INTERNET-DRAFT
draft-staniford-cidf-data-formats-00.txt
Expires September 18th, 1998

The Common Intrusion Detection Framework - Data Formats

Stuart Staniford-Chen, UC Davis

Brian Tung, ISI

Phil Porras, SRI

Cliff Kahn, The Open Group

Dan Schnackenberg, Boeing Corp.

Rich Feiertag, Trusted Information Systems.
Maureen Stillman, Odyssey Research Associates

Status Of This Memo

This document is an Internet-Draft. Internet-Drafts are working
documents of the Internet Engineering Task Force (IETF), its areas, and
its working groups. Note that other groups may also distribute working
documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet- Drafts as reference material
or to cite them other than as "work in progress."

To view the entire list of current Internet-Drafts, please check the
"1id-abstracts.txt" listing contained in the Internet-Drafts Shadow
Directories on ftp.is.co.za (Africa), ftp.nordu.net (Northern Europe),
ftp.nis.garr.it (Southern Europe), munnari.oz.au (Pacific Rim),
ftp.ietf.org (US East Coast), or ftp.isi.edu (US West Coast).

Abstract

This document defines portions of the Common Intrusion Detection
Framework (CIDF), specifically the data formats used. CIDF is designed
to allow intrusion detection systems (IDS) to interoperate with one
another.

Two layered formats are defined here: Gidos, which are a high-level data
structure intended to allow IDS systems to exchange messages describing
the state of the world, events occurring, and recommended actions with
somewhat standardized semantics. Gidos can be encoded in CIDF messages,
the format for which is also defined here.

draft-ietf-cidf-data-formats-00.txt Expires 9/18/98 Page 2

Contents

https://datatracker.ietf.org/doc/html/draft-staniford-cidf-data-formats-00.txt
https://datatracker.ietf.org/doc/html/draft-ietf-cidf-data-formats-00.txt

0: Preamble
0.1 Introduction
0.2 Organization of this document
1 Architecture
1.1 Introduction
1.2 Functional decomposition (E-boxes, A-boxes etc).
1.3 Layering scheme
2 Gidos and S-expressions
2.1 Introduction to the gido format
2.2 Gido Requirements and Rationale
2.3 GIDO S-expression format
2.4 Parts of a GIDO payload
2.5 Detailed Examples
2.6 Rules and Guidelines for Defining SIDs
2.7 Example CIDF Module GIDO Sets
2.8 Negotiation
3 Encoding Gidos in Bytes
3.1 Introduction
3.2 Gido header
3.3 S-expression encoding
4 CIDF Communication
4.1 CIDF message layer formats
4.2 CIDF Message Processing
A. Primitive Type Definitions
B. SIDS List
draft-ietf-cidf-data-formats-00.txt Expires 9/18/98 Page 3

The goal of the Common Intrusion Detection Framework is a set of
specifications which allow
* different intrusion detection systems to inter-operate and
share information as richly as possible,
* components of intrusion detection systems to be easily re-used
in contexts different from those they were designed for.

The CIDF working group came together originally in January 1997 at the
behest of Teresa Lunt at DARPA in order to develop standards to
accomplish the goals outlined in the previous section. She was
particularly concerned that the various intrusion detection efforts she
was funding be usable and reusable together and have lasting value to
customers of intrusion detection systems.

During the life of the effort, it became clear that this was of wider
value than just to DARPA contractors, and the group was broadened to
include representatives from a number of government, commercial, and
academic organizations. After the first few months, membership in the

https://datatracker.ietf.org/doc/html/draft-ietf-cidf-data-formats-00.txt

CIDF working group was open to any individuals or organizations that
wished to contribute. No cost was involved (except to defray meeting
expenses).

Major decisions were made at regular (every few months) meetings of the
working group. Those decisions were made by rough consensus of all
attendees. That is, the meeting facilitator attempted to reach
consensus, but in situations where only one or two individuals were
protesting a decision, they were overruled in the interest of
efficiency. No decisions were taken in the face of opposition from a
sizeable minority, rather the issue was tabled for further
consideration. Meetings were fun and the working group had a good time
doing this (well, most of them, anyway).

In between meetings, most of the writing was done by small subgroups or
individuals. Their text was brought back for approval/changes at
meetings. Discussions were also carried on in the working group mailing

list, but few decisions were made that way.

The CIDF working group is now seeking to become an IETF working group.

draft-ietf-cidf-data-formats-00.txt Expires 9/18/98 Page 4

This section describes the organization of this internet draft on CIDF
data formats.

CIDF consists of the following things:

1) A set of architectural conventions for how different parts
of intrusion detection systems can be modeled as CIDF
components.

2) A way to represent gidos (generalized intrusion detection
objects). Gidos can
* describe events that have happened in the systems mo
by an IDS,
* instruct an IDS to carry out some action
* query an IDS as to what has happened.
* describe an IDS component.

3) A way to encode gidos into streams of bytes suitable for
transmission over a network or storage in a file.

4) Protocols for CIDF components to find each other over a
network and exchange gidos.

5) Application Programming Interfaces to re-use CIDF

https://datatracker.ietf.org/doc/html/draft-ietf-cidf-data-formats-00.txt

components.

This internet draft is mainly concerned with the Gido data structure,
(appearing in Chapter 2), how gidos get encoded on the wire (appearing
in Chapter 3), and the message formats (in chapter 4). However, as an
orientation, the architectural view is covered in Chapter 1.

APIs and mechanisms for location of components are not discussed in this
draft.

0.2.1: Format

This document complies with the requirements for RFC 1543, the format
for ASCII Internet RFCs. 1In summary, this means that lines are at most
72 characters long and that they are terminated with a carriage-return,
line-feed pair. Pages are at most 58 lines long and are terminated with
a form-feed character. Paragraphs are single spaced and are separated
by blank lines.

Lines in the text beginning with "#" denote editorial comments which
should be removed before the final version.

draft-ietf-cidf-data-formats-00.txt Expires 9/18/98 Page 5

The document is also divided into sections which are further divided
into subsections, subsubsections, and so on. The numbering convention
is as "3.4.1", which describes the first subsubsection of the fourth
subsection of the third section. Appendices are lettered, and so an
Appendix subsection might be B.4.2.

= 1.1: Introduction

This section introduces the architectural framework that CIDF assumes
will structure an intrusion detection system. This scheme is basically
a framework around which interfaces and the communication protocols are
organized. It is not mandated that CIDF-conformant intrusion detection
systems must be organized in exactly this way. But they must support
interfaces that are so organized.

Section 1.2 introduces the various different kinds of components that
CIDF believes are needed in IDS systems. Section 1.3 covers the

https://datatracker.ietf.org/doc/html/rfc1543
https://datatracker.ietf.org/doc/html/draft-ietf-cidf-data-formats-00.txt

communication layering scheme, and section 1.4 discusses how components
are named and located.

draft-ietf-cidf-data-formats-00.txt Expires 9/18/98 Page 6

1]
=
N
(@]
-]
o
m
m
c
>
(9}
+
[y
o
>
Q
[
o
(9%
O
o
=

o
o
)
=
+
[y
o
S

All CIDF components deal in *gidos* (generalized intrusion detection
objects) which are represented via a standard common format. Gidos are
data that is moved around in the intrusion detection system. Gidos can
represent events that occurred in the system, analysis of those events,
prescriptions to be carried out, or queries about events.

CIDF defines four interfaces that CIDF components may implement:

| Push-style | Pull-style
S S e e e e e e
| | Produces gidos when it | Produces gidos
Producer || wants to, typically in | when queried.
| | response to events. |
--------- T IS
| | Mates with push-style | Mates with pull-
Consumer || producer. | style producer.
[I

Each of these interfaces takes two forms: a callable form, which permits
reuse of the component, and a protocol form, which permits the component
to interoperate with other CIDF components.

CIDF defines several types of preferred components:

* Event generators
* Analyzers

* Databases

* Response units

Figure 1.1 presents a schematic view of these components in a
hypothetical intrusion detection system. The solid boxes labeled E1,
E2, Al, A2, D, etc represent the various components of some hypothetical
intrusion detection system. It is convenient to think of these as
objects in the object-oriented programming sense (this does not dictate
an implementation in an object-oriented language or framework).

draft-ietf-cidf-data-formats-00.txt Expires 9/18/98 Page 7

https://datatracker.ietf.org/doc/html/draft-ietf-cidf-data-formats-00.txt
https://datatracker.ietf.org/doc/html/draft-ietf-cidf-data-formats-00.txt

I I
I I
I I
| | B2 | | E2 | | E3 | I
IEREEEEEE L b S
| N N A |
L |- ! |
I PRRSREtE C |
I III """"" I roTTTTT I
| VVV R —— > AL ||
SSEEECERETE | eeeeeen | Teeeees L
NS |
| |<----- |
| e ' e |
| A A e > A2 ||
I T R TR L
| IRRCEETERPPEEE : |
I I I I
I v v I
I r-TTTTT r-TTTTT I
I | D | | R | I
I - b e ' I
I I I
____________________ |_______________'
I
\Y

Figure 1.1: Types of CIDF components

Whether the individual components are separate processes or images, or
merely conceptually separate parts of the code in a single image is not
specified - both possibilities are covered by the CIDF specification.

CIDF allows for components to be aggregated together to masquerade as a
single component. In other words, a large number of (possibly
distributed) components can be tied together and present themselves to
the outside world through a single CIDF interface.

HAHHH AR HHH A B HHH R R R R R R R R R R
#

Stuart comment:

It is not clear at present how this last requirement is to

be achieved.

#

HAHHH AR HHH AR HHH AR R R R R R R R AR

1.2.1 Configuration and Directory Service

draft-ietf-cidf-data-formats-00.txt Expires 9/18/98 Page 8

https://datatracker.ietf.org/doc/html/draft-ietf-cidf-data-formats-00.txt

The box labelled C in Figure 1.1 represents the configuration and
directory services that tie components together via their standard CIDF
interfaces. A component initiating communication may avoid using these
services if it knows how to address its target directly, or uses non-
CIDF means to do so. Otherwise, these services allow a component either
to look up its target explicitly or to derive its communication
"partners" by looking up "gido classes".

Gido classes specify types of data that may be exchanged between
components. Components that wish to receive certain kinds of gidos
describe what they want; components producing event records describe
what it is they produce. The directory service, augmented by
intelligence local to each component, then takes care of associating
GIDO producers with appropriate GIDO consumers. In this mode of use,
components are thus relieved of the burden of identifying or locating
their partners in the intrusion-detection system.

This service is not discussed further
in this Internet draft.

1.2.2 Event Generators

The boxes labelled Ei in Figure 1.1 are event generators. Their role is
to obtain events from the larger computational environment outside the
intrusion detection system (symbolized by the arrows coming from outside
the large box), and provide them in the CIDF standard gido format to the
rest of the system. For example, event generators might be simple
filters that take C2 audit trails and convert them into the standard
format. Another event generator may passively monitor a network and
generate events based on the traffic thereon. A third might be
application code in an SQL database program which generates events
describing database transactions.

It seems that event generators are likely to be reusable in that CIDF
has a standard data format, and so converting features of typical
computational environments into that format will be a task that many
groups will need to perform. Hence, it is useful to specify a preferred
way to configure and use event generators.

Preferred event generators implement the push-style producer interface.
They create only gidos describing raw events, not gidos describing
analyses or prescriptions.

Preferred event generators provide events as soon as they occur (with
the possible exception of transport queuing). Storage of events is
handled in gido databases.

1.2.2 Event Analyzers

Analyzers are labeled by Ai in Figure 1.1. They are the components we
typically think of in the intrusion detection context. They obtain

gidos from other components, analyze them, and return new gidos (which
hopefully represent some kind of synthesis or summary of the input).

draft-ietf-cidf-data-formats-00.txt Expires 9/18/98 Page 9

Thus for example, an analyzer might be a statistical profiling tool that
examines whether events being supplied to it now are statistically
unlikely to be from the same time series as events supplied to it in the
past. Another example is a signature tool that examines sequences of
events looking for particular patterns that represent known misuse of
the system. Another example would be a correlator that simply examines
events and attempts to determine whether they are causally related to
one another, and then puts them together into composite events which can
be further analyzed. Simple analyzers might be just filters that throw
away events that match certain patterns, or caches that only forward
events dissimilar from recently seen events.

A preferred event analyzer implements the push-style consumer interface,
whereby it obtains input, and the push-style producer interface, whereby
it reports analyses. The gidos it produces are analysis results, not
raw events nor prescriptions.

Again, preferred gido analyzers immediately pass through gidos (with the
exception of some processing delay). No provision is made for storage of
gidos by analyzers.

1.2.3 Event Databases

Databases are labeled by Di in Figure 1.1. These components exist
simply to give persistence to CIDF gidos where that is necessary. The
interfaces allow other components to pass gidos to the database, and to
query the database for gidos that it is holding. Databases are not
expected to change or process the gidos in any way (or at least to
maintain the illusion that they don't).

A preferred gido database implements the push-style consumer interface,
whereby it receives any sort of gido,

and the pull-style producer interface, whereby it responds

to queries.

It is not assumed that the database is a complex application (such as a
relational database). It may simply be a file.

1.2.4 Response Units

Response units are the soldier ants of the CIDF ant-heap. They carry
out prescriptions - gidos that instruct them to act on behalf of other
CIDF components. This is where functionality such as killing processes,
resetting connections, etc. would reside. Response units are not
expected to produce output except as acknowledgements.

https://datatracker.ietf.org/doc/html/draft-ietf-cidf-data-formats-00.txt

A preferred response unit implements the push-style consumer interface,
whereby it receives prescriptions. It may also implement the push-style
producer interface, whereby it reports on its efforts to carry out the
prescriptions.

draft-ietf-cidf-data-formats-00.txt Expires 9/18/98 Page 10

1.2.5 Other Components

Many other useful types of component are compatible with CIDF. For
example, a subsystem may record events in a non-CIDF format, but may
implement the pull-style producer interface so that CIDF components can
query its record of events.

A component may record gidos for archival purposes, thus needing only a
push-style consumer interface.

A component may observe the world and do some analysis or filtering
before creating gidos. Such a component implements the push-style
producer interface.

An event analyzer may consult a gido database. The analyzer would need
a pull-style consumer interface beside the usual push-style producer and
push-style consumer interfaces.

A component may carry out responses, like a response unit, but also

produce analyses, like an event analyzer.

draft-ietf-cidf-data-formats-00.txt Expires 9/18/98 Page 11

1.3.1: Background

CIDF supports both interoperability and reusability of components. As
such, a component may be communicating with another across the network,
or as part of the same executable. 1In addition, to the extent feasible,
CIDF avoids specifying a particular language or choice of network
protocols. To support this flexibility, the design is structured in
layers. Figure 1.2 shows the layers.

| message |

https://datatracker.ietf.org/doc/html/draft-ietf-cidf-data-formats-00.txt
https://datatracker.ietf.org/doc/html/draft-ietf-cidf-data-formats-00.txt

| (negotiated) |
| transport |
| layer |

Figure 1.2
1.3.2: API Layer

At the top of figure 1.2 is an API layer indicating code-based
interfaces to the layers below. This is not discussed in this draft.

