
 Network Working Group M.
Sridharan
 Internet Draft
Microsoft
 Intended status: Experimental K.
Tan
 November 3, 2008 Microsoft
Research
 Expires: April 2009 D.
Bansal
 D.
Thaler

Microsoft

 Compound TCP: A New TCP Congestion Control for High-Speed and
Long
 Distance Networks

draft-sridharan-tcpm-ctcp-02.txt

 Status of this Memo

 By submitting this Internet-Draft, each author represents that any
 applicable patent or other IPR claims of which he or she is aware
 have been or will be disclosed, and any of which he or she becomes
 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six
months
 and may be updated, replaced, or obsoleted by other documents at
any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on April 3, 2009.

 Copyright Notice

https://datatracker.ietf.org/doc/html/draft-sridharan-tcpm-ctcp-02.txt
https://datatracker.ietf.org/doc/html/bcp79#section-6
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

 Copyright (C) The IETF Trust (2007).

Sridharan Expires April 3, 2009 [Page 1]

Internet Draft Compound TCP November 2008

 Abstract

 Compound TCP (CTCP) is a modification to TCP's congestion control
 mechanism for use with TCP connections with large congestion windows.
 This document describes the Compound TCP algorithm in detail, and
 solicits experimentation and feedback from the wider community. The
 key idea behind CTCP is to add a scalable delay-based component to
the
 standard TCP's loss-based congestion control. The sending rate of
CTCP
 is controlled by both loss and delay components. The delay-based
 component has a scalable window increasing rule that not only
 efficiently uses the link capacity, but on sensing queue build up,
 proactively reduces the sending rate.

Sridharan Expires April 3, 2009 [Page 2]

Internet Draft Compound TCP November 2008

 Table of Contents

1. Introduction...
3

2. Design Goals...
5

3. Compound TCP Control Law.......................................
5

4. Compound TCP Response Function.................................
8

5. Automatic Selection of Gamma...................................
9

6. Implementation Issues...
11

7. Deployment Issues...
12

8. Security Considerations.......................................
13

9. IANA Considerations...
13

10. Conclusions..
13

11. Acknowledgments..
14

12. References...
15

12.1. Normative References.......................................
15

12.2. Informative References.....................................
15
 Author's Addresses...
16
 Intellectual Property Statement..................................
17
 Disclaimer of Validity...
17

1. Introduction

 In this document, we collectively refer to any TCP congestion control
 algorithm that employs a linear increase function for congestion
 control, including TCP Reno and all its variants as Standard TCP.
This
 document describes Compound TCP, a modification to TCP's congestion
 control mechanism for fast, long-distance networks. The standard TCP
 congestion avoidance algorithm employs an additive increase and
 multiplicative decrease (AIMD) scheme, which employs a conservative
 linear growth function for increasing the congestion window and
 multiplicative decrease function on encountering a loss. For a high-

 speed and long delay network, it takes standard TCP an unreasonably
 long time to recover the sending rate after a single loss event
 [RFC2581, RFC3649]. Moreover, it is well-known now that in a steady-
 state environment, with a packet loss rate of p, the current standard
 TCP's average congestion window is inversely proportional to the
square
 root of the packet loss rate [RFC2581,PADHYE]. Therefore, it requires
 an extremely small packet loss rate to sustain a large window. As an
 example, Floyd et al. [RFC3649], pointed out that on a 10Gbps link
 with 100ms delay, it will roughly take one hour for a standard TCP
flow
 to fully utilize the link capacity, if no packet is lost or
corrupted.
 This one hour error-free transmission requires a packet loss rate of
 around 10^-11 with 1500-byte size packets (one packet loss over
 2,600,000,000 packet transmission!), which is not practical in
today's
 networks.

 There are several proposals to address this fundamental limitation of
 TCP. One straightforward way to overcome this limitation is to modify
 TCP's increase/decrease rule in its congestion avoidance stage. More
 specifically, in the absence of packet loss, the sender increases

Sridharan Expires April 3, 2009 [Page 3]

https://datatracker.ietf.org/doc/html/rfc3649
https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc3649

Internet Draft Compound TCP November 2008

 congestion window more quickly and decreases it more gently upon a
 packet loss. In a mixed network environment, the aggressive behavior
of
 such an approach may severely degrade the performance of regular TCP
 flows whenever the network path is already highly utilized. When an
 aggressive high-speed variant flow traverses the bottleneck link with
 other standard TCP flows, it may increase its own share of bandwidth
by
 reducing the throughput of other competing TCP flows. As a result,
the
 aggressive variants will cause much more self-induced packet losses
on
 bottleneck links, and push back the throughput of the regular TCP
 flows.

