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          Abstract

          Compound TCP (CTCP) is a modification to TCP's congestion control
          mechanism for use with TCP connections with large congestion windows.
          This document describes the Compound TCP algorithm in detail, and
          solicits experimentation and feedback from the wider community.  The
          key idea behind CTCP is to add a scalable delay-based component to 
the
          standard TCP's loss-based congestion control. The sending rate of 
CTCP
          is controlled by both loss and delay components. The delay-based
          component has a scalable window increasing rule that not only
          efficiently uses the link capacity, but on sensing queue build up,
          proactively reduces the sending rate.



Sridharan                 Expires April 3, 2009            [Page 2]



Internet Draft                 Compound TCP         November 2008

          Table of Contents

1. Introduction...................................................
3

2. Design Goals...................................................
5

3. Compound TCP Control Law.......................................
5

4. Compound TCP Response Function.................................
8

5. Automatic Selection of Gamma...................................
9

6. Implementation Issues.........................................
11

7. Deployment Issues.............................................
12

8. Security Considerations.......................................
13

9. IANA Considerations...........................................
13

10. Conclusions..................................................
13

11. Acknowledgments..............................................
14

12. References...................................................
15

12.1. Normative References.......................................
15

12.2. Informative References.....................................
15
             Author's Addresses...............................................
16
             Intellectual Property Statement..................................
17
             Disclaimer of Validity...........................................
17

1. Introduction

          In this document, we collectively refer to any TCP congestion control
          algorithm that employs a linear increase function for congestion
          control, including TCP Reno and all its variants as Standard TCP.  
This
          document describes Compound TCP, a modification to TCP's congestion
          control mechanism for fast, long-distance networks. The standard TCP
          congestion avoidance algorithm employs an additive increase and
          multiplicative decrease (AIMD) scheme, which employs a conservative
          linear growth function for increasing the congestion window and
          multiplicative decrease function on encountering a loss. For a high-



          speed and long delay network, it takes standard TCP an unreasonably
          long time to recover the sending rate after a single loss event
          [RFC2581, RFC3649]. Moreover, it is well-known now that in a steady-
          state environment, with a packet loss rate of p, the current standard
          TCP's average congestion window is inversely proportional to the 
square
          root of the packet loss rate [RFC2581,PADHYE]. Therefore, it requires
          an extremely small packet loss rate to sustain a large window. As an
          example, Floyd et al. [RFC3649], pointed out that on a 10Gbps link
          with 100ms delay, it will roughly take one hour for a standard TCP 
flow
          to fully utilize the link capacity, if no packet is lost or 
corrupted.
          This one hour error-free transmission requires a packet loss rate of
          around 10^-11 with 1500-byte size packets (one packet loss over
          2,600,000,000 packet transmission!), which is not practical in 
today's
          networks.

          There are several proposals to address this fundamental limitation of
          TCP. One straightforward way to overcome this limitation is to modify
          TCP's increase/decrease rule in its congestion avoidance stage. More
          specifically, in the absence of packet loss, the sender increases

Sridharan                 Expires April 3, 2009            [Page 3]

https://datatracker.ietf.org/doc/html/rfc3649
https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc3649


Internet Draft                 Compound TCP         November 2008

          congestion window more quickly and decreases it more gently upon a
          packet loss. In a mixed network environment, the aggressive behavior 
of
          such an approach may severely degrade the performance of regular TCP
          flows whenever the network path is already highly utilized. When an
          aggressive high-speed variant flow traverses the bottleneck link with
          other standard TCP flows, it may increase its own share of bandwidth 
by
          reducing the throughput of other competing TCP flows. As a result, 
the
          aggressive variants will cause much more self-induced packet losses 
on
          bottleneck links, and push back the throughput of the regular TCP
          flows.

          Then there is the class of high-speed protocols which use variances 
in
          RTT as a congestion indicator (e.g., [AFRICA,FAST]). Such delay-based
          approaches are more-or-less derived from the seminal work of TCP-
Vegas
          [VEGAS]. An increase in RTT is considered an early indicator of
          congestion, and the sending rate is reduced to avoid buffer overflow. 
The
          problem in this approach comes when delay-based and loss-based flows
          share the same bottleneck link. While the delay-based flows respond 
to
          increases in RTT by cutting its sending rate, the loss-based flows
          continue to increase their sending rate. As a result a delay-based 
flow
          obtains far less bandwidth than its fair share. This weakness is hard 
to
          remedy for purely delay-based approaches.

