
Workgroup: TODO Working Group

Internet-Draft: draft-ssmith-said-02

Published: 31 May 2022

Intended Status: Informational

Expires: 2 December 2022

Authors: S. Smith

ProSapien LLC

Self-Addressing IDentifier (SAID)

Abstract

A SAID (Self-Addressing IDentifier) is a special type of content-

addressable identifier based on encoded cryptographic digest that is

self-referential. The SAID derivation protocol defined herein

enables verification that a given SAID is uniquely cryptographically

bound to a serialization that includes the SAID as a field in that

serialization. Embedding a SAID as a field in the associated

serialization indicates a preferred content-addressable identifier

for that serialization that facilitates greater interoperability,

reduced ambiguity, and enhanced security when reasoning about the

serialization. Moreover, given sufficient cryptographic strength, a

cryptographic commitment such as a signature, digest, or another 

SAID, to a given SAID is essentially equivalent to a commitment to

its associated serialization. Any change to the serialization

invalidates its SAID thereby ensuring secure immutability evident

reasoning with SAIDs about serializations or equivalently their 

SAIDs. Thus SAIDs better facilitate immutably referenced data

serializations for applications such as Verifiable Credentials or

Ricardian Contracts.

SAIDs are encoded with CESR (Composable Event Streaming

Representation) [CESR] which includes a pre-pended derivation code

that encodes the cryptographic suite or algorithm used to generate

the digest. A CESR primitive's primary expression (alone or in

combination ) is textual using Base64 URL-safe characters. CESR

primitives may be round-tripped (alone or in combination) to a

compact binary representation without loss. The CESR derivation code

enables cryptographic digest algorithm agility in systems that use 

SAIDs as content addresses. Each serialization may use a different

cryptographic digest algorithm as indicated by its derivation code.

This provides interoperable future proofing. CESR was developed for

the [KERI] protocol.

Discussion Venues

This note is to be removed before publishing as an RFC.

¶

¶

¶



Source for this draft and an issue tracker can be found at https://

github.com/WebOfTrust/ietf-said.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 2 December 2022.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1.  Introduction

2.  Generation and Verification Protocols

2.1.  Example Computation

2.2.  Serialization Generation

2.2.1.  Order-Preserving Data Structures

2.3.  Example Python dict to JSON Serialization with SAID

2.4.  Example Schema Immutability using JSON Schema with SAIDs

2.5.  Discussion

3.  Appendix: Embedding SAIDs in URLs

4.  Appendix: JSON Schema with SAIDs

5.  Conventions and Definitions

6.  Security Considerations

7.  IANA Considerations

¶

¶

¶

¶

¶

¶

¶

https://github.com/WebOfTrust/ietf-said
https://github.com/WebOfTrust/ietf-said
https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info


8.  References

8.1.  Normative References

8.2.  Informative References

Acknowledgments

Author's Address

1. Introduction

The primary advantage of a content-addressable identifier is that it

is cryptographically bound to the content (expressed as a

serialization), thus providing a secure root-of-trust for reasoning

about that content. Any sufficiently strong cryptographic commitment

to a content-addressable identifier is functionally equivalent to a

cryptographic commitment to the content itself.

A self-addressing identifier (SAID) is a special class of content-

addressable identifier that is also self-referential. This requires

a special derivation protocol that generates the SAID and embeds it

in the serialized content. The reason for a special derivation

protocol is that a naive cryptographic content-addressable

identifier must not be self-referential, i.e. the identifier must

not appear within the content that it is identifying. This is

because the naive cryptographic derivation process of a content-

addressable identifier is a cryptographic digest of the serialized

content. Changing one bit of the serialization content will result

in a different digest. Therefore, self-referential content-

addressable identifiers require a special derivation protocol.

To elaborate, this approach of deriving self-referential identifiers

from the contents they identify, is called self-addressing. It

allows any validator to verify or re-derive the self-referential,

self-addressing identifier given the contents it identifies. To

clarify, a SAID is different from a standard content address or

content-addressable identifier in that a standard content-

addressable identifier may not be included inside the contents it

addresses. Moreover, a standard content-addressable identifier is

computed on the finished immutable contents, and therefore is not

self-referential. In addition, a self-addressing identifier (SAID)

includes a pre-pended derivation code that specifies the

cryptographic algorithm used to generate the digest.