 Then there is the class of high-speed protocols which use variances
in
 RTT as a congestion indicator (e.g., [AFRICA,FAST]). Such delay-based
 approaches are more-or-less derived from the seminal work of TCP-
Vegas
 [VEGAS]. An increase in RTT is considered an early indicator of
 congestion, and the sending rate is reduced to avoid buffer overflow.
The
 problem in this approach comes when delay-based and loss-based flows
 share the same bottleneck link. While the delay-based flows respond
to
 increases in RTT by cutting its sending rate, the loss-based flows
 continue to increase their sending rate. As a result a delay-based
flow
 obtains far less bandwidth than its fair share. This weakness is hard
to
 remedy for purely delay-based approaches.

 The design of Compound TCP is to satisfy the efficiency requirement
and
 the TCP friendliness requirement simultaneously. The key idea is that
 if the link is under-utilized, the high-speed protocol should be
 aggressive and increase the sending rate quickly. However, once the
 link is fully utilized, being aggressive will not only adversely
affect
 standard TCP flows but will also cause instability. As noted above,
 delay-based approaches already have the nice property of adjusting
 aggressiveness based on the link utilization, which is observed by
the
 end-systems as an increase in RTT. CTCP incorporates a scalable
delay-
 based component into the standard TCP's congestion avoidance
algorithm.
 Using the delay component as an automatic tuning knob, CTCP is

scalable
 yet TCP friendly.

2. Design Goals

 The design of CTCP is motivated by the following requirements:

 o Improve throughput by efficiently using the spare capacity in
 the network
 o Good intra-protocol fairness when competing with flows that
 have different RTTs
 o Should not impact the performance of standard TCP flows
sharing
 the same bottleneck
 o No additional feedback or support required from the network

Sridharan Expires April 3, 2009 [Page 4]

Internet Draft Compound TCP November 2008

 CTCP can efficiently use the network's resources and achieve high
link
 utilization. The aggressiveness can be controlled by adopting a rapid
 increase rule in the delay-based component. We choose CTCP to have
 similar aggressiveness as HighSpeed TCP [RFC3649]. Our design choice
is
 motivated by the fact that HSTCP has been tested to be aggressive
 enough in real world networks while at the same time, not exhibiting
any
 severe issues in deployment or testing experiences. and is now an
 experimental IETF RFC. We also wanted an upper bound on the amount of
 unfairness to standard TCP flows. However, as shown later, CTCP is
able
 to maintain TCP friendliness under high statistical multiplexing and
also
 while traversing poorly buffered links. CTCP has similar or, in some
 cases, improved RTT fairness compared to standard TCP. As we will
 demonstrate later this is due to the fact that the amount of
backlogged
 packets for a connection is independent of the RTT of the connection.
 Even though CTCP does not require any feedback from the network, CTCP
 works well in ECN capable environments. There is also no expectation
on
 the queuing algorithm deployed in the routers.

 As is the case with most high-speed variants today, CTCP does not
 modify the slow-start behavior of standard TCP. We agree to the
belief
 that ramping-up faster than slow-start without additional information
 from the network can be harmful. During slow start, CTCP uses
standard
 TCP congestion window (cwnd) and does not use any additional delay
 component. Just like standard TCP, it exits slow start when either a
loss
 happens or congestion window (cwnd) reaches ssthresh.

 Similar to HSTCP, to ensure TCP compatibility, CTCP's scalable
 component uses the same response function as Standard TCP when the
 current congestion window is at most Low_Window. CTCP sets Low_Window
 to 38 MSS-sized segments, corresponding to a packet drop rate of
10^-3
 for TCP.