          The design of Compound TCP is to satisfy the efficiency requirement 
and
          the TCP friendliness requirement simultaneously. The key idea is that
          if the link is under-utilized, the high-speed protocol should be
          aggressive and increase the sending rate quickly. However, once the
          link is fully utilized, being aggressive will not only adversely 
affect
          standard TCP flows but will also cause instability. As noted above,
          delay-based approaches already have the nice property of adjusting
          aggressiveness based on the link utilization, which is observed by 
the
          end-systems as an increase in RTT. CTCP incorporates a scalable 
delay-
          based component into the standard TCP's congestion avoidance 
algorithm.
          Using the delay component as an automatic tuning knob, CTCP is 



scalable
          yet TCP friendly.

2. Design Goals

          The design of CTCP is motivated by the following requirements:

               o  Improve throughput by efficiently using the spare capacity in
                  the network
               o  Good intra-protocol fairness when competing with flows that
                  have different RTTs
               o  Should not impact the performance of standard TCP flows 
sharing
                  the same bottleneck
               o  No additional feedback or support required from the network
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          CTCP can efficiently use the network's resources and achieve high 
link
          utilization. The aggressiveness can be controlled by adopting a rapid
          increase rule in the delay-based component. We choose CTCP to have
          similar aggressiveness as HighSpeed TCP [RFC3649]. Our design choice 
is
          motivated by the fact that HSTCP has been tested to be aggressive
          enough in real world networks while at the same time, not exhibiting 
any
          severe issues in deployment or testing experiences. and is now an
          experimental IETF RFC. We also wanted an upper bound on the amount of
          unfairness to standard TCP flows. However, as shown later, CTCP is 
able
          to maintain TCP friendliness under high statistical multiplexing and 
also
          while traversing poorly buffered links. CTCP has similar or, in some
          cases, improved RTT fairness compared to standard TCP. As we will
          demonstrate later this is due to the fact that the amount of 
backlogged
          packets for a connection is independent of the RTT of the connection.
          Even though CTCP does not require any feedback from the network, CTCP
          works well in ECN capable environments. There is also no expectation 
on
          the queuing algorithm deployed in the routers.

          As is the case with most high-speed variants today, CTCP does not
          modify the slow-start behavior of standard TCP. We agree to the 
belief
          that ramping-up faster than slow-start without additional information
          from the network can be harmful. During slow start, CTCP uses 
standard
          TCP congestion window (cwnd) and does not use any additional delay
          component. Just like standard TCP, it exits slow start when either a 
loss
          happens or congestion window (cwnd) reaches ssthresh.

          Similar to HSTCP, to ensure TCP compatibility, CTCP's scalable
          component uses the same response function as Standard TCP when the
          current congestion window is at most Low_Window. CTCP sets Low_Window
          to 38 MSS-sized segments, corresponding to a packet drop rate of 
10^-3
          for TCP.

3. Compound TCP Control Law

          CTCP modifies Standard TCP's loss-based control law with a scalable
          delay-based component. To do so, a new state variable is introduced 
in
          current TCP Control Block (TCB), namely dwnd (Delay Window), which

https://datatracker.ietf.org/doc/html/rfc3649


          controls the delay-based component in CTCP. The conventional 
congestion
          window, cwnd, remains untouched, which controls the loss-based 
component
          in CTCP. Thus, the CTCP sending window now is controlled by both cwnd 
and
          dwnd. Specifically, the TCP sending window (wnd) is now calculated as
          follows:

            wnd = min(cwnd + dwnd, awnd),             (1)

          where awnd is the advertised window from the receiver.

          cwnd is updated in the same way as regular TCP in the congestion
          avoidance phase, i.e., cwnd is increased by 1 MSS every RTT and 
halved
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          when a packet loss is encountered. The update to dwnd will be 
explained
          in detail later in this section. The combined window for CTCP from 
(1)
          above allows up to (cwnd + dwnd) packets in one RTT to be injected 
into
          the network. Therefore, the
          increment of cwnd on the arrival of an ACK is modified accordingly:

            cwnd = cwnd + 1/(cwnd+dwnd)               (2)