1.3.3: Gido layer

Independent of programming language, network protocols, etc, CIDF
defines common formats for intrusion detection data. This data comes in
discrete packages called gidos (generalized intrusion detection
objects). The organization of the data, its semantics for an IDS
component, and a way to encode it in bytes are all defined at this
level.

The rationale for this is to separate the issue of how data is organized
and what it means (gido layer) from how it is gotten in and out of
components (API layer) and moved across networks (message layer). Gidos

are discussed in sections 2 and 3 of this document.

1.3.4: Message layer

draft-ietf-cidf-data-formats-00.txt Expires 9/18/98 Page 12

Gidos must be moved across networks. Certain features of this process
must be present for CIDF purposes and may not be provided by underlying
transport mechanisms (such as cryptography, CIDF addressing, etc). The
CIDF message layer is intended to provide this functionality. This
layer is addressed in section 4. Use of this layer is mandated for CIDF
components that are to be interoperable across a network.

1.3.5: Transport layer

The figure below illustrates the notion of two independently developed
CIDF modules that build to a common interface specification. CIDF
supports

For the two modules to communicate, they are required to employ the same
transport protocols that will establish the communication channel and
handle message passing. The introduction of the transport layer is
handled during the integration phase, as module developers negotiate and
agree upon a common transport channel. For example, both developers may
agree that sockets will be used for this communication session. Other

https://datatracker.ietf.org/doc/html/draft-ietf-cidf-data-formats-00.txt

developers may decide they wish to employ secure RPC for a different
session. CIDF provides the flexibility to use different transport
mechanisms, and a negotiation mechanism to choose amongst them. The
reason for having an independent transport layer below the message layer
is that our only requirement is that the components understand the
messages. This is independent of the way in which messages are
transmitted. Different applications will require different transport
mechanisms. All components are required to support a default transport
mechanism, namely UDP. This is necessary in order to guarantee that two
components can talk at least enough to negotiate about which other
transport mechanism they might prefer.

Interoperation Among Independently-Developed
Intrusion-Detection Modules

S + +-- -+ +---+ RS —— +
Intrusion		T		T		Intrusion
Detection		R		R		Detection
Module X		A communication	A		Module Y	
		N	interface	N		[
Developer 1		S	<----mmmmmm e >	S		Developer 2
		P	negotiated	P		
Language A		0	during	0		Language B
0S X		R	integration	R		oS Y
et + | T | phase | T | R +

A +---+ +---+ N

/ \ / \

| |

I I

| Build-to e T + Build-to |

I I I I

Fom o | Common Interface |------------------ +

| Specification |
S +
Figure 1.3

draft-ietf-cidf-data-formats-00.txt Expires 9/18/98 Page 13

2.1.1: Overview

This chapter specifies a standard gido format for use by CIDF
components. These components shall use this standard for disseminating
event records, analysis results, and countermeasure directives, to IDS
modules. The document both defines the syntactic structure of these
messages, and provides a method for defining the semantic content

https://datatracker.ietf.org/doc/html/draft-ietf-cidf-data-formats-00.txt

necessary for interpreting the various data elements embedded within the
structure.

2.1.2: Organization

This section is organized as follows. Section 2.2 discusses the
requirements for the gido format and the rationale for our choice.
Section 2.3 summarizes S-expressions as we define them and use them for
gidos. Section 2.4 begins serious discussion of the semantic
identifiers we use, and how to put gido-sentences together. Section 2.5
provides some detailed examples. Section 2.6 contains some rules and
guidelines for defining new SIDS. Section 2.7 identifies the recommended
set of GIDOs (primarily internal status information) that all CIDF-
compliant modules should be able to produce. Section 2.8 discusses
requirements for gido format negotiation protocols.

Readers will probably wish also to consult Appendices A and B which list
all the currently defined data types and SIDS.

draft-ietf-cidf-data-formats-00.txt Expires 9/18/98 Page 14

Under the CIDF data sharing model, components receive an input stream,
use this input to drive their internal analytical processing, and pass
the results to other components within an overall intrusion detection
architecture. The output of one component may be the input of another
component. Therefore, this specification closely coordinates the
structures of event records, analysis reports, and countermeasure
prescriptions. In many cases, current state information must also be
used in order to fully understand the meaning of events, hence this is
also encoded in gidos. This adoption of a single standard for both E-,
A-, and R-boxes provides significant advantages in the reduction of
interface complexity. 1In addition, this approach provides great
flexibility as intrusion-detection objectives move from component
analysis, to systems analysis, to system of systems analysis.

However, this relationship between event records and analysis results
does not necessarily extend beyond the specification of identical
gido structures. Event records, analysis results, and

countermeasure prescriptions remain dissimilar in significant ways:

0 Event records represent the operational activity of the
analysis target, and may be produced in large volumes. Minor
losses of event records, while potentially damaging, will not
necessarily imply a significant compromise to operational security.

0 Analysis results represent significant conclusions derived from
an analytical review of an event stream, and should represent a

https://datatracker.ietf.org/doc/html/draft-ietf-cidf-data-formats-00.txt

significant reduction in volume from that of the event stream.
Minor losses of analysis results are far more critical to the
operation security of the target system than event records.

0 Countermeasure results likewise should be low volume and sensitive
to loss.

Thus, while gidos encode events, analysis results, and countermeasure
prescriptions identically, other processing layers such as transport may
handle them differently. For example, specifications for event
transport may derive requirements that emphasize performance (e.g.,
stateless UDP transmission), while analysis results dissemination
protocols may emphasize ensured delivery and accurate reassembly over
issues of performance (e.g., TCP transmission). Protocols for event
dissemination and analysis results reporting may also handle other
issues differently, such as security requirements.

The GIDO structure contains the actual data representing the event
record, analysis results, and countermeasure directives produced by
their respective CIDF components. The encoding scheme requires the
ability to express complex, self-defining data structures, while
providing efficient high-volume transmissions of predefined structures.
This specification uses S-expressions as the basic payload format.

draft-ietf-cidf-data-formats-00.txt Expires 9/18/98 Page 15

S-expressions are a self-defining formatting scheme for representing
arbitrarily complex data structures. This message encoding
specification employs a very simplified form of S-expressions for event
record, analysis report, and countermeasure directive representation.
One of the motivations for this choice is that S-expressions in general
allow for an impressive degree of reasoning and formalism.

The design goals for the gido format are:

-- generality: Gidos should be capable of representing arbitrarily
complex data.

-- self-defining: Extensions to payload formatting should be
semantically defined within the payload itself. Consumers should
be able to learn or adjust to alterations in the expected format
or comprehend entirely new payload format.

-- simplicity: The encoding scheme should produce messages that
do not force complex parsing logic upon IDS module developers if tha
is not necessary in their application. The encoding scheme should b
easily understandable and gidos should have a human readable
representation.

-- efficiency: Payload expressions should represent data compactly.
The overhead of semantic self-definitions should be removable
when predefined messages are transported in bulk.

-- flexible: Payload expressions must be open to modification and

https://datatracker.ietf.org/doc/html/draft-ietf-cidf-data-formats-00.txt

extensions to new data types, semantic information, and new
data structures.

-- independent of call semantics: Payload expression must be
supportive of both embedded data (call by value) messages and
data independent (call by reference) messages.

draft-ietf-cidf-data-formats-00.txt Expires 9/18/98 Page 16

2.3.1 Preamble

In this section, we define how S-expressions are put together at a low
level in CIDF. This is the human readable format; the wire format is
defined in terms of this one in section 3.3.

In addition to questions of encoding format, this specification also
enumerates a set of CIDF-compliant default primitive data types and
semantic-identifiers (SIDs) used when expressing individual payload
fields. How SIDS should be combined into S-expressions that form
meaningful gidos is discussed in section 2.4

The primitive data types, presented in Appendix A, define the available
encoding used for field representation. Semantic-identifiers (SIDs), in
Appendix B, provide standard identifiers that gido consumers may use to
interpret the various data fields within a payload expression.

2.3.2 S-Expression Grammar

Following is the grammar for CIDF S-expressions in BNF. Terminal symbols
are represented in upper case. Literal characters are enclosed in
quotes (").

<item-list> 1= <item> | "(" item-list ")" |
<item-list><item>

<item> = "(" <sid-exp> <data-exp-list> ")" |
"(" "def" SID <sid-exp> ")"

<sid-exp> 1= <specifier> |
"(" <specifier> <sid-exp-list> ")"

<sid-exp-list> ::= <sid-exp> |

<sid-exp-list> <sid-exp>

<specifier> = SID | TYPE | NAME
<data-exp-list> ::= <data-exp> |

<data-exp-list> <data-exp>
<data-exp> 1:= DATA |

"(" <sid-exp> <data-exp-list> ")"

Using this grammar, data fields are coupled with semantic identifiers
parenthetically. A SID indicates how its associated data element is

https://datatracker.ietf.org/doc/html/draft-ietf-cidf-data-formats-00.txt

syntactically represented as well as the data element's semantic
content. A collection of parenthetical SID/Data tuples can themselves
be grouped together in outer parentheses, indicating an explicit
association of the SID/Data tuples (i.e., they represent attributes of
a larger element in the expression). SID grouping is discussed further,
with illustrations, in Section 2.3.

A SID is a unique token for a semantic identifier. TYPE is one of the

primitive types specified in Appendix A. NAME identifies a named element
of a structure. DATA is a data literal.

draft-ietf-cidf-data-formats-00.txt Expires 9/18/98 Page 17

2.3.3: GIDO S-expression Examples

The following sections illustrate low-level ways of using S-expressions
to encode gido data structures. We give these examples for
concreteness, but see the next section for more information on how to
form gidos.

2.3.3.1: Embedded Semantics and Data Payload Example

This form is used for expressing field-oriented lists of data, where the
data is embedded within the message. The format consists of a series of
tuples, one tuple per data field. Each tuple consists of a semantic
identifier followed by its associated data item:

Format: (SID-1 data-exp-1)(SID-2 data-exp-2) . . . (SID-N data-exp-N)

In this format, their is a SID with each data item, providing a self-
defining message format. A consumer can parse the message for those
SIDs it understands and desires to analyze, and discard data fields
containing unknown or unwanted SIDs. As discussed in Appendix B, each
SID has an associated data type, which completes the self-definition of
the message. Thus, by parsing the SID tokens, the consumer knows both
how to interpret each data element semantically, and how the data
elements are syntactically represented.

2.3.3.2 Pre-defined Constant Payload Format

This form allows for semantics of predefined message structures to be
conveyed to consumers once. From that point forward, consumers can
receive and interpret raw data structures without the overhead of
embedded SIDs. This form is highly efficient for transporting high-
volumes of the same message type. This form is also used for
enumerating a pre-defined set of CIDF E/A-box messages (see Section
2.5).

A gido producer begin the message exchange by sending the consumer a
message definition statement. The "def" defines a new SID that can be
used subsequently. SID indicates the semantic identifier being defined.

https://datatracker.ietf.org/doc/html/draft-ietf-cidf-data-formats-00.txt

SIDs are special identifiers in the language. Attempting to define a
SID that is already defined is an error. arg-list is a list of dummy
arguments that will be matched with the actual arguments in use to
evaluate the S-expression. sid-exp-1 defines the SID in terms of SIDs
and TYPEs that are already defined. sid-exp-1 may only contain SIDS
that have been predefined either because they are included in an
appendix to this document or they have been defined in a prior
definition.

Formatl: (def SID arg-list sid-exp-1)

HHHBHABHHBH BB HBHHBHHBH A HAE B H B H B H B HH B H A H AR
Editor's Comment: The event subgroup has not resolved the

issue of scope for dynamically defined SIDS.

HHHBHH B AR R R R R R R AR R R R

draft-ietf-cidf-data-formats-00.txt Expires 9/18/98 Page 18

1
N
N
o
[o}]
=S
+
(9]
o
ur
[o}]
@
—
o
(@)

©
o]

<
'_l
o]
o]
o

2.4.1 Introduction

A GIDO consists of the GIDO header--which gives information pertaining
to the encapsulation of the GIDO, such as its version number, its
length, and so forth--and the GIDO payload. 1In this section, we will
describe how SIDs are put together to compose the GIDO payload using S-
expressions described in the last section. The Gido header is discussed
in section 3.2

A well-formed GIDO payload consists of one or more top-level
sentences.

Sentences are S-expressions that can be said to "assert" something. A
typical sentence might describe the state of a machine at a given time,
or it might report that a given event had taken place, or it might also
recommend that an action be taken to counter an attack.

A sentence may be composed of other sentences, connected in some way;
such a sentence is called a *compound sentence*. A sentence which is not
compound is called a *simple sentence*. Broadly speaking, a simple
sentence contains a *verb*, which describes what happened, and other S-
expressions that describe who verbed what, where, when, and how, and so
forth.

In the following sections, we will examine how each of these may be
denoted and described, and finally, put together to form a complete
sentence.

2.4.2. Verb SIDs

https://datatracker.ietf.org/doc/html/draft-ietf-cidf-data-formats-00.txt

At the heart of a sentence is the *verb*. Normally, we think of verbs as
denoting some action (which may sound somewhat event-centric), but they
may also denote a recommendation, for instance, or description of state.
Each sentence has one main verb. An example of a verb SID is "Execute".

Verb SIDs, unlike most other SIDs, do not take a concrete data type for
an argument. Instead they take a sequence of one or more S-expressions.
These S-expressions describe the various "players" for the verb. 1In the
case of "Execute", we would be interested in what (program) was
executed, who executed it, where and when it was executed, and so on.

2.4.3. Role SIDs

A verb has little value until we describe who and what that verb applies
to. This is accomplished using *role* SIDs. A role denotes what part
an entity, or set of attributes, plays in a sentence. Examples of roles
are "Initiator" and "Operand".

draft-ietf-cidf-data-formats-00.txt Expires 9/18/98 Page 19

Role SIDs, like verb SIDs, take a sequence of one or more S-expressions
as argument. These S-expressions describe the object, roughly speaking,
which is playing that role in the sentence.

Example:
(Initiator (RealName "Joe Cool") (UserName "joe") (UserID "1618"))

denotes a user, with real name "Joe Cool", user name "joe", and user ID
"1618", acting as Initiator. (Typically, an Initiator is someone who
causes an action to take place--such as executing a program.)

An S-expression headed by a role SID is called a *role clause*.
2.4.4. Extension SIDs

It is not expected that any component will understand all SIDs. A
component concerned with Unix notions will often not be worried about
X.500-related SIDs. Nevertheless, many X.500-related SIDs have their
complements in the Unix world, and the Unix component will want to
capture this information, even if it isn't cognizant of the exact use of
this information in the X.500 world. For instance, a user's real name
is a user's real name, although in Unix it might be the name in
/etc/passwd associated with the user's account, and in X.500 it may be a
Common Name. If these two concepts were expressed with two completely
distinct SIDs, then we would lose much of the benefits of data sharing.