3. Compound TCP Control Law

 CTCP modifies Standard TCP's loss-based control law with a scalable
 delay-based component. To do so, a new state variable is introduced
in
 current TCP Control Block (TCB), namely dwnd (Delay Window), which

https://datatracker.ietf.org/doc/html/rfc3649

 controls the delay-based component in CTCP. The conventional
congestion
 window, cwnd, remains untouched, which controls the loss-based
component
 in CTCP. Thus, the CTCP sending window now is controlled by both cwnd
and
 dwnd. Specifically, the TCP sending window (wnd) is now calculated as
 follows:

 wnd = min(cwnd + dwnd, awnd), (1)

 where awnd is the advertised window from the receiver.

 cwnd is updated in the same way as regular TCP in the congestion
 avoidance phase, i.e., cwnd is increased by 1 MSS every RTT and
halved

Sridharan Expires April 3, 2009 [Page 5]

Internet Draft Compound TCP November 2008

 when a packet loss is encountered. The update to dwnd will be
explained
 in detail later in this section. The combined window for CTCP from
(1)
 above allows up to (cwnd + dwnd) packets in one RTT to be injected
into
 the network. Therefore, the
 increment of cwnd on the arrival of an ACK is modified accordingly:

 cwnd = cwnd + 1/(cwnd+dwnd) (2)

 Some implementations may choose to use FlightSize (as defined in RFC
 2581) to handle the receiver limited or the application limited case.
 As stated above, CTCP retains the same behavior during slow start.
When
 a connection starts up, dwnd is initialized to zero while the
 connection is in slow start phase. Thus the delay component is
 only activated when the connection enters congestion avoidance. The
 delay-
 based algorithm has the following properties. It uses a scalable
 increase rule when it infers that the network is under-utilized. It
 also reduces the sending rate when it senses incipient congestion. By
 reducing its sending rate, the delay-based component yields to
 competing TCP flows and ensures TCP fairness. It reacts to packet
 losses, again by reducing its sending rate, which is necessary to
avoid
 congestion collapse. CTCP's control law for the delay-based component
 is derived from TCP Vegas. A state variable, called basertt tracks
the
 minimum round trip delay seen by a packet over the network path. The
CTCP
 sender also maintains a smoothed RTT srtt, updated as specified in
 [RFC2988]. Basertt is not used till the delay component is activated
so
 basertt can be initialized to the smoothed rtt value that the sender
 already computed. Basertt MUST be uninitialized and MUST be re-
measured
 if a retransmission timeout occurs, as the network conditions may
have
 changed. We provide some guidance on RTT sampling in Section 6 as
robust
 RTT sampling is key to how CTCP implementations perform.

 The number of backlogged packets of the connection is estimated
 using,

 expected (throughput) = wnd/basertt
 actual (throughput) = wnd/srtt
 diff = (expected - actual) * basertt

https://datatracker.ietf.org/doc/html/rfc2988

 The expected throughput gives the estimation of throughput CTCP gets
if
 it does not overrun (induce queueing on) the network path. The actual
 throughput stands for the throughput CTCP sender really gets. Using
this,
 the
 amount of data backlogged in the bottleneck queue (diff) can be
 calculated. Congestion is detected by comparing diff to a threshold
 gamma. If diff < gamma, the network path is assumed to be under-
 utilized; otherwise the network path is assumed to be congested and
 CTCP should gracefully reduce its window.

Sridharan Expires April 3, 2009 [Page 6]

Internet Draft Compound TCP November 2008

 It is to be noted that a connection should have at least gamma
packets
 backlogged in the bottleneck queue to be able to detect incipient
 congestion. This motivates the need for gamma to be small since the
 implication is that even when the bottleneck buffer size is small,
CTCP
 will react early enough to ensure TCP fairness. On the other hand, if
 gamma is too small compared to the queue size, CTCP will falsely
detect
 congestion and will adversely affect the throughput. Choosing the
 appropriate value for gamma could be a problem because this parameter
 depends on both network configuration and the number of concurrent
 flows, which are generally unknown to the end-systems. Section 5
 presents an effective way to automatically estimate gamma.