          Some implementations may choose to use FlightSize (as defined in RFC
          2581) to handle the receiver limited or the application limited case.
          As stated above, CTCP retains the same behavior during slow start. 
When
          a connection starts up, dwnd is initialized to zero while the
          connection is in slow start phase. Thus the delay component is
          only activated when the connection enters congestion avoidance. The
          delay-
          based algorithm has the following properties. It uses a scalable
          increase rule when it infers that the network is under-utilized. It
          also reduces the sending rate when it senses incipient congestion. By
          reducing its sending rate, the delay-based component yields to
          competing TCP flows and ensures TCP fairness. It reacts to packet
          losses, again by reducing its sending rate, which is necessary to 
avoid
          congestion collapse. CTCP's control law for the delay-based component
          is derived from TCP Vegas. A state variable, called basertt tracks 
the
          minimum round trip delay seen by a packet over the network path. The 
CTCP
          sender also maintains a smoothed RTT srtt, updated as specified in
          [RFC2988]. Basertt is not used till the delay component is activated 
so
          basertt can be initialized to the smoothed rtt value that the sender
          already computed. Basertt MUST be uninitialized and MUST be re-
measured
          if a retransmission timeout occurs, as the network conditions may 
have
          changed. We provide some guidance on RTT sampling in Section 6 as 
robust
          RTT sampling is key to how CTCP implementations perform.

          The number of backlogged packets of the connection is estimated
          using,

            expected (throughput) = wnd/basertt
            actual (throughput) = wnd/srtt
            diff = (expected - actual) * basertt

https://datatracker.ietf.org/doc/html/rfc2988


          The expected throughput gives the estimation of throughput CTCP gets 
if
          it does not overrun (induce queueing on) the network path. The actual
          throughput stands for the throughput CTCP sender really gets. Using 
this,
          the
          amount of data backlogged in the bottleneck queue (diff) can be
          calculated. Congestion is detected by comparing diff to a threshold
          gamma. If diff < gamma, the network path is assumed to be under-
          utilized; otherwise the network path is assumed to be congested and
          CTCP should gracefully reduce its window.
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          It is to be noted that a connection should have at least gamma 
packets
          backlogged in the bottleneck queue to be able to detect incipient
          congestion. This motivates the need for gamma to be small since the
          implication is that even when the bottleneck buffer size is small, 
CTCP
          will react early enough to ensure TCP fairness. On the other hand, if
          gamma is too small compared to the queue size, CTCP will falsely 
detect
          congestion and will adversely affect the throughput. Choosing the
          appropriate value for gamma could be a problem because this parameter
          depends on both network configuration and the number of concurrent
          flows, which are generally unknown to the end-systems. Section 5
          presents an effective way to automatically estimate gamma.

          The increase law of the delay-based component should make CTCP more
          scalable in high-speed and long delay pipes. We choose a binomial
          function to increase the delay window [BAINF01]. As explained in the
          next section we have modeled the response function for CTCP to have
          comparable scalability to HighSpeed TCP. Since there is already a 
loss-
          based component in CTCP, the delay-based component needs to be 
designed
          to only fill the gap. The control law for CTCP's delay component can 
be
          summarized as follows:

           dwnd(t+1) =
               dwnd(t) + alpha*dwnd(t)^k - 1,     if diff < gamma  (3)
               dwnd(t) - eta*diff,                if diff >= gamma (4)
               dwnd(t)(1-beta),          on packet loss   (5)

          where alpha = 1/8, beta = 1/2, eta = 1 and k = 0.75. Note that dwnd 
MUST
          be measured in packets to match the response function in Section 4.
          Equation (3) shows that in
          the increase phase, dwnd only needs to increase by (alpha*dwnd(t)^k -
          1) packets, since the loss-based component cwnd will also increase by 
1
          packet. When a packet loss occurs (detected by three duplicate ACKs),
          dwnd is set to the difference between the desired reduced window size
          and that can be provided by cwnd. The rule in equation (4) is very
          important to preserve good RTT and TCP fairness. Eta defines how
          rapidly the delay component should reduce its window when congestion 
is
          detected. Note that dwnd MUST never be negative, so the CTCP window 
is
          lower
          bounded by its loss-based component, which is same as Standard TCP.



          If a retransmission timeout occurs, dwnd should be reset to zero and
          the delay-based component is disabled. This is because after a 
timeout,
          the TCP sender enters slow-start phase. After the CTCP sender exits 
the
          slow-start recovery state and enters congestion avoidance, dwnd 
control
          is activated again.