Extension SIDs are designed to address this. Extension SIDs allow one
to specify information in a relatively generic fashion, and then give
more specialized receivers extra information about a SID that specifies

https://datatracker.ietf.org/doc/html/draft-ietf-cidf-data-formats-00.txt

more precisely how it is to be used. For instance, an X.500 Common Name
would be expressed as follows:

(RealName (ExtendedBy X500CommonName) "Joe Cool")

Most components would be able to understand the RealName SID, and would
be able to capture the fact that the a user with the real name "Joe
Cool" is in question here. Additionally, any component who understands
X.500 would implement the X500CommonName extension, so that it knows
that the real name is registered as a Common Name, along with any
implications of that fact.

In general, a SID is *extended* by following it with a sequence of one
or more SID-pairs, each of which is tagged with the ExtendedBy SID. An
extension SID MUST follow the SID or extension which it extends. For
example, the following is well-formed:

(ObjectName (ExtendedBy DeviceName) (Extendedby UnixFullDeviceName)

)

where the ellipsis indicates the sequence of S-expressions qualifying
the ChangePrivilege verb.

draft-ietf-cidf-data-formats-00.txt Expires 9/18/98 Page 20

An extended SID always takes the same *type* as the unextended (base)
SID. In fact, if one knows that a message will *only* be used by someone
who recognizes the extension, then it may omit the base class
altogether, and refer only to the extension. Therefore, for instance,
one could write

(X500CommonName "Joe Cool")
2.4.5. Conjunction SIDs
Conjunction SIDs join sentences at the same "level" together. Two
sentences that are simply juxtaposed together are presumed to mean that
both hold. That is,

<Sentencel> <Sentence2>
means that both Sentencel and Sentence2 hold. Other relationships are
indicated by the appropriate conjunction SID. For instance, to indicate
that Sentencel, Sentence2, and Sentence3 all had a common cause, one
writes

(CommonCause <Sentencel> <Sentence2> <Sentence3>)

2.4.6. Open S-Expressions

https://datatracker.ietf.org/doc/html/draft-ietf-cidf-data-formats-00.txt

An open S-expression is one in which not all the data values are "filled
in", so to speak. It is used to express concepts such as '"<Someone>
removed <some file>." Its only currently defined usage is in the def
construct, as follows:

(def RemoveFile ($username $filename)
(Remove
(Initiator (UserName $username))
(Operand (ObjectType file) (ObjectName $filename))

)

In later usage, we can express "The user with user name joe removed the
file /etc/passwd" in this way:

(RemoveFile "joe" "/etc/passwd")
Its general format is

(def <NewSID> (<ListOfArguments>) <SIDExpansion>)
2.4.7. Referent SIDs
There is a last special type of SIDs, called Referent SIDs. They are
placed at the end of this chapter, because they are not restricted to
the construction of a single sentence, but instead allow one to link two

or more sentences together (though they are often used to refer to other
parts of the same sentence).

draft-ietf-cidf-data-formats-00.txt Expires 9/18/98 Page 21

The two referent SIDs are ReferAs and ReferTo. They take a string as
their data type. A SID-pair headed by a referent SID is called a
referent clause. A referent clause may be placed into either a
sentence or a role clause. Their interpretation varies depending on
where they appear:

* If a ReferAs clause is placed into a sentence, it can be said
to *refer* to that sentence, *except* for any ReferAs clauses.
(It is considered bad form to use more than one ReferAs clause
in the same sentence at the top level.) Thereafter, a use of
the corresponding ReferTo clause can be used in place of that
sentence (although see warning below).

* If a ReferAs clause is placed into a role clause, it is said
to refer to the object described by the sequence of S-expressions
following that role, *except* for any ReferAs clauses. (It is
considered bad form to use more than one ReferAs clause in the
same role clause.) Thereafter, a use of the corresponding
ReferTo clause can be used in place of that object description
(again, see warning below).

https://datatracker.ietf.org/doc/html/draft-ietf-cidf-data-formats-00.txt

* WARNING. The referent SIDs MAY carry actual semantics, and are
not simply macros. If a ReferAs clause is placed into a sentence,
and that sentence refers to an event (say), then the ReferTo
clause refers specifically to that specific event, and not simply
to an event with the same attributes (which after all may not be
uniquely identifying). Similarly, if a ReferAs clause is placed
into a role clause, and that role clause describes an object (say)
then the ReferTo clause refers specifically to the same object,
and not simply to an object with the same attributes.

Of course, if no specific item is denoted by the ReferAs clause,

then this warning does not apply. For example, if ReferAs occurs
in an assertion of state, then it can be interpreted as simply a

macro, since there is no unique item being denoted.

As an example, consider the following sequence:

(Remove
(Initiator (RealName "Joe Cool"))
(Operand (FileName (ExtendedBy UnixPathName) "/etc/passwd"))
(AtTime (Time "1998 Feb 25 12:40:32 PST"))
(ReferAs "JoesDeletion")

)

followed by

(HelpedCause
(ReferTo "JoesDeletion")
(Login
(Initiator (RealName "Mary Worth"))
(To (HostName "host.work.com"))
(Outcome (ExtendedBy UnixErrno) (ReturnCode 13))

)

draft-ietf-cidf-data-formats-00.txt Expires 9/18/98 Page 22

This indicates that the act of Joe Cool deleting /etc/passwd later
helped to prevent Mary Worth from logging in to host.work.com. Note
that this specific instance of Joe Cool deleting /etc/passwd is referred
to here. Even if (by resetting the clock, say) Joe Cool were to delete
/etc/passwd a second time with the same attributes, this construction
would still show that it was the *first* deletion that helped prevent
Mary Worth from logging in.

Since referent SIDs act across GIDOs, and hence potentially across
multiple messages (although not necessarily so), the question of scope
arises. The scope rule applying to Referent SIDs is as follows: The
value of a referent clause is the verb or role within which it is found
(roughly speaking), provided that that verb or role is in the same

https://datatracker.ietf.org/doc/html/draft-ietf-cidf-data-formats-00.txt

thread. A thread is defined as the conjunction of the originator ID and
thread ID fields in the GIDO header. A producer MUST NOT re-use a
referent (such as "JoesDeletion") within the same thread, for
perpetuity.

2.4.8. Guidelines for Putting SIDs Together to Form Sentences

In this section, we describe how to use verb SIDs, role SIDs,
conjunction SIDs, and other kinds of SIDs to construct sentences.

2.4.8.1. Basic Organization

As noted above, a simple sentence is an S-expression headed by a verb
SID (which may be extended). This verb SID is followed by a sequence of
one or more S-expressions that describe the various entities that play
parts in the sentence, or qualify the verb.

The S-expressions denoting the roles of the sentence are headed by a
role SID, which may also be extended. This role SID is again followed
by a sequence of one or more S-expressions that may describe attributes
of the entity playing that role. It may also describe a sentence that
plays a role within the sentence.

A BNF-like grammar that specifies this structure is as follows.

draft-ietf-cidf-data-formats-00.txt Expires 9/18/98 Page 23

= <Sentence> <SentencelList>
| <Sentence>
= "(" <ConjunctionSID> <ExtensionList>

<SentencelList>

<Sentence> HH
<SentenceList> ")"

"(" <VerbSID> <ExtensionList> <QualifierList> ")

"(" <VerbSID> <ExtensionList> <ReferToClause> ")

"(" "def" <NewSID> <ArgList> <SIDExpansion> ")"

I
I
I

<QualifierList> = <Qualifier> <QualifierList>
| <Qualifier>

<Qualifier> 1= "(" <RoleSID> <ExtensionList> <QualifierList> ")
| "(" <RoleSID> <ExtensionList> <ReferToClause> ")
| "(" <AtomSID> <ExtensionList> <AtomSIDData> ")"
| "(" "ReferAs" <Referent> ")"

<ExtensionList> = <Extension> <ExtensionList>
| <NULL>

<Extension> = "(" "ExtendedBy" <ExtensionSID> ")"

<ArglList> := <Arg> <ArgList>
| <NULL>

<ReferToClause> = "(" "ReferTo" <Referent> ")"

In English: A GIDO payload is a SentencelList, which is a list of
Sentences.

A Sentence may be a ConjunctionSID, followed by a list of the Sentences

https://datatracker.ietf.org/doc/html/draft-ietf-cidf-data-formats-00.txt

it conjoins, or it may be a VerbSID, followed by a list of Qualifiers of
that VerbSID.

A Qualifier may be a RoleSID, followed by a list of Qualifiers of that
RoleSID. A Qualifier may also be an AtomSID followed by its data.

Any list of Qualifiers may contain a ReferAs clause. Thereafter, use of
the corresponding ReferTo clause may stand in for that list of
Qualifiers.

Any SID may be followed by a list of Extensions.
2.4.8.2. Understanding Sentences and the Principle of Connectedness

The Principle of Connectedness simply states that when a component
reading a GIDO encounters a SID it does not understand, the component
must strictly ignore the S-expression that the SID heads. The component
MUST NOT reject the GIDO on this ground. For instance, in the example
below

(InOrder
(Delete
(Initiator (FullName "Joe Hacker"))
(Operand (ObjectType file) (ObjectName "/etc/passwd"))

)
(Execute
(Initiator (UserName "sysadmin'))
(Operand (ObjectType program) (ProgramName "SystemCheck"))
)
)
draft-ietf-cidf-data-formats-00.txt Expires 9/18/98 Page 24

if a component does not understand the Delete verb SID, it may not make
use of the Initiator and Operand SIDs within that sentence, even if it
understands those, because it will not understand what they are the
Initiator and Operand *of*.

This is called the Principle of Connectedness because the portion of the
GIDO which is understood must form a connected tree. If a parent is not
understood, its children should not be interpreted, as its relation to
the portion of the tree contain the parent is unknown.

2.4.8.3. Rules and Guidelines for Using SIDs

Whenever a component puts a SID into a GIDO, the SID MUST be used with
the number of arguments (usually one) that the SID's definition calls
for (see the definitions in Appendix B). The SID's argument(s) MUST have
the syntax and meaning that the SID's definition calls for. Otherwise
the component is OUT OF CONFORMANCE with the SID's definition.

https://datatracker.ietf.org/doc/html/draft-ietf-cidf-data-formats-00.txt

A component that generates GIDOs MUST generate them in conformance with
all of the SID definitions in this specification.

Whenever the above rule permits, a component generating a GIDO SHOULD
use a SID from this specification and SHOULD avoid the SIDs defined in
the Uninterpreted SIDs section. If the only suitable SID in this
specification is in the Uninterpreted SIDs section, then an
implementation MAY use it or define a new SID; defining a new SID is
usually better.

If a component generating GIDOs uses a SID from a particular
specification, and if that specification defines two applicable SIDs,
one of which is strictly more specific than another, then the component
SHOULD use the more specific one.

If CIDF component X creates a sentence and CIDF component Y later has a
copy of the sentence and passes it verbatim to CIDF component Z, then Y
MAY do so even if the sentence violates the above rules and guidelines.
The sentence MUST be passed verbatim and SHOULD be clearly ascribed to
its originator. This provision frees D-boxes and such from having to
thoroughly understand and validate every GIDO they process.

However, if the CIDF component modifies any part of the sentence, then

it is responsible for the sentence's compliance with the above rules and
guidelines.

draft-ietf-cidf-data-formats-00.txt Expires 9/18/98 Page 25

Now that the basic components of an S-expression have been presented, we
illustrate how to utilize these components to express various records
structures and messages that intrusion detection systems may wish to
express. In the following examples, we walk the reader through the
process of translating raw event structures, analysis results, and other
candidate message structures into S-expressions.

2.5.1. Translating a Basic Security Module Audit Record

One very well-known form of security audit records are those introduced
in Sun Microsystems' SunOS 4.1.X Basic Security Module (BSM). There are
a variety of ways to translate BSM audit records into S-expressions,
depending on the data elements that a CIDF module may be directed to
filter or incorporate within its GIDOs. 1In this example we demonstrate
the translation of a BSM audit record generated as a result of a
successful rlogin request.

2.5.1.1. BSM Record Description

https://datatracker.ietf.org/doc/html/draft-ietf-cidf-data-formats-00.txt

The raw BSM record describes an event in which an external user performs
a successful remote login to target.machine.com from source.machine.com.
A session is established in which the resulting real and effective user
IDs are set to thomas, the real and effective group IDs are set to
staff, terminal 6 is assigned to the session, and the process and
session IDs are set to 5345.

The event is captured by the audit daemon on target.machine.com, which
records the event as follows:

Raw BSM Audit Record

[header,86,2,1login - rlogin,,Sat Jul 29 20:43:01 1995,

+ 280009000 msec subject, thomas, thomas, staff, thomas, staff,
5345,5345,0 6, source.machine.com text,successful login return,
success, 0]

2.5.1.2. BSM to S-Expression Translation Process

Now we illustrate the underlying rationale used to translate a common
event structure such as a BSM audit record into a CIDF S-Expression. As
discussed in Section 3.2, we begin our S-expression construction by
first defining the verb of our sentence in its most general form. 1In
this case, the operation recorded in the BSM audit record is the
establishment of a communication session between two entities via
rlogin. As we parse the potential Verb SIDs available in Appendix B.2,
we find that the SID most closely matching the rlogin operation is the
BeginSession SID. While BeginSession captures well the underyling action
represented in the audit record, we note that a Unix-specific extension
is available for further refinement (as discussed in Section 3.4). The
resulting S-expression is as follows:

draft-ietf-cidf-data-formats-00.txt Expires 9/18/98 Page 26
Example 2.5.1.2a BSM Rlogin S-Expression:

- -->(BeginSession (ExtendedBy UnixRlogin)

- __>)

The next step is to qualify the verb with supporting S-expressions that
further enumerate the attributes of the event. 1In this case, the verb
BeginSession has a series of supporting role clauses that can be derived
from the BSM record (Section 3.4). These role clauses include:

the observer from which the event was recorded

the initiator of the BeginSession operation

the entity to whom the BeginSession was directed

the resulting state changes or resource(s) produced or

O O O O

https://datatracker.ietf.org/doc/html/draft-ietf-cidf-data-formats-00.txt

destroyed by the operation (in our case this involves the
attributes of the session established by the rlogin
o and the outcome of the event

>From the above categories of attributes we augment the S-expression
with the following relevant role-clauses:

Example 2.5.1.2b BSM Rlogin S-Expression:

(BeginSession (ExtendedBy UnixRlogin)

- - (Observer (S-expression ...))
- --> (Initiator (S-expression ...))
- - (To (S-expression ...))
- > (Operand (S-expression ...))
- - (Outcome (S-expression L))

Role clauses are selected for grouping associated datafields under a
common contextual usage in the S-expression sentence. At this point, we
switch our attention to incorporating associated datafields within the
above role clauses. Datafields that cannot correctly be associated
within the context of one of the available role clauses can still be
incorporated in the S-expression independent simple sentences within the
S-expression.

draft-ietf-cidf-data-formats-00.txt Expires 9/18/98 Page 27

In our example, the Observer clause provides a contextual association
with all datafields that describe attributes of the oberserve, including
when, where, and through which means (i.e., BSM data) the observation
was recorded. The initiator clause is used to associate datafields that
describe the entity responsible for the event. In this case, the BSM
record provides very little information, other than hostname from which
the request was sent. Similarly, the BSM record provides only the
hostname of the recipient, which we document in the To clause. The
Operand clause is used to describe object that has been affected by the
event, which in this case was the creation of the session. - From the
BSM audit record, we can include under the Operand clause the session's
associated user attributes, group attributes, process/session
attributes, and the device through which the session is supported.