 The increase law of the delay-based component should make CTCP more
 scalable in high-speed and long delay pipes. We choose a binomial
 function to increase the delay window [BAINF01]. As explained in the
 next section we have modeled the response function for CTCP to have
 comparable scalability to HighSpeed TCP. Since there is already a
loss-
 based component in CTCP, the delay-based component needs to be
designed
 to only fill the gap. The control law for CTCP's delay component can
be
 summarized as follows:

 dwnd(t+1) =
 dwnd(t) + alpha*dwnd(t)^k - 1, if diff < gamma (3)
 dwnd(t) - eta*diff, if diff >= gamma (4)
 dwnd(t)(1-beta), on packet loss (5)

 where alpha = 1/8, beta = 1/2, eta = 1 and k = 0.75. Note that dwnd
MUST
 be measured in packets to match the response function in Section 4.
 Equation (3) shows that in
 the increase phase, dwnd only needs to increase by (alpha*dwnd(t)^k -
 1) packets, since the loss-based component cwnd will also increase by
1
 packet. When a packet loss occurs (detected by three duplicate ACKs),
 dwnd is set to the difference between the desired reduced window size
 and that can be provided by cwnd. The rule in equation (4) is very
 important to preserve good RTT and TCP fairness. Eta defines how
 rapidly the delay component should reduce its window when congestion
is
 detected. Note that dwnd MUST never be negative, so the CTCP window
is
 lower
 bounded by its loss-based component, which is same as Standard TCP.

 If a retransmission timeout occurs, dwnd should be reset to zero and
 the delay-based component is disabled. This is because after a
timeout,
 the TCP sender enters slow-start phase. After the CTCP sender exits
the
 slow-start recovery state and enters congestion avoidance, dwnd
control
 is activated again.

4. Compound TCP Response Function

 The TCP response function provides a relationship between TCP's
average
 congestion window w in MSS-sized segments as a function of the
steady-

Sridharan Expires April 3, 2009 [Page 7]

Internet Draft Compound TCP November 2008

 state packet drop rate p. To specify a modified response function for
 CTCP, we use the analytical model in [CTCPI06] to derive a
relationship
 between w and p. Based on this model, the response function for CTCP
 provides the following relationship between w and p,

 w ~.1/(p^(1/(2-k))) (6)

 As explained earlier we modeled the response function for CTCP to
have
 comparable scalability to HighSpeed TCP. The response function for
 HighSpeed TCP is

 w ~.1/p^0.835 (7)

 Comparing (6) and (7) we get k to be around 0.8. Since it's difficult
 to implement an arbitrary power we choose k = 0.75 which can be
 implemented using a fast integer algorithm for square root. Based on
 extensive experimentation, we chose alpha = 1/8, beta = 1/2, and eta
=

1. Substituting the above values for alpha, beta and k in (6) we get
 the following response function for CTCP,

 w = 0.255/p^0.8 (8)

 The response function for CTCP is compared with HSTCP and is
 illustrated in Table 1 below.

 CTCP HSTCP
 Packet Drop Rate P Congestion Window W Congestion Window W
 ------------------ ------------------- -------------------
 10^-3 64 38
 10^-4 404 263
 10^-5 2552 1795
 10^-6 16107 12279
 10^-7 101630 83981
 10^-8 641245 574356
 10^-9 4045987 3928088
 10^-10 25528453 26864653

 Table 1: TCP Response function for CTCP & HSTCP

 The values in Table 1 illustrate that our choice of parameters makes
 CTCP slightly more aggressive than HSTCP in moderate and low packet
 loss rates but approaches HSTCP for larger windows. The reason we
 choose to do this is because unlike HighSpeed TCP, CTCP's delay
control
 is capable of scaling back on detecting incipient congestion. As a
 result, we expect CTCP to be more TCP friendly than HighSpeed TCP. We

 show that this is in fact the case even under low buffering
conditions
 in the presence of high statistical multiplexing. The fairness
 considerations and choice of gamma are detailed in Sections 5 and 6.

Sridharan Expires April 3, 2009 [Page 8]