4. Compound TCP Response Function

          The TCP response function provides a relationship between TCP's 
average
          congestion window w in MSS-sized segments as a function of the 
steady-
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          state packet drop rate p. To specify a modified response function for
          CTCP, we use the analytical model in [CTCPI06] to derive a 
relationship
          between w and p. Based on this model, the response function for CTCP
          provides the following relationship between w and p,

             w ~.1/(p^(1/(2-k)))     (6)

          As explained earlier we modeled the response function for CTCP to 
have
          comparable scalability to HighSpeed TCP. The response function for
          HighSpeed TCP is

             w ~.1/p^0.835           (7)

          Comparing (6) and (7) we get k to be around 0.8. Since it's difficult
          to implement an arbitrary power we choose k = 0.75 which can be
          implemented using a fast integer algorithm for square root. Based on
          extensive experimentation, we chose alpha = 1/8, beta = 1/2, and eta 
=

1. Substituting the above values for alpha, beta and k in (6) we get
          the following response function for CTCP,

             w = 0.255/p^0.8         (8)

          The response function for CTCP is compared with HSTCP and is
          illustrated in Table 1 below.

                                           CTCP                 HSTCP
               Packet Drop Rate P   Congestion Window W    Congestion Window W
              ------------------   -------------------    -------------------
                      10^-3                     64                     38
                      10^-4                    404                    263
                      10^-5                   2552                   1795
                      10^-6                  16107                  12279
                      10^-7                 101630                  83981
                      10^-8                 641245                 574356
                      10^-9                4045987                3928088
                      10^-10              25528453               26864653

             Table 1: TCP Response function for CTCP & HSTCP

          The values in Table 1 illustrate that our choice of parameters makes
          CTCP slightly more aggressive than HSTCP in moderate and low packet
          loss rates but approaches HSTCP for larger windows. The reason we
          choose to do this is because unlike HighSpeed TCP, CTCP's delay 
control
          is capable of scaling back on detecting incipient congestion. As a
          result, we expect CTCP to be more TCP friendly than HighSpeed TCP. We



          show that this is in fact the case even under low buffering 
conditions
          in the presence of high statistical multiplexing. The fairness
          considerations and choice of gamma are detailed in Sections 5 and 6.
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5. Automatic Selection of Gamma

          To effectively detect early congestions, CTCP requires estimating the
          backlogged packets at the bottleneck queue and compares this estimate
          to a pre-defined threshold gamma. However, setting this threshold 
gamma
          is particularly difficult for CTCP (and for many other similar delay-
          based approaches) because gamma largely depends on the network
          configuration and the number of concurrent flows that compete for the
          same bottleneck link.  Such flows are, unfortunately, unknown to end-
          systems. Based on experimentation over varying conditions we 
originally
          selected gamma to be 30 packets. This value appeared to provide a 
good
          tradeoff between TCP fairness and throughput. However a fixed gamma 
can
          still result in poor TCP friendliness over under-buffered network
          links. One naive solution is to choose a very small value for gamma.
          However this can falsely detect congestion and adversely affect
          throughput. To address this problem, we instead use a method called
          tuning-by-emulation to dynamically adjust gamma. The basic idea is to
          estimate the backlogged packets of a Standard TCP flow along the same
          path by simultaneously emulating the behavior of a Standard TCP flow.
          Based on this, gamma is set so as to ensure good TCP-friendliness. 
CTCP
          can then automatically adapt to different network configurations 
(i.e.,
          buffer provisioning) and also concurrent competing flows.

          To ensure the effectiveness of incipient congestion detection, our
          analytical model on CTCP shows that gamma should at least be less 
than
          B/(m+l), where B is the bottleneck buffer and m and l represent the
          number of concurrent Standard TCP flows and CTCP flows, respectively,
          that are competing for the same bottleneck link [CTCPI06][CTCPP06]
          [CTCPT]. Generally, both B and (m+l) are unknown to end-systems. It 
is
          very difficult to estimate these values from end-systems in real-
time,
          especially the number of flows, which can vary significantly over 
time.
          Fortunately there is a way to directly estimate the ratio B/(m+l), 
even
          though the individual variables B and (m+l) are hard to estimate. 
Let's
          first assume there are (m+l) regular TCP flows in the network. These
          (m+l) flows should be able to fairly share the bottleneck capacity in
          steady state. Therefore, they should also get roughly equal shares of
          the buffers at the bottleneck, which should equal to B/(m+l). For 



such
          a Standard TCP flow, although it does not know either B or (m+l), it
          can still infer B/(m+l) easily by estimating its backlogged packets,
          which is a rather mature technique widely used in many delay-based
          protocols.  This brings us to the core idea of CTCP's algorithm; CTCP
          lets the sender emulate the congestion window of a Standard TCP flow.
          Using this emulated window, we can estimate the buffer occupancy
          (diff_reno) for a Standard TCP flow. Diff_reno can be regarded as a
          conservative estimate of B/(m+l) assuming that the high speed flow is
          more aggressive than Standard TCP. By choosing gamma <= diff_reno, we
          can ensure TCP fairness.

