanced
 cryptographic hash formats are standardized.

 New types of distributed file storage networks have been deployed
 over the past several decades. Examples include HTTP file mirrors
 for the Debian Operating System, peer-to-peer file networks such as
 BitTorrent, and content-addressed networks, such as the Inter
 Planetary File System (IPFS). While each one of these systems have
 their own URL format, it is currently not possible to express a
 content-addressed URL that associates the content address to a file
 published on each one of these networks.

 This specification provides a simple data model and serialization
 formats for cryptographic hyperlinks that:

 o Enable existing URLs to add content integrity protection.

 o Provide a URL format for multi-sourced content integrity protected
 data.

 o Enable URL metadata to be discarded without having to re-encode
 the URL.

 o Enable algorithm agility for all data model components

Sporny & Rosenthol Expires November 3, 2021 [Page 3]

Internet-Draft Cryptographic Hyperlinks May 2021

1.1. Multiple Encodings

 A hashlink can be encoded in two different ways, the RECOMMENDED way
 to express a hashlink is:

 hl:<resource-hash>:<optional-metadata>

 To enable existing applications utilizing historical URL schemes to
 provide content integrity protection, hashlinks may also be encoded
 using URL parameters:

 <url>?hl=<resource-hash>

 Implementers should take note that the URL parameter-based encoding
 mechanism is application specific and SHOULD NOT be used unless the
 URL resolver for the application cannot be upgraded to support the
 RECOMMENDED encoding.

2. Hashlink Data Model

 The hashlink data model is a simple expression of a cryptographic
 hash of the resource, one or more URLs, and a content type.

2.1. The Resource Hash

 The resource hash is the the mechanism that enables content integrity
 protection for the associated data stream. The resource hash value
 MUST be provided in a hashlink.

2.2. The Optional Metadata

 All metadata associated with the hashlink is optional and is provided
 to enable a client to more easily discover data that matches the
 provided resource hash.

2.2.1. URLs

 A hashlink may be associated with a set of one or more URLs that,
 when dereferenced, result in data that matches the resource hash.

2.2.2. Content Type

 A hashlink may be associated with exactly one Content Type that may
 be used in protocols that support content types, such as HTTP's
 Accept header.

Sporny & Rosenthol Expires November 3, 2021 [Page 4]

Internet-Draft Cryptographic Hyperlinks May 2021

2.2.3. Experimental Metadata

 Application developers often need to express other important metadata
 related to their specific application. These developers MUST use
 this field to do so. Data expressed in this field MAY conflict with
 keys chosen by other developers in other applications. Experimental
 fields that become widely used are expected to be standardized and
 become core metadata fields.

3. Hashlink Serialization

 A hashlink may be serialized in one or two ways. The first is the
 RECOMMENDED method, called a "Hashlink URL", which is a compact URL
 representation of the Hashlink data model. The second is called a
 "Hashlink as a Parameterized URL", which MUST NOT be used unless
 there is no mechanism available to upgrade the application's URL
 resolver.

3.1. Hashlink URL

 The beginning of a Hashlink URL always starts with the following
 three characters:

 hl:

 The remainder of the URL is a concatenation of the resource hash and,
 optionally, the Hashlink URL metadata.

3.1.1. Serializing the Resource Hash

 The value of the resource hash can be generated by utilizing the
 following algorithm:

 1. Generate the raw hash value by processing the resource data using
 the cryptographic hashing algorithm.

 2. Generate the multihash value by encoding the raw hash using the
 Multihash Data Format [multihash].

 3. Generate the multibase hash by encoding the multihash value using
 the Multibase Data Format [multibase].

 4. Output the multibase hash as the resource hash.

 The example below demonstrates the output of the algorithm above for
 a hashlink that expresses the data "Hello World!" processed using the
 SHA-2, 256 bit, 32 byte cryptographic algorithm which is then
 expressed using the base-58 Bitcoin base-encoding format:

Sporny & Rosenthol Expires November 3, 2021 [Page 5]

Internet-Draft Cryptographic Hyperlinks May 2021

 zQmWvQxTqbG2Z9HPJgG57jjwR154cKhbtJenbyYTWkjgF3e

3.1.2. Serializing the Metadata

 To generate the value for the metadata, the metadata values are
 encoded in the CBOR Data Format [RFC7049] using the following
 algorithm:

 1. Create the raw output map (CBOR major type 5).

 2. If at least one URL exists, add a CBOR key of 15 (0x0f) to the
 raw output map with a value that is an array (CBOR major type 4).

 1. Encode each URL as a CBOR URI (CBOR type 32) and place it
 into the array.

 3. If the content type exists, add a CBOR key of 14 (0x0e) to the
 raw output map with a value that is a UTF-8 byte string (0x6) and
 the value of the content type.