Internet Draft Compound TCP November 2008

5. Automatic Selection of Gamma

 To effectively detect early congestions, CTCP requires estimating the
 backlogged packets at the bottleneck queue and compares this estimate
 to a pre-defined threshold gamma. However, setting this threshold
gamma
 is particularly difficult for CTCP (and for many other similar delay-
 based approaches) because gamma largely depends on the network
 configuration and the number of concurrent flows that compete for the
 same bottleneck link. Such flows are, unfortunately, unknown to end-
 systems. Based on experimentation over varying conditions we
originally
 selected gamma to be 30 packets. This value appeared to provide a
good
 tradeoff between TCP fairness and throughput. However a fixed gamma
can
 still result in poor TCP friendliness over under-buffered network
 links. One naive solution is to choose a very small value for gamma.
 However this can falsely detect congestion and adversely affect
 throughput. To address this problem, we instead use a method called
 tuning-by-emulation to dynamically adjust gamma. The basic idea is to
 estimate the backlogged packets of a Standard TCP flow along the same
 path by simultaneously emulating the behavior of a Standard TCP flow.
 Based on this, gamma is set so as to ensure good TCP-friendliness.
CTCP
 can then automatically adapt to different network configurations
(i.e.,
 buffer provisioning) and also concurrent competing flows.

 To ensure the effectiveness of incipient congestion detection, our
 analytical model on CTCP shows that gamma should at least be less
than
 B/(m+l), where B is the bottleneck buffer and m and l represent the
 number of concurrent Standard TCP flows and CTCP flows, respectively,
 that are competing for the same bottleneck link [CTCPI06][CTCPP06]
 [CTCPT]. Generally, both B and (m+l) are unknown to end-systems. It
is
 very difficult to estimate these values from end-systems in real-
time,
 especially the number of flows, which can vary significantly over
time.
 Fortunately there is a way to directly estimate the ratio B/(m+l),
even
 though the individual variables B and (m+l) are hard to estimate.
Let's
 first assume there are (m+l) regular TCP flows in the network. These
 (m+l) flows should be able to fairly share the bottleneck capacity in
 steady state. Therefore, they should also get roughly equal shares of
 the buffers at the bottleneck, which should equal to B/(m+l). For

such
 a Standard TCP flow, although it does not know either B or (m+l), it
 can still infer B/(m+l) easily by estimating its backlogged packets,
 which is a rather mature technique widely used in many delay-based
 protocols. This brings us to the core idea of CTCP's algorithm; CTCP
 lets the sender emulate the congestion window of a Standard TCP flow.
 Using this emulated window, we can estimate the buffer occupancy
 (diff_reno) for a Standard TCP flow. Diff_reno can be regarded as a
 conservative estimate of B/(m+l) assuming that the high speed flow is
 more aggressive than Standard TCP. By choosing gamma <= diff_reno, we
 can ensure TCP fairness.

 The implementation is actually fairly trivial. This is because CTCP
 already emulates Standard TCP as the loss-based component. We can

Sridharan Expires April 3, 2009 [Page 9]

Internet Draft Compound TCP November 2008

 simply estimate the buffer occupancy of a competing Standard TCP flow
 from state that CTCP already maintains. We choose an initial gamma =
30
 and diff_reno is calculated as follows,

 expected_reno (throughput) = cwnd/basertt
 actual_reno (throughput) = cwnd/srtt
 diff_reno = (expected - actual) * basertt

 The difference between diff_reno and diff is simply that diff_reno is
 computed only using the loss-based component cwnd. Since Standard TCP
 reaches its maximum buffer occupancy just before a loss, CTCP uses
the
 diff_reno value computed in the previous round to calculate the gamma
 for the next round. A round corresponds to the time it takes for one
 window of data
 to be acknowledged. It typically corresponds to one RTT. Whenever a
loss
 happens, gamma is chosen to be less
 than diff_reno and the sample values of gamma are updated using a
 standard exponentially weighted moving average. The pseudocode to
 calculate gamma is shown below. Here a round tracks every window
 worth of data. Section 7 provides more details on how to maintain a
 round.

 Initialization:
 diff_reno = invalid;
 Gamma = 30;

 End-of-Round:

 expected_reno = cwnd / baseRTT;
 actual_reno = cwnd / RTT;
 diff_reno = (Expected_reno-Actual_reno)*baseRTT;

 On-Packet-Loss:

 If diff_reno is valid then
 g_sample = 3/4*Diff_reno;
 gamma = gamma*(1-lamda)+ lamda*g_sample;
 if (gamma < gamma_low)
 gamma=gamma_low;
 else if (gamma > gamma_high)
 gamma=gamma_high;
 fi
 diff_reno = invalid;
 fi

 The recommended values for gamma_low and gamma_high are 5 and 30
 respectively. diff_reno is set to invalid to prevent using stale

Sridharan Expires April 3, 2009 [Page 10]

Internet Draft Compound TCP November 2008

 diff_reno data when there are consecutive losses between which no
 samples were taken.