An authenticatable data serialization is defined to be a

serialization that is digitally signed with a non-repudiable

asymmetric key-pair based signing scheme. A verifier, given the

public key, may verify the signature on the serialization and

thereby securely attribute the serialization to the signer. Many use

cases of authenticatable data serializations or statements include a

self-referential identifier embedded in the authenticatable

serialization. These serializations may also embed references to

¶

¶

¶



other self-referential identifiers to other serializations. The

purpose of a self-referential identifier is to enable reasoning in

software or otherwise about that serialization. Typically, these

self-referential identifiers are not cryptographically bound to

their encompassing serializations such as would be the case for a

content-addressable identifier of that serialization. This poses a

security problem because there now may be more than one identifier

for the same content. The first is self-referential, included in the

serialization, but not cryptographically bound to its encompassing

serialization and the second is cryptographically bound but not

self-referential, not included in the serialization.

When reasoning about a given content serialization, the existence of

a non-cryptographically bound but self-referential identifier is a

security vulnerability. Certainly, this identifier cannot be used by

itself to securely reason about the content because it is not bound

to the content. Anyone can place such an identifier inside some

other serialization and claim that the other serialization is the

correct serialization for that self-referential identifier.

Unfortunately, a standard content-addressable identifier for a

serialization which is bound to the serialization can not be

included in the serialization itself, i.e. can be neither self-

referential nor self-contained; it must be tracked independently. In

contrast, a self-addressing identifier is included in the

serialization to which it is cryptographically bound making it self-

referential and self-contained. Reasoning about self-addressing

identifiers (SAIDs) is secure because a SAID will verify if and only

if its encompassing serialization has not been mutated, which makes

the content immutable. SAIDs used as references to serializations in

other serializations enable tamper-evident reasoning about the

referenced serializations. This enables a more compact

representation of an authenticatable data serialization that

includes other serializations by reference to their SAIDs instead of

by embedded containment.

2. Generation and Verification Protocols

The self-addressing identifier (SAID) verification protocol is as

follows:

Make a copy of the embedded CESR [CESR] encoded SAID string

included in the serialization.

replace the SAID field value in the serialization with a dummy

string of the same length. The dummy character is #, that is,

ASCII 35 decimal (23 hex).

¶

¶

¶

*

¶

*

¶



Compute the digest of the serialization that includes the dummy

value for the SAID field. Use the digest algorithm specified by

the CESR [CESR] derivation code of the copied SAID.

Encode the computed digest with CESR [CESR] to create the final

derived and encoded SAID of the same total length as the dummy

string and the copied embedded SAID.

Compare the copied SAID with the recomputed SAID. If they are

identical then the verification is successful; otherwise

unsuccessful.

2.1. Example Computation

The CESR [CESR] encoding of a Blake3-256 (32 byte) binary digest has

44 Base-64 URL-safe characters. The first character is E which

represents Blake3-256. Therefore, a serialization of a fixed field

data structure with a SAID generated by a Blake3-256 digest must

reserve a field of length 44 characters. Suppose the initial value

of the fixed field serialization is the following string:

In the string, field1 is of length 44 characters. The first step to

generating the SAID for this serialization is to replace the

contents of field1 with a dummy string of # characters of length 44

as follows:

The Blake3-256 digest is then computed on the above string and

encoded in CESR format. This gives the following SAID:

The dummy string is then replaced with the SAID above to produce the

final serialization with embedded SAID as follows:

To verify the embedded SAID with respect to its encompassing

serialization above, just reverse the generation steps.

2.2. Serialization Generation

2.2.1. Order-Preserving Data Structures

The crucial consideration in SAID generation is reproducibility.

This requires the ordering and sizing of fields in the serialization

*

¶

*

¶

*

¶

¶

field0______field1______________________________________field2______¶

¶

field0______############################################field2______¶

¶

E8wYuBjhslETYaLZcxMkWrhVbMcA8RS1pKYl7nJ77ntA¶

¶

field0______E8wYuBjhslETYaLZcxMkWrhVbMcA8RS1pKYl7nJ77ntA______¶

¶



to be fixed. Data structures in most computer languages have fixed

fields. The example above is such an example.

A very useful type of serialization especially in some languages

like Python or JavaScript is of self-describing data structures that

are mappings of (key, value) or (label, value) pairs. These are

often also called dictionaries or hash tables. The essential feature

needed for reproducible serialization of such mappings is that

mapping preserve the ordering of its fields on any round trip to/

from a serialization. In other words the mapping is ordered with

respect to serialization. Another way to describe a predefined order

preserving serialization is canonicalization or canonical ordering.

This is often referred to as the mapping canonicalization problem.