          The implementation is actually fairly trivial. This is because CTCP
          already emulates Standard TCP as the loss-based component. We can
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          simply estimate the buffer occupancy of a competing Standard TCP flow
          from state that CTCP already maintains. We choose an initial gamma = 
30
          and diff_reno is calculated as follows,

           expected_reno (throughput) = cwnd/basertt
           actual_reno (throughput) = cwnd/srtt
           diff_reno = (expected - actual) * basertt

          The difference between diff_reno and diff is simply that diff_reno is
          computed only using the loss-based component cwnd. Since Standard TCP
          reaches its maximum buffer occupancy just before a loss, CTCP uses 
the
          diff_reno value computed in the previous round to calculate the gamma
          for the next round. A round corresponds to the time it takes for one
          window of data
          to be acknowledged. It typically corresponds to one RTT. Whenever a 
loss
          happens, gamma is chosen to be less
          than diff_reno and the sample values of gamma are updated using a
          standard exponentially weighted moving average. The pseudocode to
          calculate gamma is shown below. Here a round tracks every window
          worth of data. Section 7 provides more details on how to maintain a
          round.

            Initialization:
              diff_reno = invalid;
               Gamma = 30;

            End-of-Round:

               expected_reno = cwnd / baseRTT;
               actual_reno = cwnd / RTT;
               diff_reno = (Expected_reno-Actual_reno)*baseRTT;

            On-Packet-Loss:

            If diff_reno is valid then
               g_sample = 3/4*Diff_reno;
               gamma = gamma*(1-lamda)+ lamda*g_sample;
               if (gamma < gamma_low)
                 gamma=gamma_low;
               else if (gamma > gamma_high)
                 gamma=gamma_high;
               fi
               diff_reno = invalid;
            fi



          The recommended values for gamma_low and gamma_high are 5 and 30
          respectively. diff_reno is set to invalid to prevent using stale
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          diff_reno data when there are consecutive losses between which no
          samples were taken.

6. Implementation Issues

          CTCP has been implemented on Microsoft Windows and there has been
          extensive testing on production links and in Windows Beta 
deployments.

          The first challenge is to design a mechanism that can precisely track
          the changes in round trip time with minimal overhead, and can scale
          well to support many concurrent TCP connections. Naively taking RTT
          samples for every packet will obviously be an over-kill for both CPU
          and system memory, especially for high-speed and long distance 
networks
          where the congestion window can be very large. Therefore, CTCP needs 
to
          limit the number of samples taken, but without compromising on
          accuracy. In our implementation, we only take up to M samples per
          window of data. M is chosen to scale with the round trip delay and
          window size.

          In order to further improve the efficiency in memory usage, we have
          developed a memory allocation mechanism to dynamically allocate 
sample
          buffers from a kernel fixed-size per-processor pool. The size should 
be
          chosen as a function of the available system memory. As the window 
size
          increases, M can be updated so that the samples are uniformly
          distributed over the window. As M gets updated, more memory blocks 
are
          allocated and linked to the existing sample buffers. If the sending
          rate changes, either due to network conditions or due to application
          behavior, the sample blocks are reclaimed to the global memory pool.
          This dynamic buffer management ensures the scalability of our
          implementation, so that it can work well even in a busy server which
          could host tens of thousands of TCP connections simultaneously. Note
          that it may also require a high-resolution timer to time RTT samples.

          The rest of the implementation is rather straightforward. We add two
          new state variables into the standard TCP Control Block, namely dwnd
          and basertt (described in Section 3). Following the common practice 
of
          high-speed protocols, CTCP reverts to standard TCP behavior when the
          window is small. Delay-based component only kicks in when cwnd is
          larger than some threshold, currently set to 38 packets assuming 1500
          byte MTU. dwnd is updated at the end of each round. Note that no RTT
          sampling and dwnd update happens during the loss recovery phase. This



          is because the retransmission during the loss recovery phase may 
result
          in inaccurate RTT samples and can adversely affect the delay-based
          control.