6. Implementation Issues

 CTCP has been implemented on Microsoft Windows and there has been
 extensive testing on production links and in Windows Beta
deployments.

 The first challenge is to design a mechanism that can precisely track
 the changes in round trip time with minimal overhead, and can scale
 well to support many concurrent TCP connections. Naively taking RTT
 samples for every packet will obviously be an over-kill for both CPU
 and system memory, especially for high-speed and long distance
networks
 where the congestion window can be very large. Therefore, CTCP needs
to
 limit the number of samples taken, but without compromising on
 accuracy. In our implementation, we only take up to M samples per
 window of data. M is chosen to scale with the round trip delay and
 window size.

 In order to further improve the efficiency in memory usage, we have
 developed a memory allocation mechanism to dynamically allocate
sample
 buffers from a kernel fixed-size per-processor pool. The size should
be
 chosen as a function of the available system memory. As the window
size
 increases, M can be updated so that the samples are uniformly
 distributed over the window. As M gets updated, more memory blocks
are
 allocated and linked to the existing sample buffers. If the sending
 rate changes, either due to network conditions or due to application
 behavior, the sample blocks are reclaimed to the global memory pool.
 This dynamic buffer management ensures the scalability of our
 implementation, so that it can work well even in a busy server which
 could host tens of thousands of TCP connections simultaneously. Note
 that it may also require a high-resolution timer to time RTT samples.

 The rest of the implementation is rather straightforward. We add two
 new state variables into the standard TCP Control Block, namely dwnd
 and basertt (described in Section 3). Following the common practice
of
 high-speed protocols, CTCP reverts to standard TCP behavior when the
 window is small. Delay-based component only kicks in when cwnd is
 larger than some threshold, currently set to 38 packets assuming 1500
 byte MTU. dwnd is updated at the end of each round. Note that no RTT
 sampling and dwnd update happens during the loss recovery phase. This

 is because the retransmission during the loss recovery phase may
result
 in inaccurate RTT samples and can adversely affect the delay-based
 control.

7. Deployment Issues

 There are several variations of TCP proposed for high speed and long
 delay networks. We do not claim Compound TCP to be the best nor the
 most optimal algorithm. However, based on extensive testing via

Sridharan Expires April 3, 2009 [Page 11]

Internet Draft Compound TCP November 2008

 simulations and experimentation including those on production links
as
 well as beta deployments of a reasonable scale, we believe that
 Compound TCP satisfies the design considerations outlined earlier in
 this document. It effectively uses spare bandwidth in high speed
 networks, achieves good intra-protocol fairness even in the presence
of
 differing RTTs and does not adversely impact standard TCP.
Furthermore,
 Compound TCP does not require any changes or any new feedback from
the
 network and is deployable over the current Internet in an incremental
 fashion. It interoperates with Standard TCP and requires support only
 on the send side of a TCP connection for it to be used.

 We also note that similar to High Speed TCP, in environments typical
of
 much of the current Internet, Compound TCP behaves exactly like
 Standard TCP. This it does by ensuring that it follows the standard
TCP
 algorithm without any modification any time the congestion window is
 less than 38 packets. Only when the congestion window is greater than

38 packets does the delay-based component of Compound TCP get invoked.
 Thus, for example for a connection with an RTT of 100ms, the end-to-
end
 bandwidth must be greater than 4.8Mbps for CTCP to have any
difference
 in its response to network conditions compared to standard TCP.

 Further, we do not believe that the deployment of Compound TCP would
 block the possible deployment of alternate experimental congestion
 control algorithms such as Fast TCP [FAST] or CUBIC [CUBIC]. In
 particular, Compound TCP's response has a fallback to a loss-based
 function that has characteristics very similar to HS-TCP or N
parallel
 TCP connections.

8. Security Considerations

 CTCP modifies the congestion control algorithm of TCP protocol by
adding
 a delay based component while keeping all other aspects of the
protocol
 intact. Hence, any additional security considerations for CTCP are
 limited to the security considerations for the delay based aspect of
the
 CTCP algorithm.