Lastl we enumerate the attributes of the outcome.

Example 2.5.1.2.c Final BSM Rlogin S-Expression:

Section Ref.

(BeginSession (ExtendedBy UnixRlogin) -- B.2.5
(Observer -- B.3.7
- - (AtTime (Time "Sat Jul 29 20:43:01 PDT 1995")) -- B.3.2

- - (HostName "target.machine.com") -- B.5.4

https://datatracker.ietf.org/doc/html/draft-ietf-cidf-data-formats-00.txt

- - (ObservationSourceType "BSM-Sun0S") -- B.5.1

(Initiator -- B.3.1
- - (HostName "source.machine.com") -- B.5.4
)
(To -- B.3.3
- --> (HostName "target.machine.com") -- B.5.4
)
(Operand -- B.3.1
- - (UnixAUserName "thomas") -- B.5.9.6

- - (UnixUserName "thomas") --
- --> (UnixEUserName "thomas") -- "
- --> (UnixGroupName "staff") --
- --> (UnixEGroupName "staff") -

- - (ProcessID 5345) -- B.5.2
- - (SessionID 5345) -- B.5.2
- > (Through -- B.3.3
- - (ObjectName -- B.5.1
- > (ExtendedBy UnixFullDeviceName) -- B.5.1
- > "/dev/tty06")

)

)

(Outcome -- B.3.6

- > (Severity 3) -- B.5.1
- - (ReturnCode -- B.5.1
- - (ExtendedBy UnixErrno) -- B.5.1
- -> 0) -- B.5.1
—_— (Comment "successful login") -- B.5.1

)

)
draft-ietf-cidf-data-formats-00.txt Expires 9/18/98 Page 28

2.5.2. Translating a TCP/IP Packet

In the next example, we'll see how to translate the contents of an FTP
connection request captured by a TCP/IP packet sniffer. Here the TCP/IP
packet is observed being sent from an external client to the target
host's FTP control port. The packet is translated by a CIDF module that
attempts to describe the transaction from the perspecti of analyzing
data sent to the application-layer (i.e, FTP) network servi

2.5.2.1. TCP/IP Packet Description

The observer in this example is a CIDF E-box that parses sniffed pacekts
from a Sun Microsystem's Solaris machine. The observer's host platform
i named snoopmachine.machine.com, and from this machine the observer
attem to capture and translate traffic to and from the FTP control port
of server.machine.com using the Solaris snoop(1) command:

https://datatracker.ietf.org/doc/html/draft-ietf-cidf-data-formats-00.txt

snoopmachine% snoop -v -d 1le® -t a host server port 21

The following is an example snoop-formatted packet produced be the
observer:

draft-ietf-cidf-data-formats-00.txt

Raw TCP/IP Packet

ETHER: ----- Ether Header -----
ETHER:
ETHER: Packet 7 arrived at 8:59:49.05

ETHER: Packet size

70 bytes

Expires 9/18/98

ETHER: Destination = 0:01:02:03:04:05, Western Digital
ETHER: Source = 0:aa:bb:cc:dd:ee,
ETHER: Ethertype = 0800 (IP)

server.machine.com

ETHER:

IP: ----- IP Header -----

IP:

IP: Version = 4

IP: Header length = 20 bytes

IP: Type of service = 0x00

IP: XXX . = 0 (precedence)

IP: .0 = normal delay

IP: 0... = normal throughput
IP:0.. = normal reliability
IP: Total length = 56 bytes

IP: Identification = 63187

IP: Flags = 0x4

IP: AL, = do not fragment
IP: ..0. = last fragment

IP: Fragment offset = 0 bytes

IP: Time to live = 38 seconds/hops

IP: Protocol = 6 (TCP)

IP: Header checksum = 69a3

IP: Source address = 999.998.997.996, client.machine.com
IP: Destination address = 111.121.131.141,
IP: No options

IP:

TCP: ----- TCP Header -----

TCP:

TCP: Source port = 12406

TCP: Destination port = 21 (FTP)

TCP: Sequence number = 820300070

TCP: Acknowledgement number = 3095138926
TCP: Data offset = 20 bytes

TCP: Flags = 0x18

TCP: ..0. = No urgent pointer
TCP: .1 = Acknowledgement

TCP: 1... = Push

Page 29

https://datatracker.ietf.org/doc/html/draft-ietf-cidf-data-formats-00.txt

TCP:0.. = No reset
TCP:0. = No Syn
TCP: .0 = No Fin

TCP: Window = 61320

TCP: Checksum = 0x4e8d
TCP: Urgent pointer = 0
TCP: No options

TCP:

FTP: ----- FTP: -----
FTP: "USER anonymous\r\n"

draft-ietf-cidf-data-formats-00.txt Expires 9/18/98 Page 30

The packet consists for four layers of structure: the Ethernet header,
the IP header, the TCP header, and the FTP data portion. Working from
the bottom up, we see that the packet represents an FTP "USER anonymous"
request, which for FTP is equivalent to a BeginSession request for an
anonymous FTP session. Above the FTP header are the TCP fields,
containing, among other things, the source and destination ports (note
the destination port is port 21, the FTP control protocol port). Above
the TCP layer are the IP and Ethernet header, both containing datafields
that could be of use to further identify the initiator and recipient of
the FTP request.

2.5.2.2. TCP/IP Packet to S-Expression Translation Process

As with the BSM exaample, we begin our S-expression by defining the verb
of our sentence. In this example, the E-box is monitoring traffic to
the FTP control port when it encouters a TCP/IP packet that contains an
FTP USER command request for anonymous access. As a result, we again
choose BeginSession as the verb. The resulting S-expression is as
follows:

Example 2.5.2.2a FTP BeginSession S-Expression Example:

- --> (BeginSession

___>)

Next, we qualify the verb with supporting S-expressions that further
enumerate the attributes of the event. As with BeginSession in our BSM
example, we can support a series of role clauses from the information in
our FTP packet. These role clauses include:

the observer from which the event was recorded

the initiator of the BeginSession operation

the entity to whom the BeginSession was directed

the resulting state changes or resource(s) produced or

o O O O

https://datatracker.ietf.org/doc/html/draft-ietf-cidf-data-formats-00.txt

destroyed by the operation (in our case this involves the
attributes of the session established by the rlogin

o the command or tool used in the event

o and the outcome of the event

- From the above categories of attributes, we augment the S-expression
with the following relevant role-clauses:

Example 2.5.2.2b FTP BeginSession S-Expression Example:

(BeginSession
- --> (Observer (S-expression ...))
- (Initiator (S-expression ...))
- > (To (S-expression ...))
- - (Operand (S-expression ...))
- --> (Using (S-expression ...))
- > (Outcome (S-expression L))
)
draft-ietf-cidf-data-formats-00.txt Expires 9/18/98 Page 31

The Observer clause can include a variety of datafield attributes,
including the timestamp and the host platform of the sniffer. The
initiator of the BeginSession could also be viewed as attributes of the
location from which the request was sent. Because both the "Initiator"
and "From" roles both provide accurate context to the set of attributes
that represent the entity responsible for the BeginSession Event, we
chose to recognize the two clause using referent SIDS (Section 3.7). The
entity responsible for the event can be described through a variety of
attributes within the packet, including the Ethernet address, IP
address, TCPPort, and hostname. The recipient can be identified from a
similar set of corresponding datafields. Unlike the BSM record, there
is very little information in the packet to describe the session, other
than the session will be associated with the anonymous user account.
The means used in this event is an FTP command, "USER".

Lastly, we identify the outcome of this event as pending, in that at
this point we cannot determine whether the BeginSession will succeed.
The outcome will be determined in subsequent GIDOs, which require an
association with this S-expression through a common thread ID define in
their GIDO headers. We use the CIDFReturnCode extension of ReturnCode
to express this condition. The GIDO recipient must consult the other
GIDOs in the thread until it encounters an Outcome with a ReturnCode
that is not pending.

Example 2.5.2.2.c Final FTP BeginSession S-Expression:

draft-ietf-cidf-data-formats-00.txt Expires 9/18/98 Page 32

Section Ref.

https://datatracker.ietf.org/doc/html/draft-ietf-cidf-data-formats-00.txt
https://datatracker.ietf.org/doc/html/draft-ietf-cidf-data-formats-00.txt

(BeginSession (ExtendedBy FtpCommand) "USER" -- B.2.5
(Observer -- B.3.7
- > (AtTime (Time "©8:59:49.1 PDT")) -- B.3.2
- --> (HostName "snoopmachine.machine.com") -- B.5.4
—_— (ObservationSourceType "Packet") -- B.5.1
)
(Initiator -- B.3.1
- > (ReferTo "the-client") -- B.5.1
)
(From
- --> (ReferAs "the-client") -- B.5.1
p—_— (HostName client.machine.com) -- B.5.5
- - (EthernetAddress 0:aa:bb:cc:dd:ee) -- B.5.5.1
- - (IPv4Address 999.998.997.999) -- B.5.5.2
- > (TCPPort 12406) -- B.5.5.3
)
(To -- B.3.3
- - (EthernetAddress 0:01:02:03:04:05) -- B.5.5.1
- > (IPv4Address 111.121.131.141) -- B.5.5.2
—_— (Hostname "server.machine.com") -- B.5.5
- > (TCPPoOrt 21) -- B.5.5.3
)
(Operand -- B.3.1
- - (UserName -- B.5.4
- - (ExtendedBy UnixUserName) -- B.5.9.6
- - "anonymous")
)
(Using -- B.3.1
- > (FTPCommand "USER") -- B.5.9.5
)
(Outcome -- B.3.6
- - (ReturnCode -- B.5.1
- > (ExtendedBy CIDFReturnCode) -- B.5.1
- --> pending)

Other specifications MAY define SIDs for use with the CIDF framework.
If a CIDF component generates or uses those SIDs, those SIDs MUST be
defined in conformance to the rules here and SHOULD be defined in
conformance with the guidelines here.

0 Every SID MUST have a unique name.

0 Every SID's definition MUST include precise syntax.

0 Every SID's definition SHOULD include precise semantics.

0 The SID description must fully explain the intended use of
SID (i.e., the intended data arguments must be described)

draft-ietf-cidf-data-formats-00.txt Expires 9/18/98 Page 33

Editor's note: The Event Subgroup is investigating naming
conventions and rules for SID enumeration to eliminate the
potential for SID reuse.

Specifiers SHOULD avoid defining a SID whose meaning overlaps another,
unless one SID is strictly more specific than another (unless the first
one provides all the information that the second one provides and more).

A SID MUST be so defined that when the SID heads an S-expression, the
truth of its S-expression is independent of the peer S-expressions, the
containing S-expression's peers, the peers of the container of the
containing S-expression, and so on.

Thus, an S-expression cannot *modify* the meaning of a peer S-
expression. It can only augment the the peer S-expression. (The
logical relationship between peer S-expressions is conjunction.) This is
critical because a consumer may ignore some peer S-expressions.

Specifiers should be wary when defining a set of closely related SIDs,
since a consumer may understand some of the SIDs and not others. If two
data items can be properly understood together but cannot be properly
understood singly, then it is advisable to define a single SID that
takes both data items as arguments.

draft-ietf-cidf-data-formats-00.txt Expires 9/18/98 Page 34

= 3.1: Introduction to Gido Encoding

In encoding a gido into actual bytes for storage, tranmission, etc, two
things are involved. Firstly, every gido is accompanied (in perpetuity)
by a static format header which contains basic information about that
gido. This header format is described in section 3.2.

Secondly, the S-expression which forms the payload of the gido must also
be encoded. The method for doing this is covered in section 3.3

https://datatracker.ietf.org/doc/html/draft-ietf-cidf-data-formats-00.txt
https://datatracker.ietf.org/doc/html/draft-ietf-cidf-data-formats-00.txt

draft-ietf-cidf-data-formats-00.txt Expires 9/18/98 Page 35

3.2.1: Introduction

The header definition, presented in this section, consists of a series
of constant fields that gido consumers can reliably parse to read basic
data common across all gidos. The gido s-expression payload, presented
in a preceding section, contains the actual IDS component-specific data
structures, including semantic identifiers that allow gido consumers to
decode and interpret individual fields.

The gido header is used to convey information about the gido itself,
rather than details of the event, analysis report, or response
prescription (which are captured in the payload). Each CIDF-compliant
gido generated by any component MUST contain these fields in this order
(for this version). Consult Appendix A for details on type definition.

3.2.2: The Header Fields

1. Version ID (type revision). Indicates the format revision used
to encode this gido. Initially, the Version ID will indicate
CIDF Version 1.0 (major = 1, minor = 0). This Version ID will be
incremented as future versions are introduced. All current and
future versions of this specification must reserve the first
field of the gido header for the Version ID. Gido consumers
may reliably use this field to detect the format of the remainder
of the gido.

R R R R R R e e R R R R R
Editor's Comment: This field suggests that CIDF revision

identifiers will follow a major.minor format. The CIDF working

group must decide if this is the proper revision format, and must

then define the meaning of major and minor revision indicators.
HAHHH AR HHHH B HHH AR R R R R R

2. Gido Length (4 octets, big-endian). Indicates the byte length
of the entire gido, including this header but excluding any
optional digital signature. This field may be used to cross-
check gido completeness.

3. Time Stamp (4 octets, big-endian). 1Indicates the seconds since
Unix epoch 1970. This time refers to the moment that this report
or request was generated. Specifically, it does not refer to the
time that any events were first detected, or when they occurred;
these (if they are known) are to be placed in the message payload
itself.

4. Thread ID (4 octets). Used to identify gidos with some

https://datatracker.ietf.org/doc/html/draft-ietf-cidf-data-formats-00.txt

common thread; all gidos about a given event (e.g., first
report followed by successive updates) would share the same
Thread ID.

draft-ietf-cidf-data-formats-00.txt Expires 9/18/98 Page 36

5. Class ID (2 octets). 1Indicates the
category that the event, analysis, or response generator believes
the gido falls under. Class IDs are defined in Section
3.2.3. This field is intended to allow receivers to process
high-priority gidos in a given field of expertise before all
others. Note that some codes are reserved for user-defined
Class IDs; the receiver must check to see if prior agreement
exists between sender and receiver on these codes.

o

Originator ID (unknown type). A unique identifier associated with
the component generating this gido.

HESHET AR SRR R S R S R SRR SRR S R A R R R R S S
Editor's Comment: The format and semantics of the Originator ID

1is an open issue that requires resolution by the CIDF working group.
Specifically, how will CIDF modules be uniquely identified from other
CIDF modules?