 4. If experimental metadata exists, add a CBOR key of 13 (0x0d) and
 encode it as a map by creating a raw output map (CBOR major type
 5). For each item in the map, serialize to CBOR where the CBOR
 major types, the key name, and the value is derived from the
 input data. For example a key of "foo" and a value of 200 would
 be encoded as a CBOR major type of 2 for the key and a CBOR major
 type of 0 for the value.

 5. Generate the multibase value by encoding the raw output map using
 the Multibase Data Format.

 The example below demonstrates the output of the algorithm above for
 metadata containing a single URL ("http://example.org/hw.txt") with a
 content type of "text/plain" expressed using the base-58 Bitcoin
 base-encoding format:

 zuh8iaLobXC8g9tfma1CSTtYBakXeSTkHrYA5hmD4F7dCLw8XYwZ1GWyJ3zwF

3.1.3. Deserializing the Metadata

 To deserialize the metadata, the "Serializing the Metadata" algorithm
 is reversed. Implementers MUST use the following table to
 deserialize keys to JSON:

https://datatracker.ietf.org/doc/html/rfc7049

Sporny & Rosenthol Expires November 3, 2021 [Page 6]

Internet-Draft Cryptographic Hyperlinks May 2021

 +-----------+----------------+------------------+
 | Key (hex) | JSON key | JSON value |
 +-----------+----------------+------------------+
 | 0x0f | "url" | Array of strings |
 | 0x0e | "content-type" | string |
 | 0x0d | "experimental" | JSON Object |
 +-----------+----------------+------------------+

 Table 1: Multihash Algorithms Registry

 The example below demonstrates the output of the algorithm above for
 metadata containing a single URL ("http://example.org/hw.txt") with a
 content type of "text/plain", and an experimental metadata key of
 "foo" and value of 123:

 {
 "url": ["http://example.org/hw.txt"],
 "content-type": "text/plain",
 "experimental": {
 "foo": 123
 }
 }

3.1.4. A Simple Hashlink Example

 The example below demonstrates a simple hashlink that provides
 content integrity protection for the "http://example.org/hw.txt"
 file, which has a content type of "text/plain" (line breaks added for
 readability purposes):

 hl:
 zQmWvQxTqbG2Z9HPJgG57jjwR154cKhbtJenbyYTWkjgF3e:
 zuh8iaLobXC8g9tfma1CSTtYBakXeSTkHrYA5hmD4F7dCLw8XYwZ1GWyJ3zwF

3.2. Hashlink as a Parameterized URL

 An algorithm resulting in the same output as the one below MUST be
 used when encoding the hashlink data model as a set of parameters in
 a URL:

 1. Create an empty string and assign it to the output value.

 2. Append the first URL in the URL metadata array to the output URL.

 3. Append a URL parameter with a key of "hl" and the value of the
 resource hash as generated in Section 3.1.1.

Sporny & Rosenthol Expires November 3, 2021 [Page 7]

Internet-Draft Cryptographic Hyperlinks May 2021

3.2.1. Hashlink as a Parameterized URL Example

 The example below demonstrates a simple hashlink that provides
 content integrity protection for the "http://example.org/hw.txt"
 file, which has a content type of "text/plain":

 http://example.org/hw.txt?hl=
 zQmWvQxTqbG2Z9HPJgG57jjwR154cKhbtJenbyYTWkjgF3e

4. Hashlink Encoders and Decoders

 Hashlink encoders and decoders MUST support the following core
 algorithms:

 1. The SHA-2, 256 bit, 32 byte output cryptographic hashing
 algorithm and the associated Multihash Data Format.

 2. The Bitcoin base58-encoding and decoding algorithm and the
 associated Multibase Data Format.

 Implementations MAY support algorithms and data formats in addition
 to the ones listed above.

5. Security Considerations

 This section documents the security attacks that are out of scope for
 this specification as well as known attacks and mitigations against
 those attacks.

5.1. Insecure Hashing Functions

 There are a number of insecure cryptographic hashing functions in
 deployment today. Among these are MD5 and SHA-1. Implementers MUST
 throw an error by default when encoding or decoding these values.
 Implementers MAY provide a non-default library option to override the
 error.

6. References

6.1. Normative References

 [multibase]
 Benet, J. and M. Sporny, "The Multihash Data Format",
 December 2018, <https://tools.ietf.org/id/draft-

multiformats-multibase-00.html>.

https://tools.ietf.org/id/draft-multiformats-multibase-00.html
https://tools.ietf.org/id/draft-multiformats-multibase-00.html

Sporny & Rosenthol Expires November 3, 2021 [Page 8]

Internet-Draft Cryptographic Hyperlinks May 2021

 [multihash]
 Benet, J. and M. Sporny, "The Multihash Data Format",
 August 2018, <https://tools.ietf.org/id/draft-

multiformats-multihash-00.html>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC7049] Bormann, C. and P. Hoffman, "Concise Binary Object
 Representation (CBOR)", RFC 7049, DOI 10.17487/RFC7049,
 October 2013, <https://www.rfc-editor.org/info/rfc7049>.