 There are a few possible security considerations for the delay based
 component of CTCP. A receiver can explicitly delay the
acknowledgements
 or it can proactively acknowledge packets. In the former case dwnd
 increase would be slower and the throughput would be no worse than
 standard TCP. In the latter case the sender may end up sending
traffic at
 a higher rate. However as the packets are proactively acknowledged
the
 sender will update its basertt to be much lower than the actual RTT.
So
 any increases in measured RTT will be perceived as congestion.
Further,
 sender can implement additional mitigations to detect such a
malicious
 receiver eg by detecting if spurious acknowledgements are being
 acknowledged too soon i.e. faster than RTT and without actually
receiving
 the packet. The delay measurements for CTCP are derived at the
sender-
 side only, without relying on timestamps. This mitigates possible
attacks
 where receiver manipulates the timestamps echoed back to the sender.

Sridharan Expires April 3, 2009 [Page 12]

Internet Draft Compound TCP November 2008

9. IANA Considerations

 There are no IANA considerations regarding this proposal.

10. Conclusions

 This document proposes a congestion control algorithm for TCP for
high
 speed and long delay networks. By introducing a delay-based component
 in addition to a standard TCP-based loss component, Compound TCP is
 able to detect and effectively use spare bandwidth that may be
 available on a high speed and long delay network. Furthermore, the
 delay-based component detects the onset of congestion early and
 gracefully reduces the sending rate. The loss-based component, on the
 other hand, ensures there is an effective response to losses in
network
 while in the absence of losses, keeps the throughput of CTCP lower
 bounded by TCP Reno. Thus, CTCP is not timid, nor does it induce more
 self-induced packet loss than a single standard TCP flow. Thus
Compound
 TCP is efficient in consuming available bandwidth while being
friendly
 to standard TCP. Further, the delay component does not have any RTT
 bias thereby reducing the RTT bias of the Compound TCP vis-a-vis
 standard TCP.

 Compound TCP has been implemented as an optional component in
Microsoft
 Windows Vista. It has been tested and experimented through broad
 Windows Vista beta deployments where it has been verified to meet its
 objectives without causing any adverse impact. The Stanford Linear
 Accelerator Center (SLAC) has also evaluated Compound TCP on
production
 links. Based on testing and evaluation done so far, we believe
Compound
 TCP is safe to deploy on the current Internet. We welcome additional
 analysis, testing and evaluation of Compound TCP by Internet
community
 at large and continue to do additional testing ourselves.

11. Acknowledgments

 The authors would like to thank Jingmin Song for all his efforts in
 evaluating the algorithm on the test beds. We are thankful to Yee-
ting
 Lee and Les Cottrell for testing and evaluation of Compound TCP on
 Internet2 links [SLAC]. We would like to thank Sanjay Kaniyar for his
 insightful comments and for driving this project in Microsoft. We are
 also thankful to the Microsft.com data center staff who helped us

 evaluate Compound TCP on their production links. In addition, several
 folks from the Internet research community who attended the High-
Speed
 TCP Summit at Microsoft [MSWRK] have provided valuable feedback on
 Compound TCP. We would like to thank CTCP reviewers at ICCRG for
their
 valuable feedback; specifically we would like to thank Lachlan Andrew
and
 Doug Leith for their thorough review and excellent feedback. Finally,
we
 are thankful to the Windows Vista program beta participants who
helped us
 test and evaluate CTCP.

Sridharan Expires April 3, 2009 [Page 13]

Internet Draft Compound TCP November 2008

12. References

12.1. Normative References

 [CTCPI06] K. Tan, Jingmin Song, Qian Zhang, Murari Sridharan, "A
 Compound TCP Approach for High-speed and Long Distance
 Networks", in IEEE Infocom, April 2006, Barcelona,
Spain.

 [RFC2581] Allman, M., Paxson, V. and W. Stevens, "TCP Congestion
 Control", RFC 2581, April 1999.

12.2. Informative References

 [AFRICA] R. King, R. Baraniuk and R. riedi, "TCP-Africa: An
 Adaptive and Fair Rapid Increase Rule for Scalable
 TCP", In Proc. INFOCOM 2005.

 [BAINF01] Bansal and H. Balakrishnan, "Binomial Congestion
Control
 Algorithms", Proc INFOCOM 2001.