HE R R S R S e S S S R S R R R

7. Flags (1 octet). The bits of this flags octet are to be
interpreted according to the following table:

Bit Meaning

0 (LSB) set = optional signature present (see below).
clear = no optional signature

1-7 (MSB) reserved (MSB = most significant bit)

The gido payload, plain or compressed, immediately follows the header.
If bit 0@ in Flags is cleared, indicating no optional signature, the gido
ends with the payload (indicated by the Gido Length header field).
Otherwise, if bit 0 is set, indicating that a digital signature of the
content is present, this signature is contained in a structure following
the gido payload. Recall that the Gido Length header field indicates
the end of the gido payload, not including the signature structure.

The signature structure has the following fields in it:

1. Signature Length (2 octets). 1Indicates the length, including this
field (signature length), of the signature structure, in octets.
2. Key ID (type unknown). Uniquely identifies the key used to

generate the signature. This ID may be understood only by a
given receiver if the gido is to be sent one-to-one. This
field also implies the signature algorithm.

https://datatracker.ietf.org/doc/html/draft-ietf-cidf-data-formats-00.txt

R R R R R R e e R R R R S
Editor's Comment: This issues is tied up with that of originator-id

#

HHAHAHAHBHBHBHBHBHBH BB H A A H B A A R R B A A R R R R AR

draft-ietf-cidf-data-formats-00.txt Expires 9/18/98 Page 37

3. Signature data. The entire gido represented by the Gido
Length header field is passed through a gido digest, resulting
in a short, fixed-length quantity. This quantity is then signed
using the applicable encryption/signature algorithm, and the
result of this operation placed in this field.

3.2.3 Class ID Codes

The following default Class ID codes are defined for events and analysis

results.

Under this scheme, class ids 0 thru 15 are reserved for

CIDF event priorities, and 16 thru 31 are reserved for analysis report

priorities.

In addition, class ids 32 thru 127 are reserved for

future CIDF extensions. IDS developers may use the
remaining range (128 thru 255) for application-specific purposes.

00
01
02
03
04
05
06
07

15

16
17
18
19
20
21
22
23
24
25

31

(Default Event Class IDs)
Complete Event
Intermediate Event
Incomplete Event
E-box Internal Error Report
E-box Internal Warning Report
E-box Internal Status Message
Reserved for E
Reserved for E

Reserved for

(Default Analysis Class IDs)
Critical Security Violation
Potential Security Violation
Suspicious Report
Warning Report
Intermediate Result
Informational Report
A-box Internal Error Report
A-box Internal Warning Report
Reserved for A
Reserved for A

Reserved for A
(Reserved Priority Code Range)

HHtHHH BB R H R HHHHHHHH A R R R R HHHHH A R R R R
Editor's Comment: Class ID code range 32-48 is reserved for

https://datatracker.ietf.org/doc/html/draft-ietf-cidf-data-formats-00.txt

R-Box countermeasure directives.

HHH# BB HHH R BB R R H R R
32 - Reserved for future use
33 - Reserved for future use

127 - Reserved for future use
(Undefined Priority Codes)
128 - Undefined

(Undefined values may be employed for
application-specific purposes.)

255 - Undefined

draft-ietf-cidf-data-formats-00.txt Expires 9/18/98 Page 38

GIDO payloads consist of S-expressions. However, these S-expressions
are translated to an octet encoding format for efficient transmission or
storage.

The octet encoding of message payloads support highly efficient
transmissions of messages. This section describes how to transform an
S-expression into the appropriate octet encoding. This encoding is
designed to meet the following objectives:

* It must indicate the structure, so that a component ignorant
of the elements within the S-expressions will still be able
to parse the S-expressions.

* It must allow for pre-defined and distributed-out-of-band
SIDs.

* It should be as compact as possible.

3.3.1: Octet Codes

The following codes will be used to represent various octet values in
the succeeding encoding specifications. They are *not* S-expression
atoms.

Code Value Interpretation

SEP Oxff Used as separator.

SOPEN oxfe S-expression open.

PTR oxfd Pointer (referred to as @).

SID oxfc Prelude to SID 2-octet code.
TYPE oxfb Indicates concrete syntax type.

3.3.2: Encoding of S-Expression Grammar

https://datatracker.ietf.org/doc/html/draft-ietf-cidf-data-formats-00.txt

What follows is the grammar for CIDF S-expressions. After each line we
give the encoding applicable to that line.

<item-list> ::= <item>
E(<item-list>) = E(<item>)

<item-list> ::= (<item-list>)
E(<item-list>) = E(<item-1list>)

<item-list> ::= <item-list> <item>
E(<item-list>) = E(<item-list>) E(<item>)

<item> ::= (<sid-exp> <data-exp-list>)
E(<item>) = SOPEN E(length{E(<sid-exp>) E(<data-exp-list>)})
E(<sid-exp>) E(<data-exp-list>)
E(length{X}) = var_encode(X)

draft-ietf-cidf-data-formats-00.txt Expires 9/18/98 Page 39

<item> ::= (@ <sid-exp> <data-locator>)
E(<item>) = SOPEN PTR E(<sid-exp>) E(<data-locator>)
E(<data-locator>) = ascii_encode(<data-locator>)

<item> ::= (def <sid> <sid-exp> <semantics>)
E(<item>) = SOPEN
E(length{E(def) E(<sid>) E(<sid-exp>) E(<semantics>)
E(def) E(<sid>) E(<sid-exp>) E(<semantics>)
E(<sid>) = SID sid_encode(<sid>)
E(<semantics>) = ascii_encode(<semantics>)

<sid-exp> ::= <sid>
E(<sid-exp>) = sid_encode(<sid>)

<sid-exp> ::= '<type>:<sid>
E(<sid-exp>) = TYPE type_encode(<type>) sid_encode(<sid>)

<sid-exp> ::= (<sid-exp-list>)
E(<sid-exp>) = SOPEN E(length{E(<sid-exp-1list>)})
E(<sid-exp-list>)

<sid-exp-list> ::= <sid-exp>
E(<sid-exp-list>) = E(<sid-exp>)

<sid-exp-list> ::= <sid-exp-list> <sid-exp>
E(<sid-exp-list>) = E(<sid-exp-list>) E(<sid-exp>)

<data-exp-list> ::= <data-exp>
E(<data-exp-list>) = E(<data-exp>)

<data-exp-list> ::= <data-exp-list> <data-exp>

https://datatracker.ietf.org/doc/html/draft-ietf-cidf-data-formats-00.txt

E(<data-exp-list>) = E(<data-exp-list>) E(<data-exp>)

<data-exp> ::= <data>
E(<data-exp>) = E(<data>)

<data-exp> ::= (<sid-exp> <data-exp-list>)
E(<data-exp>) = SOPEN E(length{E(<sid-exp>) E(<data-exp-list>)})
E(<sid-exp>) E(<data-exp-list>)

3.3.3: Auxiliary Functions
The following functions are used in the above syntax and encoding:

ascii_encode(<string>) returns the ASCII-encoding of <string>.
short_encode(<short>) returns the big-endian expression of
<short>. (E.g., short_encode(1234) = 0xd204.)
sid_encode(<sid>) returns the 2-octet code for <sid>.
type_encode(<type>) returns the SEP-terminated code for <type>.

var_encode(<int>) encodes an arbitrarily long integer. It is encoded as
follows:

L1 | <int>

draft-ietf-cidf-data-formats-00.txt Expires 9/18/98 Page 40

where L1 is one byte containing the length of <int>, which is expressed
in big-endian order.

3.3.4: Encoding Data

Data may be encoded in one of two ways. If the applicable SID had a
fixed-length data type, then the data is encoded exactly as specified by
the type; e.g., a ulong is encoded as four octets in big-endian order.

Otherwise, the data is encoded as follows:
var_encode(length{Data}) | Data

Thus, if Data is a variable-length data structure that is 84,000 bytes
long, then it is encoded as follows:

03 01 48 20 XX XX XX
3.3.5: SID Codes

SIDs are ordinarily encoded as 2-octet values. A list of pre-defined
SIDs is given in Appendix B; if one exists for the purpose, it SHOULD be
used. However, this encoding furnishes the ability to define new SIDs
should no applicable one exist, using the "def" operative. For the
purposes of encoding, "def" is treated as a SID as well (i.e., it has

https://datatracker.ietf.org/doc/html/draft-ietf-cidf-data-formats-00.txt

its own 2-octet code).

As noted in Section 3.3.2, this requires one to define a new SID code.
These SID codes may be unrestricted, but they should conform to the
following standard:

* The code is a 2-octet value, as stated above.

* The MSB (bit 7) of the first octet is the DYNAMIC bit. If this
bit is set, this is a dynamically-defined SID, and the code for
the actual SID is given by bit 5 of the first octet through the
LSB (bit 0) of the second octet. If it is clear, this is a
statically-defined SID, and the code for the SID is as given in
the appendix.

* If the DYNAMIC bit is set, the 2-octet value is followed by a
4-octet value representing the UUID of the SID designer. Also,
the next bit (bit 6 of the first octet) is the EXPERIMENTAL bit.
If *this* bit is set, then the SID is ephemeral and cannot be
relied on in future encodings. If it is clear, then this is a
stable SID.

draft-ietf-cidf-data-formats-00.txt Expires 9/18/98 Page 41

4.1.1: Rationale for Message Layer

The CIDF message layer was developed to solve problems of
synchronization (i.e., blocking vs. non-blocking processes) and
problems of different data formats for different operating systems. It
also solves the problem that different groups will use different
programming languages. In other words, the use of a messaging format
achieves the following goals:

* Independent of blocking/non-blocking processes
* Data format independent

* Operating system independent

* Programming language independent

4.1.2: Objectives of the CIDF Message Layer

The top-level objectives for the CIDF message layer are to

https://datatracker.ietf.org/doc/html/draft-ietf-cidf-data-formats-00.txt

* Provide an open architecture.

* Avoid imposing architectural constraints or assumptions on the
systems or modules.

* Allow messaging independent of language, operating system, and
network protocol.

* Support easy addition of new components to the CIDF.

* Support security requirements for authentication and privacy.

* Support devices that don't want to fully support CIDF.

4.1.3: Message Format
This message structure resides on top of the negotiated transport layer

service. Note that all reserved fields are set to © on transmission and
ignored on receipt.

draft-ietf-cidf-data-formats-00.txt Expires 9/18/98 Page 42

0 1 2 3
©012345678901234567890123456789601
B e T S S b a s s o s e e S
| Version | Control Byte | Checksum |
B T S I e o o ot S S S S S S S T S S S S
| Next Header | Reserved |
B s a s e ol e S S e S R e E e
| Length |
B T e n b e e T e el e T P P Sy S S S
| Sequence Number |
ottt tototototototototot ottt ottt otototot ottt -t-+-+
| Time Stamp |
BT R b E b e e ok T e S T TP SN S S Sy S o
| Destination Address |
+ot-t-t-t-F-F-F-F-t-t-t-t-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F+-+-+-+

| Options (variable)

I I
+ot-t-t-t-F-F-F-t-t-t-t-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-+-+-+
| Payload Data (variable) |

I I
+ Fot-t-t-t-t-F-F-F-t-t-t-t-t-F-F-F-F-F-F-F-F-+-+-+
| Privacy Trailer* (variable) |
ottt -t-t-t-+-+ -~
I

+-

+ot-t-t-t-F-F-F-t-t-t-t-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-+-+-+
* if privacy option is used

Options all have a common type-length-value format described below.

https://datatracker.ietf.org/doc/html/draft-ietf-cidf-data-formats-00.txt

* Version - 1 octet. CIDF message-layer version (1 for this
initial version).

* Control Byte - 1 octet. Used by the message layer to support
reliable transmission, flow control, and security association
management .

- Acknowledgement of a delivered message (1).

- Message received, but not delivered because of lack of
resources (2).

- Message received, but the supplied security association was
not available to all processing (4).

* Checksum - 2 octets. A checksum across the entire CIDF message,
prior to application of cryptographic mechanisms (i.e., privacy
and authentication transforms). The checksum is computed as
specified in the TCP standard (RFC 793).

draft-ietf-cidf-data-formats-00.txt Expires 9/18/98 Page 43

* Next Header - 1 octet. Defines the type of either the next
message layer option or application. The following are the
currently defined types.

- Application Header (1)

- Route List (4)

- Privacy Header (50)

- Authentication Header (51)

* Length - 4 octets. Length of the CIDF message, including
message header.

* Sequence Number - 4 octets. Message layer sequence number used
for message reliability (acknowledgement and duplicate removal)
and to support protection against message replay.

* Time Stamp - 4 octets. Used to provide loose time
synchronization between CIDF communicating parties and to
support tardy delivery detection (from denial of service).

* Destination Address - 4 octets. IP address of the target of
this message. This field identifies the eventual recipient of
the CIDF message and is used to route CIDF messages through
intermediate CIDF nodes that cannot be traversed by normal
network routing (e.g., firewalls).

4.1.4: Message Layer Protocol Options

Except for the CIDF privacy option, CIDF message options use the
following format.

(0] 1 2 3
0123456789061234567890123456789601

https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/draft-ietf-cidf-data-formats-00.txt

+-t-F-F-+-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F+-F-F-F-F+-F-F+-+-+-+
| Next Header | Length | |
+-t-t-t-t-F-t-F-t-F-F-F-F-F-+-+-+ +
| Option Data (variable) |

+ot-t-t-t-F-F-F-t-t-t-t-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-+-+-+
* Next Header - 1 octet. Defines the type of either the next
message layer option or application, with the same permitted

values as defined above.

* Length - 1 octet. Specifies the number of 32-bit words for this
option, including the next type and length fields.

* Option Data - variable length. The option data field is always
padded to a 32-bit aligned size.

4.1.4.1: Route List Option

draft-ietf-cidf-data-formats-00.txt Expires 9/18/98 Page 44

Route List is a variable length field that specifies the CIDF nodes
through which the message is to be routed for source routing, and
through which the message has been routed for recorded routing. The
Subtype field indicates whether this is a source or record route. The
Route List has the following format. The route list option is used when
the message destination and source are separated by CIDF nodes that
cannot be traversed by normal network routing (e.g., firewalls).

0 1 2 3
012345678901 23456789012345678901
ottt tototototototototot ottt ottt otototot ottt -t-+-+
| Next Header | Length | Subtype | Index |
BT R b E b e e ok T e S T TP SN S S Sy S o
| Route Data (variable) |

B T n s T e e e e e ek sk s P TP TR S S S S S
* Next Header and Length are defined above.

* Subtype - 1 octet. Specifies whether this is a recorded route
or a source route.
- Recorded Route (1)
- Source Route (2)

* Index - 1 octet. 1Index into the array of addresses specifying
the current address to be processed. For source routing, this
is the address of the next CIDF hop. For recorded routes, this
is the address of the last transmitting CIDF node.

https://datatracker.ietf.org/doc/html/draft-ietf-cidf-data-formats-00.txt

* Route Data - variable length. This field is an array of
Internet addresses. Each internet address is 32 bits or 4
octets. For a source route, if the index is greater than the
length, the source route is empty and the routing is to be based
on the destination address field. For a recorded route, if the
index is greater than the length, the recorded route list is full.