The natural canonical ordering for such mappings is insertion order

or sometimes called field creation order. Natural order allows the

fields to appear in a preset order independent of the lexicographic

ordering of the labels. This enables functional or logical ordering

of the fields. Logical ordering also allows the absence or presence

of a field to have meaning. Fields may have a priority given by

their relative order of appearance. Fields may be grouped in logical

sequence for better usability and labels may use words that best

reflect their function independent of their relative lexicographic

ordering. The most popular serialization format for mappings is 

JSON. Other popular serializations for mappings are CBOR and

MsgPack.

In contrast, from a functional perspective, lexicographic ordering

appears un-natural. In lexicographic ordering the fields are sorted

by label prior to serialization. The problem with lexicographic

ordering is that the relative order of appearance of the fields is

determined by the labels themselves not some logical or functional

purpose of the fields themselves. This often results in oddly-

labeled fields that are so named merely to ensure that the

lexicographic ordering matches a given logical ordering.

Originally mappings in most if not all computer languages were not

insertion order preserving. The reason is that most mappings used

hash tables under the hood. Early hash tables were highly efficient

but by nature did not include any mechanism for preserving field

creation or field insertion order for serialization. Fortunately,

this is no longer true in general. Most if not all computer

languages that support dictionaries or mappings as first-class data

structures now support variations that are insertion order

preserving.

For example, since version 3.6 the default dict object in Python is

insertion order preserving. Before that, Python 3.1 introduced the 

OrderedDict class which is insertion order preserving, and before

¶

¶

¶

¶

¶



that, custom classes existed in the wild for order preserving

variants of a Python dict. Since version 1.9 the Ruby version of a 

dict, the Hash class, is insertion order preserving. Javascript is a

relative latecomer but since ECMAScript ES6 the insertion ordering

of JavaScript objects was preserved in Reflect.ownPropertyKeys().

Using custom replacer and reviver functions in .stringify and .parse

allows one to serialize and de-serialize JavaScript objects in

insertion order. Moreover, since ES11 the native .stringify uses

insertion order all text string labeled fields in Javascript

objects. It is an uncommon use case to have non-text string labels

in a mapping serialization. A list is usually a better structure in

those cases. Nonetheless, since ES6 the new Javascript Map object

preserves insertion order for all fields for all label types. Custom

replacer and reviver functions for .stringify and .parse allows one

to serialize and de-serialize Map objects to/from JSON in natural

order preserving fashion. Consequently, there is no need for any

canonical serialization but natural insertion order preserving

because one can always use lexicographic ordering to create the

insertion order.

2.3. Example Python dict to JSON Serialization with SAID

Suppose the initial value of a Python dict is as follows:

{

    "said": "",

    "first": "Sue",

    "last": "Smith",

    "role": "Founder"

}

As before the SAID will be a 44 character CESR encoded Blake3-256

digest. The serialization will be JSON. The said field value in the 

dict is to be populated with the resulting SAID. First the value of

the said field is replaced with a 44 character dummy string as

follows:

{

    "said": "############################################",

    "first": "Sue",

    "last": "Smith",

    "role": "Founder"

}

The dict is then serialized into JSON with no extra whitespace. The

serialization is the following string:

¶

¶

¶

¶

¶

¶



{"said":"############################################","first":"Sue","last":"Smith","role":"Founder"}

The Blake3-256 digest is then computed on that serialization above

and encoded in CESR to provide the SAID as follows:

The value of the said field is now replaced with the computed and

encoded SAID to produce the final serialization with embedded SAID

as follows:

{"said":"EnKa0ALimLL8eQdZGzglJG_SxvncxkmvwFDhIyLFchUk","first":"Sue","last":"Smith","role":"Founder"}

The final serialization may be converted to a python dict by

deserializing the JSON to produce:

{

    "said": "EnKa0ALimLL8eQdZGzglJG_SxvncxkmvwFDhIyLFchUk",

    "first": "Sue",

    "last": "Smith",

    "role": "Founder"

}

The generation steps may be reversed to verify the embedded SAID.

The SAID generation and verification protocol for mappings assumes

that the fields in a mapping serialization such as JSON are ordered

in stable, round-trippable, reproducible order, i.e., canonical. The

natural canonical ordering is called field insertion order.

2.4. Example Schema Immutability using JSON Schema with SAIDs

SAIDs make JSON Schema fully self-contained with self-referential,

unambiguously cryptographically bound, and verifiable content-

addressable identifiers. We apply the SAID derivation protocol

defined above to generate the $id field.