 [CTCPP06] K. Tan, J. Song, Q. Zhang, and M. Sridharan, "Compound
 TCP: A Scalable and TCP-friendly Congestion Control
 for High-speed Networks", in 4th International
 workshop on Protocols for Fast Long-Distance Networks
 (PFLDNet), 2006, Nara, Japan.

 [CTCPT] K. Tan, J. Song, M. Sridharan, and C.Y. Ho, "CTCP:
 Improving TCP-Friendliness Over Low-Buffered Network
 Links", Microsoft Technical Report.

 [CUBIC] I. Rhee, L. Xu and S. Ha, "CUBIC for fast long
 distance networks", Internet Draft, Expires Aug 31,
 2007, draft-rhee-tcp-cubic-00.txt

 [FAST] C. Jin, D. Wei, S. Low, "FAST TCP: Motivation,
 Architecture, Algorithms, Performance", in IEEE Infocom
 2004.

 [MSWRK] Microsoft High-Speed TCP Summit,
http://research.microsoft.com/events/TCPSummit/

 [PADHYE] J. Padhya, V. Firoiu, D. Towsley and J. Kurose,
 "Modeling TCP Throughput: A Simple Model and its
 Empirical Validation", in Proc. ACM SIGCOMM 1998.

 [RFC2988] V. Paxon and M. Allman, "Computing TCP's Retransmission
 Timer", RFC 2988, November 2000.

https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/draft-rhee-tcp-cubic-00.txt
http://research.microsoft.com/events/TCPSummit/
https://datatracker.ietf.org/doc/html/rfc2988

 [RFC3649] S. Floyd, "HighSpeed TCP for Large Congestion
 Windows", RFC 3649, Dec 2003.

 Sridharan
 Expires April 3, 2009 [Page 14]

https://datatracker.ietf.org/doc/html/rfc3649

Internet Draft Compound TCP November 2008

 [SLAC] Yee-Ting Li, "Evaluation of TCP Congestion Control
 Algorithms on the Windows Vista Platform", SLAC-TN-06-
 005, http://www.slac.stanford.edu/pubs/slactns/tn04/
slac-

tn-06-005.pdf

 [VEGAS] L. Brakmo, S. O'Malley, and L. Peterson, "TCP Vegas:
 New techniques for congestion detection and
 avoidance", in Proc. ACM SIGCOMM, 1994.

 Author's Addresses

 Murari Sridharan
 Microsoft Corporation
 1 Microsoft Way, Redmond 98052

 Email: muraris@microsoft.com

 Kun Tan
 Microsoft Research
 5/F, Beijing Sigma Center
 No.49, Zhichun Road, Hai Dian District
 Beijing China 100080

 Email: kuntan@microsoft.com

 Deepak Bansal
 Microsoft Corporation
 1 Microsoft Way, Redmond 98052

 Email: dbansal@microsoft.com

 Dave Thaler
 Microsoft Corporation
 1 Microsoft Way, Redmond 98052

 Email: dthaler@microsoft.com

 Intellectual Property Statement

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed
 to pertain to the implementation or use of the technology
described
 in this document or the extent to which any license under such
 rights might or might not be available; nor does it represent that
 it has made any independent effort to identify any such rights.

http://www.slac.stanford.edu/pubs/slactns/tn04/slac-tn-06-005.pdf
http://www.slac.stanford.edu/pubs/slactns/tn04/slac-tn-06-005.pdf
http://www.slac.stanford.edu/pubs/slactns/tn04/slac-tn-06-005.pdf

 Information on the procedures with respect to rights in RFC
 documents can be found in BCP 78 and BCP 79.

Sridharan Expires April 3, 2009 [Page 15]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79

Internet Draft Compound TCP November 2008

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use
 of such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository
 at http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention
any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

 Disclaimer of Validity

 This document and the information contained herein are provided on
 an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE
 REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE
 IETF TRUST AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL
 WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
 WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE
 ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS
 FOR A PARTICULAR PURPOSE.

 Copyright Statement
 Copyright (C) The IETF Trust (2007).
 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 Acknowledgment
 Funding for the RFC Editor function is currently provided by the
 Internet Society.

http://www.ietf.org/ipr
https://datatracker.ietf.org/doc/html/bcp78

 Sridharan Expires April 3, 2009 [Page 16]