4.1.4.2: Privacy Option

The CIDF privacy option supports both unicast or multicast privacy. For
multicast privacy, one node of the multicast group is selected to
generate the keys. The keys are then distributed to each multicast
group member. For unicast privacy, each node generates its own privacy
keys which are distributed to the remote party.

draft-ietf-cidf-data-formats-00.txt Expires 9/18/98 Page 45

0 1 2 3
©012345678901234567890123456789601
B e T S S b a s s o s e e S
| Key Generator Identity |
B T S I e o o ot S S S S S S S T S S S S
| Security Parameters Index (SPI) |
B s a s e ol e S S e S R e E e
| Payload Data* (variable) |
I I
+ B S s S S S e s P e S e =
| Padding (0-255 bytes) |
+-d-t-t-t-t-F-+-+ ottt -F-t-F-F-F-F-+-+-+
| | Pad Length | Next Header |
+ot-t-t-t-F-F-F-F-t-t-t-t-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F+-+-+-+

* (foot note) if the cryptographic algorithm requires use of an
initialization vector, then that vector is placed as clear text
between the SPI and Payload Data.

* Key Generator Identity - 4 octets. This value identifies
the CIDF entity that generated the key. The initial use of
this field is to specify either the key generator's IP address
or for multicast applications the multicast address for the
multicast group using this security association.

* Security Parameters Index (SPI) - 4 octets. The SPI is an
arbitrary 32-bit value that uniquely identifies the Security
Association for this message, relative to the key generator
identity.

* Padding - variable length. The transmitter may add up to 255
bytes of padding if required to support the block size of the

https://datatracker.ietf.org/doc/html/draft-ietf-cidf-data-formats-00.txt

cryptographic algorithm. Padding is required to ensure that
after the privacy option is applied, the message ends on a
4-byte boundary.

* Pad Length - 1 octet. The number of padding bytes immediately
preceding it. The range of valid values is 0-255, where a
value of zero indicates that no Padding bytes are present.

* Next Header is defined above.

4.1.4.3: Authentication Header Option

draft-ietf-cidf-data-formats-00.txt Expires 9/18/98 Page 46

0 1 2 3
©1234567890123456789012345678901
ottt totot-totototot-totot-t-toF-t-t-t-t-t-t-t-t-t-t-F-F-+-+-+
| Next Header | Length | Reserved |
ottt -ttt -ttt -F-F-+-+-+
| Key Generator Identity |
B e T S S b a s s o s e e S
| Security Parameters Index (SPI) |
B T S I e o o ot S S S S S S S T S S S S
| Authentication Data (variable) |

B T e n b e e T e el e T P P Sy S S S
* Next Header and Length are defined above.

* Key Generator Identity - 4 octets. This value identifies
the CIDF entity that generated the key. The initial use of
this field is to specify either the key generator's IP address
or for multicast applications the multicast address for the
multicast group using this security association.

* Security Parameters Index (SPI) - 4 octets. The SPI is an
arbitrary 32-bit value that uniquely identifies the Security
Association for this message, relative to the key generator
identity.

* Authentication Data - variable number of 32-bit words. The data
(e.g., digital signature or keyed hash) used to provide
cryptographic authentication.

4.1.5: Cryptographic Mechanisms

The CIDF message layer protocol provides data integrity and source
authentication services for the negotiation phase of CIDF communication.
This enables components to reliably establish communications with
minimal security overhead. During the negotiation phase, the client and

https://datatracker.ietf.org/doc/html/draft-ietf-cidf-data-formats-00.txt

server determine the specific cryptographic services to be provided for
further communication.

The message layer provides the cryptographic mechanisms as options,
enabling use of lower-level services (e.g., IPSEC), CIDF-specific
mechanisms, or no cryptographic services, depending on application
requirements.

The mechanisms used are determined by the client based on the mechanisms
supported by the server. The message layer mechanisms provide the
fields necessary to (1) determine the cryptographic services applied (if
any), (2) determine the cryptographic context, and (3) provide
timeliness and replay protection.

4.1.6: Negotiation Mechanism

4.1.6.1: Introduction

draft-ietf-cidf-data-formats-00.txt Expires 9/18/98 Page 47

Our approach is to use the simplest reliable transport mechanism
available (i.e., reliable CIDF messaging over UDP) as the default CIDF
transport protocol. This simple protocol can then be used to negotiate
a more or less complex protocol for those components requiring
additional transport-layer services. This allows simple devices to
participate easily, while allowing complex devices to take full
advantage of other transport-layer mechanisms. The message layer
provides optional services to compensate for weaknesses in the transport
layer. The combination of the CIDF message layer with transport-layer
options provides a range of communication capabilities that can be used
to support different application requirements. The following types of
transport/messaging are initially envisioned:

* No assured delivery over a connection-less transport. That is,
the CIDF message layer without acknowledgement and
retransmission directly over UDP.

* Assured delivery over a connection-less transport. That is, the
CIDF message layer with reliable delivery (acknowledgement,
retransmission, and duplicate removal) over UDP.

* Assured delivery over a connection-oriented transport. That 1is,
the CIDF message layer directly over TCP.

* Object-oriented transport. That is, the CIDF operations over
CORBA.

To enable support for components that must use minimal communication
infrastructure, the default transport mechanism is based on UDP. The
following sections define the default transport layer protocol, CIDF
security services, and the transport negotiation mechanisms.

https://datatracker.ietf.org/doc/html/draft-ietf-cidf-data-formats-00.txt

4.1.6.1.1: Rationale for negotiated transport layer

The simplest approach would be to mandate the use of a single transport
protocol. But there is no one protocol that can adapt to the varying
requirements of all anticipated CIDF applications. Depending on whether
an application is concerned with real-time traffic or simple accrual of
a database of events, different transport mechanisms are appropriate.

Specifically, some CIDF applications require a very light-weight
communication channel that does not have the resource usage required by
current TCP implementations, while other applications require a flexible
and robust communication channel such as TCP. Other requirements include
application-specific support for multicast, which is not supported by
TCP. Therefore, we have requirements for connectionless communication,
reliable connectionless communication, and reliable connection-oriented
communication. Additionally, we have varying requirements for security
services. 1In some applications and environments, the infrastructure
provides adequate security services. In other applications, we require
CIDF-layer security services for authentication, privacy, or both.

draft-ietf-cidf-data-formats-00.txt Expires 9/18/98 Page 48

Nevertheless, communications clearly cannot begin between two specific
components until a channel is agreed upon. At the very least, this
implies that if we don't agree on a single channel for all transport, we
need to agree on a single channel for transport negotiation.

This channel needs to be widely supported and freely available.
Components are allowed to share data on whatever channel they wish, but
they must support channel negotiation on the common mechanism.

To support this range of requirements we provide a protocol based on the
reliable UDP variant of CIDF that enables applications to agree upon the
desired transport protocol, plus the desired CIDF message-layer security
services. This exchange is only necessary if the participants have not
previously agreed upon a transport mechanism through external mechanisms
(e.g., local configuration settings or through the CIDF directory
service).

4.1.6.2: Default Transport Layer

The default transport layer protocol for CIDF messages is reliable CIDF
messaging over UDP. Other transport layer protocols may be used
following a negotiation using the default of protocols and services
required and supported by the CIDF client and server. Until we acquire
a well-known CIDF port number, we will use OxOCDF as the CIDF port. The
CIDF message layer will listen on the CIDF well-known port for incoming
CIDF messages.

4.1.6.3: Conformant transport options

https://datatracker.ietf.org/doc/html/draft-ietf-cidf-data-formats-00.txt

* CIDF message layer without acknowledgement and retransmission
directly over UDP.

* CIDF message layer with acknowledgement and retransmission over
UbDP.

* CIDF message layer directly over TCP.
4.1.6.4: Option Negotiation Message Formats

The negotiation for more advanced communication services occurs over a
UDP channel using only the CIDF message layer with authentication
mechanisms enabled. This enables components that do not support TCP to
participate in CIDF. Negotiation occurs by the client querying the
server's capabilities. 1In response, the server specifies the class of
CIDF operations supported, message services supported, and whether
extensions are supported. The client then selects the services and
message mechanisms. This information can also be provided by the
directory server.

The CIDF transport negotiation protocol resides directly over the CIDF
message layer. The query-response data format is shown below. We
assume that for cryptographic services, the negotiation of the specific
algorithms and modes is handled by the key distribution mechanism.

draft-ietf-cidf-data-formats-00.txt Expires 9/18/98 Page 49

(C] 1 2 3
012345678901234567890123456789601
B T S I e o o ot S S S S S S S T S S S S
| Type | Length | Reserved |
B s ST S s s o S S e b ot ok Sk s
| Option Request (variable) |

T e D e S RS

* Type - 1 octet. Specifies the type of request. For option
negotiation messages, this value is 1.

* Length - 1 octet. Specifies the number of 32-bit words for this
message, including the type and length fields.

Option Requests are formatted as follows.

0 1 2 3
012345678901 23456789012345678901
B s e sl T S S S s SEE SR S e R e b =
| Request | Length | Option | Selection |
BT R b E b e e ok T e S T TP SN S S Sy S o

https://datatracker.ietf.org/doc/html/draft-ietf-cidf-data-formats-00.txt

Option Parameters (variable) |

B s T e S S s ot S U S S s o S

*

Request - 1 octet. Specifies the type of request. The
following request types are currently supported.

- Want (1) - Preferred service.

- Can (2) - Sender 1is capable of using this service.

Length - 1 octet. Specifies the number of 32-bit words for this
option request, including the request and length fields.

Option - 1 octet. The option being negotiated. The following
option types are currently supported.

- Transport (1)

- Privacy (2)

- Authentication (3)

Selection - 1 octet. The option value being negotiated. The
meaning of this fields depends on the option being negotiated.
The following selection values are currently supported.

For Transport negotiation.
- None (0). Used to reject communication with another CIDF node

when no acceptable options are received.
- UDP (1)
- Reliable UDP (2)
- TCP (3)
draft-ietf-cidf-data-formats-00.txt Expires 9/18/98 Page 50

For Privacy negotiation.
- None (0)

- IPSEC (1)

- SSL (2)

- CIDF (3)

For Authentication negotiation.
- None (0)

- IPSEC (1)

- SSL (2)

- CIDF (3)

Currently, the only option parameter specified is the selection of
TCP/UDP port number for transport negotiation, which is formatted as
follows.

0

1 2 3

©12345678901234567890123456789601
B S s st T o e S T ot o S S

https://datatracker.ietf.org/doc/html/draft-ietf-cidf-data-formats-00.txt

Type | Length Transport Port Number
+ot-F-t-F+-F+-+-+-+-+

* Type - 1 octet. Specifies the type of option parameter. For port
numbers, this value is 1.

* Length - 1 octet. Specifies the number of 32-bit words for this
message, including the type and length fields.

* Transport Port Number - 2 octets. This specifies on which port
number the sender of the message will listen following completion
of negotiation. Both ends of the channel select their own
respective ports.

4.1.6.5: Protocol Description

Identification of the remote CIDF component's IP address is handled
either through manual configuration or through the CIDF directory
service. Note that this service may also indicate the CIDF component's
capabilities (can) and preferences (want) for transport and security
services.

When Sender S wishes to communicate with Receiver R, and the two
components have not yet agreed on a transport mechanism, then S must
initiate transport mechanism negotiation.

S sends a negotiation message to R on the CIDF well-known port
indicating the services preferred (if any) and permitted. S includes a
separate option request for each supported option, indicating the
preferred option (if any).

When R receives an option negotiation, R selects the desired value using
local preferences if supported by S, S's preferences if supported
locally, or the intersection of local and S's capabilities if the
preferences are not specified or supported.

draft-ietf-cidf-data-formats-00.txt Expires 9/18/98 Page 51

If the local and remote capabilities do not permit communication, the R
selects a transport option of None, indicating that communication is not
feasible.

R responds with only the selected options for transport, privacy, and
authentication identified as preferred options.

4,2.1: Introduction

https://datatracker.ietf.org/doc/html/draft-ietf-cidf-data-formats-00.txt

This section describes the processing of CIDF message layer messages.
The standard procedures are used for CIDF messages independent of the
transport layer. The reliable transmission procedures describe
additional procedures to be used when the transport mechanisms is
reliable UDP. CIDF privacy and authentication procedures describe the
procedures used in providing CIDF layer privacy and authentication
mechanisms, respectively.

4.2.2: Standard Procedures
Each CIDF message uses the standard CIDF header.
4.2.2.1: Outbound Message Processing

On request by the application layer to transmit a CIDF message, the CIDF
message layer shall build the message header and append the message.

If the application indicates that this message requires source routing,
then the CIDF message layer shall use the supplied source route list.

If the application indicates that this message requires recorded
routing, then the CIDF message layer shall initialize the record route
list, placing the outgoing IP address as the first entry on the route
list.

The CIDF message layer shall insert the current CIDF version number, the
application-provided destination, and the current time as the CIDF
header time-stamp.

The CIDF message layer shall insert a new sequence number. The sequence
number is initialize to O, and incremented for each message sent by the
CIDF message layer.

The CIDF message layer shall compute the total message length and insert
that length into the Length field.

The CIDF message layer should compute and insert the checksum prior to

message transmission. The checksum is inserted prior to applying CIDF
privacy or authentication mechanisms.

draft-ietf-cidf-data-formats-00.txt Expires 9/18/98 Page 52

If CIDF privacy or authentication is being used, the CIDF message layer
shall encrypt and generate the authentication data for the message based
on the current security association in use with the recipient. If CIDF
privacy or authentication is being used and no security association
exists, then the message transmission request should be rejected.

4.2.2.2: Inbound Message Processing

If the Version field is not a valid CIDF version number (currently 1),

https://datatracker.ietf.org/doc/html/draft-ietf-cidf-data-formats-00.txt

the CIDF message layer shall discard the message.

If CIDF privacy or authentication is being used, the CIDF message layer
shall decrypt and authenticate the message, and discard the message on
failure. On failure, due to lack of a valid security association, the
CIDF message layer should send a response to the source. The response
is the CIDF message layer header, with the Control Byte set to 4.

If the Checksum field is not 0, the CIDF message layer shall compute the
message checksum (using the method described in RFC 793 and discard the
message if the Checksum check fails.

If the Time Stamp field indicates an unexpected delay, the CIDF message
layer should notify the application.

If the Destination Address is not the local CIDF node (i.e., the
destination does not match the local node's address or any multicast
address that the local node is using), the CIDF message layer shall
determine the next CIDF hop (using the source route, if provided) and
forward the message after adjusting the Sequence Number and Time Stamp.
If the message includes a record route option, then the CIDF message
layer shall enter its outgoing IP address if there is sufficient room in
the record route structure and increment the route index. After
processing, the CIDF node should compute the checksum as specified in
RFC 793, and place the checksum in the Checksum field. Finally, the
message layer shall apply the privacy and authentication transforms for
the next CIDF hop and transmit the message.

4.2.3: Reliable Transmission Procedures
4.2.3.1: Outbound Message Processing

For reliable message transmission, the CIDF message layer shall maintain
the round-trip latency and mean deviation values for each node with
which the local component communicates. These values are used in
determining the timeout values for message transmission. The CIDF
message layer shall use the standard TCP algorithm for computing message
layer timeouts.