7. Deployment Issues

          There are several variations of TCP proposed for high speed and long
          delay networks. We do not claim Compound TCP to be the best nor the
          most optimal algorithm. However, based on extensive testing via
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          simulations and experimentation including those on production links 
as
          well as beta deployments of a reasonable scale, we believe that
          Compound TCP satisfies the design considerations outlined earlier in
          this document. It effectively uses spare bandwidth in high speed
          networks, achieves good intra-protocol fairness even in the presence 
of
          differing RTTs and does not adversely impact standard TCP. 
Furthermore,
          Compound TCP does not require any changes or any new feedback from 
the
          network and is deployable over the current Internet in an incremental
          fashion. It interoperates with Standard TCP and requires support only
          on the send side of a TCP connection for it to be used.

          We also note that similar to High Speed TCP, in environments typical 
of
          much of the current Internet, Compound TCP behaves exactly like
          Standard TCP. This it does by ensuring that it follows the standard 
TCP
          algorithm without any modification any time the congestion window is
          less than 38 packets. Only when the congestion window is greater than

38 packets does the delay-based component of Compound TCP get invoked.
          Thus, for example for a connection with an RTT of 100ms, the end-to-
end
          bandwidth must be greater than 4.8Mbps for CTCP to have any 
difference
          in its response to network conditions compared to standard TCP.

          Further, we do not believe that the deployment of Compound TCP would
          block the possible deployment of alternate experimental congestion
          control algorithms such as Fast TCP [FAST] or CUBIC [CUBIC]. In
          particular, Compound TCP's response has a fallback to a loss-based
          function that has characteristics very similar to HS-TCP or N 
parallel
          TCP connections.

8.    Security Considerations

          CTCP modifies the congestion control algorithm of TCP protocol by 
adding
          a delay based component while keeping all other aspects of the 
protocol
          intact. Hence, any additional security considerations for CTCP are
          limited to the security considerations for the delay based aspect of 
the
          CTCP algorithm.



          There are a few possible security considerations for the delay based
          component of CTCP. A receiver can explicitly delay the 
acknowledgements
          or it can proactively acknowledge packets. In the former case dwnd
          increase would be slower and the throughput would be no worse than
          standard TCP. In the latter case the sender may end up sending 
traffic at
          a higher rate. However as the packets are proactively acknowledged 
the
          sender will update its basertt to be much lower than the actual RTT. 
So
          any increases in measured RTT will be perceived as congestion. 
Further,
          sender can implement additional mitigations to detect such a 
malicious
          receiver eg by detecting if spurious acknowledgements are being
          acknowledged too soon i.e. faster than RTT and without actually 
receiving
          the packet. The delay measurements for CTCP are derived at the 
sender-
          side only, without relying on timestamps. This mitigates possible 
attacks
          where receiver manipulates the timestamps echoed back to the sender.
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9.    IANA Considerations

          There are no IANA considerations regarding this proposal.

10.   Conclusions

          This document proposes a congestion control algorithm for TCP for 
high
          speed and long delay networks. By introducing a delay-based component
          in addition to a standard TCP-based loss component, Compound TCP is
          able to detect and effectively use spare bandwidth that may be
          available on a high speed and long delay network. Furthermore, the
          delay-based component detects the onset of congestion early and
          gracefully reduces the sending rate. The loss-based component, on the
          other hand, ensures there is an effective response to losses in 
network
          while in the absence of losses, keeps the throughput of CTCP lower
          bounded by TCP Reno. Thus, CTCP is not timid, nor does it induce more
          self-induced packet loss than a single standard TCP flow. Thus 
Compound
          TCP is efficient in consuming available bandwidth while being 
friendly
          to standard TCP. Further, the delay component does not have any RTT
          bias thereby reducing the RTT bias of the Compound TCP vis-a-vis
          standard TCP.

          Compound TCP has been implemented as an optional component in 
Microsoft
          Windows Vista. It has been tested and experimented through broad
          Windows Vista beta deployments where it has been verified to meet its
          objectives without causing any adverse impact. The Stanford Linear
          Accelerator Center (SLAC) has also evaluated Compound TCP on 
production
          links. Based on testing and evaluation done so far, we believe 
Compound
          TCP is safe to deploy on the current Internet. We welcome additional
          analysis, testing and evaluation of Compound TCP by Internet 
community
          at large and continue to do additional testing ourselves.
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