First, replace the value of the $id field with a string filled with

dummy characters of the same length as the eventual derived value

for $id.

¶

¶

EnKa0ALimLL8eQdZGzglJG_SxvncxkmvwFDhIyLFchUk¶

¶

¶

¶

¶

¶

¶

¶

https://json-schema.org/draft/2020-12/json-schema-core.html


    {

        "$id": "############################################",

        "$schema": "http://json-schema.org/draft-07/schema#",

        "type": "object",

        "properties": {

            "full_name": {

            "type": "string"

        }

    }

Second, make a digest of the serialized schema contents that include

the dummy value for the $id.

Third, replace the dummy identifier value with the derived

identifier value in the schema contents.

    {

        "$id": "EZT9Idj7zLA0Ek6o8oevixdX20607CljNg4zrf_NQINY",

        "$schema": "http://json-schema.org/draft-07/schema#",

        "type": "object",

        "properties": {

            "full_name": {

            "type": "string"

        }

    }

Usages of SAIDs within authentic data containers as demonstrated

here are referred to as self-addressing data (SAD).

2.5. Discussion

As long as any verifier recognizes the derivation code of a SAID,

the SAID is a cryptographically secure commitment to the contents in

which it is embedded; it is a cryptographically verifiable, self-

referential, content-addressable identifier. Because a SAID is both

self-referential and cryptographically bound to the contents it

identifies, anyone can validate this binding if they follow the 

derivation protocol outlined above.

To elaborate, this approach of deriving self-referential identifiers

from the contents they identify, is called self-addressing. It

allows any validator to verify or re-derive the self-referential,

self-addressing identifier given the contents it identifies. To

clarify, a SAID is different from a standard content address or

¶

¶

EZT9Idj7zLA0Ek6o8oevixdX20607CljNg4zrf_NQINY¶

¶

¶

¶

¶



[CESR]

[RFC2119]

content-addressable identifier in that a standard content-

addressable identifier may not be included inside the contents it

addresses. Moreover, a standard content-addressable identifier is

computed on the finished immutable contents, and therefore is not

self-referential.

3. Appendix: Embedding SAIDs in URLs

ToDo. Provide normative protocol for embedding a SAID in a URL to

replace a bare SAID in a data structure (field map). The purpose is

to ease the transition from web 2.0 URL centric infrastructure to

zero-trust infrastructure. This is a caveated adoption vector

because it mixes discovery (URL) with integrity (SAID) layers. The

OOBI protocol is an example of using embedded SAIDs inside URLs

merely for verifiable discovery while using the bare SAID in the

discovered data item.

4. Appendix: JSON Schema with SAIDs

ToDo. Provide normative rules for using SAIDs to lock-down JSON

Schema (immutable) to prevent schema malleability attacks.

5. Conventions and Definitions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

6. Security Considerations

TODO Security

7. IANA Considerations

This document has no IANA actions.

8. References

8.1. Normative References

Smith, S., "Composable Event Streaming Representation

(CESR)", 2021, <https://datatracker.ietf.org/doc/draft-

ssmith-cesr/>. 

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/rfc/

rfc2119>. 

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/doc/draft-ssmith-cesr/
https://datatracker.ietf.org/doc/draft-ssmith-cesr/
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119


[RFC8174]

[KERI]

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174, 

May 2017, <https://www.rfc-editor.org/rfc/rfc8174>. 

8.2. Informative References

Smith, S., "Key Event Receipt Infrastructure (KERI)", 

2021, <https://arxiv.org/abs/1907.02143>. 

Acknowledgments

Members of the keripy development team and the ToIP ACDC WG.

Author's Address

S. Smith

ProSapien LLC

Email: sam@prosapien.com

¶

https://www.rfc-editor.org/rfc/rfc8174
https://arxiv.org/abs/1907.02143
mailto:sam@prosapien.com

	Self-Addressing IDentifier (SAID)
	Abstract
	Discussion Venues
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Generation and Verification Protocols
	2.1. Example Computation
	2.2. Serialization Generation
	2.2.1. Order-Preserving Data Structures

	2.3. Example Python dict to JSON Serialization with SAID
	2.4. Example Schema Immutability using JSON Schema with SAIDs
	2.5. Discussion

	3. Appendix: Embedding SAIDs in URLs
	4. Appendix: JSON Schema with SAIDs
	5. Conventions and Definitions
	6. Security Considerations
	7. IANA Considerations
	8. References
	8.1. Normative References
	8.2. Informative References

	Acknowledgments
	Author's Address