On reliable message transmission, the CIDF message layer shall retain a
copy of the message for retransmission purposes and set a timer for the
message. If the timer expires before the message is acknowledged, the
message layer shall retransmit the message up to an maximum of 5
retries.

draft-ietf-cidf-data-formats-00.txt Expires 9/18/98 Page 53

On reception of an acknowledgement for the CIDF message, the CIDF
message layer shall remove the message from the retransmission queue.

4.2.3.2: Inbound Message Processing

https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/draft-ietf-cidf-data-formats-00.txt

On message reception, the CIDF message layer shall send a CIDF
acknowledgement to the source. If the message layer can deliver the
message to the application layer, then the Control Byte shall be 1.
Otherwise, the Control Byte shall be 2. The acknowledgement message 1is
identical to the original message header except for the Control Byte.

The CIDF message layer shall use the source IP address and the sequence
number to ensure that duplicate messages are not delivered to the
application layer.

4.2.4: CIDF Privacy Procedures
4.2.4.1: Outbound Message Processing

The CIDF message layer encapsulates the CIDF Application Data with an
CIDF privacy header and Trailer, encrypts the CIDF Application Data and
CIDF privacy trailer. The original CIDF Header is retained, except the
CIDF Next Type, which is modified to indicate that this is an CIDF
encrypted message.

On message transmission, if the CIDF message layer is applying CIDF
privacy mechanisms for the message, the CIDF message layer shall
determine the security association (which determines the algorithm) for
the message target, add any required padding, compute and insert the
padding length in the trailer, insert the next header in the trailer,
perform the cryptographic transform over the resulting plain-text
message, and shall insert the security association identity (Key
Generator Identity and SPI) before the resulting ciphertext. If an
initialization vector is required for the cryptographic transform, it
shall be inserted between the resulting ciphertext and the privacy
header.

The next header in the CIDF message layer is then set to 50.

4.2.4.1.1 Message Encryption

The CIDF message layer encapsulates the original CIDF application data
into the CIDF Application Data field, that includes any necessary
padding, and encrypts the result (Application Data, Padding, Pad Length,
and Next Header) using the Message Encryption Key, encryption algorithm,

and algorithm mode indicated by the security association.

4.2.4.1.2 Encryption Algorithms

draft-ietf-cidf-data-formats-00.txt Expires 9/18/98 Page 54

The security association specifies the encryption algorithm to be used.
The CIDF privacy option is designed for use with symmetric encryption
algorithms. Because the messages may arrive out of order, each message
must carry any data required to allow the receiver to establish

https://datatracker.ietf.org/doc/html/draft-ietf-cidf-data-formats-00.txt

cryptographic synchronization for decryption. This data may be carried
explicitly in the Application Data field (e.g., as an IV as described
above) or the data may be derived from the message header. Since the
CIDF privacy option makes provision for padding of the plain-text,
encryption algorithms employed with the CIDF privacy option may exhibit
either block or stream mode characteristics.

4.2.4.2 Inbound Message Processing

Upon receipt of an CIDF message containing an CIDF privacy header, the
CIDF message layer looks up the security association, and regenerates
the CIDF application data.

4.2.4.2.1 Security Association Lookup

The Security Association information is included in the CIDF privacy
header.

The CIDF message layer looks up the appropriate algorithm and Message
Encryption Key for decryption, based on the SPI and Key Generator's
identity from the CIDF privacy header.

If no valid algorithm and key exists for this message, the receiver MUST
discard the message.

4.2.4.2.2 Message Decryption

The receiver decrypts the CIDF Application Data, Padding, Pad Length,
and Next Header using the neighborhood Message Encryption Key that has
been established for this neighborhood traffic. If an explicit IV is
present in the payload field, it is input to the decryption algorithm
per the algorithm specification. If an implicit IV is employed, a local
version of the IV is constructed and input to the decryption algorithm
per the algorithm specification.

After decryption, the original CIDF message is reconstructed and
processed per the normal CIDF protocol specification. At a minimum, the
Next Header field in the CIDF privacy trailer should be moved to the
Next Header field in the CIDF header.

Note that there are two ways in which the decryption can "fail". The
selected security association may not be correct or the encrypted CIDF
message could be corrupted. (The latter case would be detected if
authentication is selected for the security association, as would
tampering with the SPI.)

4.2.5: CIDF Authentication Procedures

4.2.5.1 Ooutbound Message Processing

draft-ietf-cidf-data-formats-00.txt Expires 9/18/98 Page 55

https://datatracker.ietf.org/doc/html/draft-ietf-cidf-data-formats-00.txt

On message transmission, if the CIDF message layer is applying CIDF
authentication mechanisms for the message, the CIDF message layer shall
determine the security association (which determines the algorithm) for
the message target, insert the length of the authentication header,
insert the next header in the authentication header, shall insert the
security association identity (Key Generator Identity and SPI) before
the resulting ciphertext, and perform the cryptographic transform over
the resulting message.

The next header in the CIDF message layer is then set to 51.
4.2.5.1.1 Integrity Check Value Calculation

The transmitter computes the Integrity Check Value (ICV) over the entire
message using the ICV key, hashing algorithm, and algorithm mode
indicated by the security association. Since the Authentication Data is
not protected by encryption, a keyed authentication algorithm must be
employed to compute the ICV.

If privacy is selected in conjunction with CIDF authentication,
encryption is performed first, before the authentication. The
encryption does not encompass the Authentication Data field. This order
of processing facilitates rapid detection and rejection of replayed or
bogus messages by the receiver, prior to decrypting the message, hence
potentially reducing the impact of denial of service attacks. It also
allows for the possibility of parallel processing of messages at the
receiver (i.e., decryption can take place in parallel) with
authentication.

4.2.5.1.2 Padding

No padding is required if the default 96-bit truncated Hashed Message
Authentication Codes (HMAC) algorithm is used. However, if another
authentication algorithm is used, padding MAY be required.

If an authentication algorithm creates an ICV with length less than an
integral multiple of 32 bits, padding may be appended to the
Authentication Data field to ensure a 32-bit multiple AH. Alternatively,
the ICV may be truncated to a 32-bit multiple length.

In addition, if the authentication algorithm requires a multiple of a
block size and the CIDF message with CIDF authentication header does not
meet the block size requirements, zero-valued padding MUST be appended
to the end of the CIDF message prior to ICV computation. This padding
is not transmitted with the CIDF message.

4.2.5.1.3 Authentication Algorithms

The security association specifies the authentication algorithm used for
the ICV computation. At the time of writing, one mandatory-to-implement
algorithm and mode has been defined for CIDF authentication header. It

is based on the Hashed Message Authentication Codes using a SHA-1 hash
value. The output of the HMAC computation is truncated to the leftmost
96 bits.

draft-ietf-cidf-data-formats-00.txt Expires 9/18/98 Page 56

4.2.5.2 Inbound Message Processing

Upon receipt of an CIDF message containing an CIDF authentication
header, the CIDF message layer looks up the Security Association and
verifies the Integrity Check Value.

4.2.5.2.1 Security Association Lookup

The Security Association information is included in the CIDF
authentication header. The CIDF message layer looks up the appropriate
algorithm and key for ICV computation, based on the SPI and Key
Generator's identity from the CIDF authentication header.

If no valid algorithm and key exists for this message, the receiver MUST
discard the message.

4.2.5.2.2 Integrity Check Value Verification

The receiver computes the ICV of the entire CIDF message using the
specified authentication algorithm and the security association ICV key
that has been established for this security association. If the
computed ICV matches the ICV included in the Authentication Data field
of the message, the CIDF message is valid and accepted. If the values
do not match, the CIDF message layer MUST discard the CIDF message as
invalid.

To validate the CIDF message, the CIDF message layer saves the ICV value
in the CIDF authentication header and replaces it with zeros. Then the
CIDF message layer performs the ICV computation over the entire message
and compares the saved ICV value with the computed ICV value.

draft-ietf-cidf-data-formats-00.txt Expires 9/18/98 Page 57

The primitive types list enumerates the ways in which various data
fields shall be encoded. The intent is to keep the primitive type list
relatively small. Complex record structures should be defined within

https://datatracker.ietf.org/doc/html/draft-ietf-cidf-data-formats-00.txt
https://datatracker.ietf.org/doc/html/draft-ietf-cidf-data-formats-00.txt

the payload S-expression, while the definition of enumerated field
arrays are left to SIDs.

HHtHHH BB R R R R HHHHHHH A R R R R HHH AR R R R R
Editor's Comment: Please forgive the reliance on C terminology.

These types should be applicable across programming languages.
HAHHH AR HHH AR HHH AR R R R R R R R AR

INTEGRAL TYPES: These are the core type primitives. These are the
preferred data types for SIDs with associated fields that are processed
or character encoding.

char: (7-bit ISO Invariant Code Set)

char8: (8-bit ascii, no idea what standard to suggest)
byte: (pure undefined octet, no sign relation)

short: (16-bit, signed)

ushort: (16-bit, unsigned

long: (32-bit, signed)

ulong: (32-bit, unsigned)

float: (floating point 32-bit, point to IEEE standard)
double: (floating point 64-bit, point to IEEE standard)

AGGREGATE TYPES: These are for SIDs that require arrays or structures.

An array is a collection of elements described by the same semantic
identifier or type. An array can be of any length.

Example: (array byte) An array of bytes.
(array record) An array of records.

An arrayn is similar to array, but has a fixed number of elements.

Example: (arrayn 4 byte) An array consisting of 4 bytes.
(arrayn 256 char8) An array of 256 characters.

A structure is a sequence of possibly named elements of the specified
types.

Example: (structure
((arrayn 256 char8) name)
(ulong ref-count)
(time create-time))
A sequence consisting of a name, an array of 256 characters,
a ref-count, an integer, and a create-time, a time.

draft-ietf-cidf-data-formats-00.txt Expires 9/18/98 Page 58

Following are some predefined aggregate types:

string: (array char)
string8: (array char8)

https://datatracker.ietf.org/doc/html/draft-ietf-cidf-data-formats-00.txt

ip4_address: (arrayn 4 byte)

ip6_address: (array 8 ushort)

header: (structure
(byte version_id)
(ulong msg_length)
(timestamp msg_timestamp)
(ulong sequence_num)
(byte priority)
(module_id source_ID)
(module_id consumer_ID))

message: (structure
(header msg_header)
(payload msg_payload))

revision: (structure
(byte major)
(byte minor))

[Note: A generic time-stamp structure: NTP/UTC timestamp:
integral part: time in seconds since 00:00:00 GMT,
January 1, 1900 (proposed: if the high-bit is off,
that it be relative to 06:28:16, February 7, 2036).
fractional part: 32 bits (i.e., MSB = 1/2 sec, etc.)
resolution of about 233 picoseconds (1 picosecond =
10e-12 seconds). TBD: Accuracy estimation info.
two components: accuracy of clock, estimate of drift.]

timestamp: (structure
(ulong seconds)
(ulong fracsec))

SCALAR TYPES: There are no enumerated types in this specification, as
there are in C, Ada, and Pascal. Rather, enumerated types shall be
simple bitfield type structures, where SIDs build their own
interpretation of the available bit patterns. This could save some
tremendous headaches. Note, however, for portability it may be better
for SIDs to simply utilize numeric values rather than bit manipulation
when defining enumerated structures.

draft-ietf-cidf-data-formats-00.txt Expires 9/18/98 Page 59

B.1. Introduction

In the following sections, the SIDs defined for use in CIDF are
described. GIDO producers SHOULD use these SIDs whenever an appropriate
one is defined. If a SID has any applicable extensions, these are given

https://datatracker.ietf.org/doc/html/draft-ietf-cidf-data-formats-00.txt

below the extended SID, indented. Extensions of extensions are further
indented.

B.2. Verb SID Descriptions

Following each verb SID is a list of recommended role SIDs. This means
that the sentence SHOULD contain role SIDs giving the described
information (or must refer to an earlier instance which contains this
information).

B.2.1. Motion Verb SIDs

Copy
Description: An object (or set of objects) was copied from one

place to another. To be distinguished from Store by the fact
that the Operand of Copy represents the *identifier* of the
object being copied, and the Operand of Store represents the
value being stored. Hence, if one wishes to express a string
that is stored in a file, then that string is being Stored, and
not Copied (and the appropriate verb SID should be used).
Recommended role SIDs:

Initiator: The entity responsible for initiating the copy.

Operand: The object being copied.

From: The original location of the object.

To: The new location of the copied object.

Move
Description: An object (or set of objects) was *moved* from
one place to another. This is used when the object is
persistent.
Compare Transmit.
Recommended role SIDs:
Initiator: The entity responsible for initiating the move.
Operand: The object being moved.
From: The original location of the object.
To: The new location of the moved object.

draft-ietf-cidf-data-formats-00.txt Expires 9/18/98 Page 60

Store
Description: An object (or set of objects) was stored. To
be distinguished from Copy by the fact that the Operand of
Store represents the *value* being stored (and values do not
have a source), and the operand of Copy represents the
identifier of the object being copied.
Recommended role SIDs:
Initiator: The entity responsible for initiating the store.
Operand: The object being stored.
To: The new location of the stored object.

https://datatracker.ietf.org/doc/html/draft-ietf-cidf-data-formats-00.txt

Remove
Description: An object (or set of objects) was removed.
Recommended role SIDs:
Initiator: The entity responsible for initiating the remove.
Operand: The object being removed.
From: The original location of the object.

B.2.2. Process Verb SIDs

Execute
Description: A program or command was executed.
Recommended role SIDs:
Initiator: The entity responsible for executing the program.
Operand: The program being executed.

Interrupt
Description: A program in execution was interrupted.
Recommended role SIDs:
Initiator: The entity responsible for interrupting the
program.
Operand: The program in execution that was interrupted.

Resume
Description: An interrupted program was resumed.
Recommended role SIDs:
Initiator: The entity responsible for resuming the program.
Operand: The interrupted program that was resumed.

Terminate
Description: A program (either in execution or interrupted) was
terminated.
Recommended role SIDs:
Initiator: The entity responsible for terminating the
program.
Operand: The program that was terminated.

B.2.3. Privilege Verb SIDs

AcquirePrivilege
Description: An entity acquired a privilege.
Recommended role SIDs:
Initiator: The entity acquiring the privilege.
Operand: The privilege in question.

draft-ietf-cidf-data-formats-00.txt Expires 9/18/98 Page 61

LosePrivilege
Description: An entity lost a privilege.
Recommended role SIDs:
Initiator: The entity losing the privilege.
Operand: The privilege in question.

https://datatracker.ietf.org/doc/html/draft-ietf-cidf-data-formats-00.txt

ChangeAttribute
Description: An entity acquired a privilege.
Recommended role SIDs:
Initiator: The entity changing the attribute.
Operand: The attribute in question.

HasAuthorizations

Description: An entity has permission to do certain things

to an object.

Recommended role SIDs:
Initiator: The entity operating on the object.
Operand: The object being operated on.
Authorizations: The permissions associated with this
Initiator and Operand. Currently, this should use the
Permissions SID (see Section B.5.7).

B.2.4. Transaction Verb SIDs

Request

Description: An entity requested a second entity to perform an

action.