6.2. URIs

 [1] https://w3c-dvcg.github.io/

 [2] https://w3c-ccg.github.io/

 [3] https://github.com/w3c-dvcg/hashlink/issues

 [4] mailto:public-credentials@w3.org

Appendix A. Security Considerations

 There are a number of security considerations to take into account
 when implementing or utilizing this specification: TBD

Appendix B. Test Values

 The following test values may be used to verify the conformance of
 Hashlink encoders and decoders.

B.1. Simple Hashlink URL

 The following Hashlink URL encodes the data "Hello World!" served
 from the "http://example.org/hw.txt" URL with a content type of
 "text/plain". The resource hash is generated using the SHA-2, 256
 bit, 32 byte cryptographic algorithm which is then encoded using the
 base-58 Bitcoin base-encoding format. The metadata options are
 encoded using the base-58 Bitcoin base-encoding format. The final
 Hashlink URL is (new lines added for readability purposes):

 hl:
 zQmWvQxTqbG2Z9HPJgG57jjwR154cKhbtJenbyYTWkjgF3e:
 zuh8iaLobXC8g9tfma1CSTtYBakXeSTkHrYA5hmD4F7dCLw8XYwZ1GWyJ3zwF

https://tools.ietf.org/id/draft-multiformats-multihash-00.html
https://tools.ietf.org/id/draft-multiformats-multihash-00.html
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc7049
https://www.rfc-editor.org/info/rfc7049
https://w3c-dvcg.github.io/
https://w3c-ccg.github.io/
https://github.com/w3c-dvcg/hashlink/issues

Sporny & Rosenthol Expires November 3, 2021 [Page 9]

Internet-Draft Cryptographic Hyperlinks May 2021

B.2. Multi-sourced Hashlink URL

 The following Hashlink URL encodes the data "Hello World!" served
 from three different networks. The first is a standard Web-based URL
 ("http://example.org/hw.txt"), the second is an IPFS-based URL
 ("ipfs:/ipfs/QmXfrS3pHerg44zzK6QKQj6JDk8H6cMtQS7pdXbohwNQfK/hello"),
 and the third is a Tor-based URL ("http://c4m3g2upq6pkufl4.onion/
 hworld.txt"). The resource hash is generated using the SHA-2, 256
 bit, 32 byte cryptographic algorithm which is then encoded using the
 base-58 Bitcoin base-encoding format. The metadata options are
 encoded using the base-58 Bitcoin base-encoding format. The final
 Hashlink URL is (new lines added for readability purposes):

 hl:
 zQmWvQxTqbG2Z9HPJgG57jjwR154cKhbtJenbyYTWkjgF3e:
 z333PdTakFeJueF2bim3PaaDqbtqjkpxUc8ETSWXe6dQLWXQWvqiUdw8TJrncx3uKhwfc
 88MtM5xZbR27FhVRUKv9ogekamVtdE3UbXnXpMRT1AseCtoBUt1NE8x2SsnJxGfiZN45V
 VSCp6jh4dgcufL16tWrHREiSYESEGP1J75yXCvAdvKPr7nb5aYujLeay8Ww

Appendix C. Acknowledgements

 The editors would like to thank the following individuals for
 feedback on and implementations of the specification (in alphabetical
 order): TBD

 Portions of the work on this specification have been funded by the
 United States Department of Homeland Security's Science and
 Technology Directorate under contract HSHQDC-17-C-00019. The content
 of this specification does not necessarily reflect the position or
 the policy of the U.S. Government and no official endorsement should
 be inferred.

Authors' Addresses

 Manu Sporny
 Digital Bazaar
 203 Roanoke Street W.
 Blacksburg, VA 24060
 US

 Phone: +1 540 961 4469
 Email: msporny@digitalbazaar.com
 URI: http://manu.sporny.org/

http://manu.sporny.org/

Sporny & Rosenthol Expires November 3, 2021 [Page 10]

Internet-Draft Cryptographic Hyperlinks May 2021

 Leonard Rosenthol
 Adobe Systems
 345 Park Ave.
 San Jose, CA 95110-2704
 US

 Phone: +1 800 833 6687
 Email: lrosenth@adobe.com
 URI: https://www.linkedin.com/in/lrosenthol/

Sporny & Rosenthol Expires November 3, 2021 [Page 11]

https://www.linkedin.com/in/lrosenthol/