Recommended role SIDs:
Initiator: The entity making the request.
To: The entity receiving the request.
Operand: A second-level sentence that contains the requested
action. The Initiator of this second-level sentence MAY be
the To of the request. (It may be the case that
delegation is required.)

Login
Description: An entity logs in (or attempts to do so) to a
host.
Recommended role SIDs:
Initiator: The entity logging into the host.
To: The host being logged into (ulch).

B.2.5. Communication Verb SIDs

BeginSession

Description: A communication session is established between

two entities.

Recommended role SIDs:
Initiator: The entity initiating the connection (the
"active" mode side).
To: The entity accepting the connection (the
"passive" mode side).
Operand: The connection and its associated attributes.
(This might include a ReferAs clause, for instance.)

draft-ietf-cidf-data-formats-00.txt Expires 9/18/98 Page 62

EndSession

Description: A communication session between two entities is

ended.

Recommended role SIDs:
Initiator: The entity who had originally initiated the
connection.
To: The entity who had originally accepted the
connection.
Operand: The connection being closed. (Typically, this
would consist only of a ReferTo clause.)

Transmit
Description: An entity sent an object to a second entity. This
is used when the object is transient, as with a packet. Compare
Move.
Recommended role SIDs:
Initiator: The entity responsible for starting the
transmission. Typically the same entity as (and hence
a possible referent of) the From.
From: The entity sending the object.
To: The entity receiving the object.
Operand: The object being sent.
Connection: Information identifying the connection, if
applicable.

Block

Description: A transmission was blocked.

Recommended role SIDs:
Initiator: The entity blocking the transmission.
From: The entity sending the object.
To: The entity receiving the object.
Operand: The object being sent.
Connection: Information identifying the connection, if
applicable.

B.2.6. Monitoring Verb SIDs

Snapshot
Description: A one-time observation of conditions.
Recommended role SIDs:
Observer: The entity observing the system.
PresentState: The conditions observed by the Observer.

ChangeState
Description: Conditions changed.
Recommended role SIDs:
Observer: The entity observing the system.
OldState: The old state of the system.
NewState: The new state of the system.

https://datatracker.ietf.org/doc/html/draft-ietf-cidf-data-formats-00.txt

draft-ietf-cidf-data-formats-00.txt Expires 9/18/98 Page 63

Filter
Description: A filter was matched by summarized occurences.

Recommended role SIDs:
Observer: The entity filtering the observations.
Filter: The filter against which to match the observations.
FilterStats: The statistics of observations matching the

Filter.
B.2.7. Policy Verb SIDs

Require
Description: An entity required a second entity to perform an
action.
Recommended role SIDs:
Initiator: The entity making the requirement.
To: The entity imposed by the requirement.
Operand: A second-level sentence describing the required

action. See Request.

Recommend
Description: An entity recommended a second entity to perform an
action.
Recommended role SIDs:
Initiator: The entity making the recommendation
To: The entity receiving the recommendation
Operand: A second-level sentence describing the recommended

action. See Request.

Allow
Description: An entity allowed a second entity to perform an
action.
Recommended role SIDs:
Initiator: The entity making the allowance.
To: The entity permitted to perform the action.
Operand: A second-level sentence describing the allowed

action. See Request.

Forbid
Description: An entity forbade a second entity from performing
an action.
Recommended role SIDs:
Initiator: The entity making the proscription.
To: The entity forbidden to perform the action.
Operand: A second-level sentence describing the forbidden

action. See Request.

B.2.8. Subjunctive Verb SIDs

https://datatracker.ietf.org/doc/html/draft-ietf-cidf-data-formats-00.txt

draft-ietf-cidf-data-formats-00.txt Expires 9/18/98 Page 64

Do

Description: This is a request for action.

Recommended role SIDs:
Operand: A second-level sentence describing what is to
be done. This sentence may lack an explicitly named
Initiator, indicating that the recipient of the request
is to ensure that the action is carried out.
Recommender: The entity recommending the action.

Diagnose
Description: This is a diagnosis.
Recommended role SIDs:
Operand: A second-level sentence indicating what the
diagnosis is.
Analyzer: The entity making the diagnosis.

Predict
Description: This is a prognosis.
Recommended role SIDs:
Operand: A second-level sentence indicating what is
predicted.
Analyzer: The entity making the prediction.

B.3. Role SID Descriptions

The below are SIDs that denote a *role*. That is, they are used to tag a
group of attributes that together describe something that plays a role
in a sentence. They are intended to be used somewhat generically, so
that the same SID (e.g., Initiator) can be used with many different
actions. Thus, their definitions here are generic as well. When used
with specific verbs, they have specific interpretations; these are given
with the definition of the verbs.

B.3.1. Operation Role SIDs

Initiator
Description: The entity responsible for causing something to
happen.

Operand
Description: The object which is operated on. Often used in
conjunction with Initiator, in which case it is the object
that things happen *to*.

Authorizations
Description: The authorized activities permitted to an
entity on an object.

https://datatracker.ietf.org/doc/html/draft-ietf-cidf-data-formats-00.txt

draft-ietf-cidf-data-formats-00.txt Expires 9/18/98 Page 65

B.3

Using
Description: The means used by the Initiator to perform some
action. This is ordinarily a *program* or script which is
executed by Initiator, which distinguishes it from the
ByMeansOf construct (see Section B.4), which indicates that
a *sentence* occurred as a way of having a second sentence
occur. Therefore, a user might login "Using" a telnet program,
but that same user would overload a system "ByMeansOf'" causing
that system to fail.

.2. Time and Location Role SIDs

B.3.

Before
Description: A time before which the conditions
described by the sentence are observed.

After
Description: A time after which the conditions
described by the sentence are observed.

wWhile
Description: The time during which the conditions
described by the sentence are observed.

AtTime
Description: The time at which the conditions
described by the sentence are observed.

AtLocation
Description: The location at which the conditions described
by the sentence are observed to have happened.

3. Motion Role SIDs

From
Description: The place from which movement occurs. This may
also be used to identify an entity (i.e., active agent)
sending an object.

To
Description: The place to which movement occurs. This may
also be used to identify an entity receiving an object.
Through

Description: A place through which movement passes. This may
also be used to identify an entity relaying an object. There
may be more than one Through for a given verb. If there is an
order to the Throughs, the GIDO producer SHOULD put them in
chronological order. (To make this explicit, the producer

MAY include an Epoch SID (see Section B.5.1) in this role.)

https://datatracker.ietf.org/doc/html/draft-ietf-cidf-data-formats-00.txt

Connection
Description: A connection between two entities.

draft-ietf-cidf-data-formats-00.txt Expires 9/18/98 Page 66

B.3.4. Filter Role SIDs

Filter
Description: The template against which a component is
matching observations, typically for statistics.

FilterStats
Description: The statistics on which observations match
the associated Filter.

B.3.5. Object Attribute Role SIDs

Oowner
Description: The entity with ownership rights to the object.
If specific assignment of ownership is lacking, then this
indicates that the entity has the right to control access to
the object.

Host
Description: The host on which the object resides.

Certifier
Description: The entity which vouches for the identity of
the object. When applied to a certificate, it represents
the CA for that certificate; when applied to a Kerberos
principal, it represents the KDC; when applied to a hostname,
it represents a (possibly secure) DNS server.

Parent
Description: The entity which created the object. When
applied to a Unix process, it represents the parent of the
process.

B.3.6. Status Role SIDs

Outcome
Description: The outcome of an action which was *attempted*.

Context
Description: Additional information regarding an event. This
is where the duration of an event, for instance, would go.

B.3.7. Meta-Role SIDs

Observer

https://datatracker.ietf.org/doc/html/draft-ietf-cidf-data-formats-00.txt

Description: The entity observing the conditions described
by the sentence.

Analyzer
Description: The entity performing the analysis described
by the sentence.

Recommender
Description: The entity prescribing the action described by
the sentence.

draft-ietf-cidf-data-formats-00.txt Expires 9/18/98 Page 67

B.4.

Conjunction SIDs

CausallyRelated
Format: (CausallyRelated <Sentencel> <Sentence2>)
Description: Sentencel and Sentence2 both occurred, and are
causally related. That is, either one helped cause the
other, or a third sentence helped cause both.

HelpedCause
Format: (HelpedCause <Sentencel> <Sentence2>)
Description: Sentencel and Sentence2 both occured, and
Sentencel was a contributing factor to Sentence2. Sentence2
must denote an event.

IntentionallyHelpedCause
Format: (IntentionallyHelpedCause <Sentencel> <Sentence2>)
Description: Sentencel and Sentence2 both occured, and
Sentencel was, and was intended to be, a contributing factor
to Sentence2. Sentence2 must denote an event.

CommonCause
Format: (CommonCause <Sentencel> <Sentence2> ... <SentenceN>)
Description: Sentencel through SentenceN all occurred,
and all have a common cause.

ByMeansOf
Format: (ByMeansOf <Sentencel> <Sentence2> ... <SentenceN>)
Description: Sentencel through SentenceN all denote events
that happened. Some intentional agent (person or program)
accomplished event 1 by means of accomplishing event 2,
accomplished event 2 by means of accomplishing event 3,

and so on.
InOrder
Format: (InOrder <Sentencel> <Sentence2> ... <SentenceN>)

Description: Sentencel through SentenceN all denote events
that occurred. The events occurred in the order given.
ending(event 1) <= beginning(event 2),

https://datatracker.ietf.org/doc/html/draft-ietf-cidf-data-formats-00.txt

ending(event 2) <= beginning(event 3),
B.5. Atom SIDs
B.5.1. Base SIDs
Epoch
Type: timestamp

Description: The moment at which something occurred.

Duration
Type: float
Description: The duration of an occurrence, in seconds.

draft-ietf-cidf-data-formats-00.txt Expires 9/18/98 Page 68

Size
Type: ulong
Description: The length of an object, in bytes.

Certainty
Type: float
Description: The certainty of an observation, expressed as
the observer's estimate of the probability that the entire
observation is true.

Severity
Type: byte
Description: The severity of an event, as estimated by the
observer, with more severe events being given a higher
number. Zero (0) represents the minimum severity, and 255
represents the maximum severity. [Editor's Note: We solicit
discussion on guidelines for determining intermediate levels
of severity.]

ReturnCode
Type: byte
Description: This is an enumerated value. The constraints
on this are that zero (@) MUST mean success; failure is any
non-zero value.

ReturnCode (ExtendedBy CIDFReturnCode)
Type: byte
Description: This is an enumerated value with greater
semantics than a generic return code:

(C] = success
1 = failed

2 = pending
3-255 = reserved

OSName

https://datatracker.ietf.org/doc/html/draft-ietf-cidf-data-formats-00.txt

Type: string
Description: The name of an operating system.

"Sun0s").

ObservationSourceType

Type: string

(For instance,

Description: A name describing the source of data used to
generate an observation.

draft-ietf-cidf-data-formats-00.txt Expires 9/18/98

ObjectType

Type: byte

Description: This is an enumerated value.

0

© 0N O Ol WN B

-255

ObjectName

Type: string

reserved

file
file_system
memory
CPU_time
peripheral

URL
network_packet
program
reserved

Description: The name of an object.

(ExtendedBy FileSystemName)
Type: string

Description: A file system name, given in
"hostname:directory-pathname" format,

is file system.

(ExtendedBy DeviceName)
Type: string
Description: A name for the device, if object type is
peripheral.

(ExtendedBy URL)
Type: string

Description: A URL to find the object, given in
"scheme:locator" format, if object type is URL.

ObjectCreated

Time: timestamp

Description: Depending on applicability,

the object was (last) created.

ObjectModified

Page 69

if object type

the time at which

https://datatracker.ietf.org/doc/html/draft-ietf-cidf-data-formats-00.txt

Time: timestamp
Description: Depending on applicability, the time at which
the object was last modified.

ObjectAccessed
Time: timestamp
Description: Depending on applicability, the time at which
the object was last accessed.

ProgramName
Type: string
Description: The name of a program, as distinguished from its
filename. If a program is moved from one place in a directory
to another, its filename may change, but its program name
stays the same. An example of a program name is "PowerPoint".

draft-ietf-cidf-data-formats-00.txt Expires 9/18/98 Page 70

DeveloperName
Type: string
Description: The name of the entity responsible for developing
a program. An example is "Microsoft".

VersionNumber
Type: string
Description: The version number of an application. An example
is "5.0".

Comment
Type: string
Description: An annotation.

B.5.2. Connector

ReferAs
Type: string
Description: An identifier to be used later as a referent.
(See Section 2.4.)

ReferTo
Type: string
Description: An identifier referring to an earlier referent.
(See Section 2.4.)

B.5.3. Process SIDs

Priority
Type: short
Description: The priority of a process, with high-priority
processes being given a lower number.

https://datatracker.ietf.org/doc/html/draft-ietf-cidf-data-formats-00.txt

RevPriority
Type: short
Description: The priority of a process, with high-priority
processes being given a larger number.

ProcessName
Type: short
Description: The process's name (typically used for daemon or
service name).

ProcessID
Type: ushort
Description: The process's ID.

ProcessID (ExtendedBy SessionID)
Type: ushort
Description: Denotes an ID relating to a process that carries

a session.
draft-ietf-cidf-data-formats-00.txt Expires 9/18/98 Page 71
ProcessStatus
Type: byte
Description: This is an enumerated value.
0 = active /* running */
1 = suspended /* awaiting an 0S action */
2 = killed /* terminated by external signal */
3 = finished /* terminated internally */
4 = unknown (no such process?)
5-255 = reserved
SystemTime
Type: float

Description: Time spent (by a process) in the system/kernel,
in seconds.

UserTime
Type: float
Description: Time spent (by a process) in user space, in
seconds.

.4. User SIDs

EMailAddress
Type: string
Description: The e-mail address of an entity.

RealName
Type: string
Description: The given name, as known, of an entity.

https://datatracker.ietf.org/doc/html/draft-ietf-cidf-data-formats-00.txt

PrincipalName
Type: string
Description: A persistent name associated with a user.

UserName
Type: string
Description: The name associated with a user account.

UserID
Type: ushort
Description: The user ID number for a user.

PersistentUserName
Type: string
Description: A user name associated with a login session.

PersistentUserID
Type: ushort
Description: The user account ID.

CurrentUserName
Type: string
Description: A user name associated with the current interactive
session.

draft-ietf-cidf-data-formats-00.txt Expires 9/18/98 Page 72

CurrentUserID
Type: ushort
Description: The current user ID.

EffectiveUserName
Type: string
Description: A user name associated with a process.

EffectiveUserID
Type: ushort
Description: The effective user ID.

GroupName
Type: string
Description: The name associated with a user group. This can
be associated with either a user or an object such as a file.

EffectiveGroupName
Type: string
Description: The name associated with the group of an effective
user.

GroupID
Type: ushort

https://datatracker.ietf.org/doc/html/draft-ietf-cidf-data-formats-00.txt

Description: A user group ID. This can be associated with
either a user or an object such as a file.

GroupUUID
Type: 16-byte array
Description: A UUID associated with a group. This has stronger
guarantees of non-duplication than GroupID.

B.5.5. Distributed/Networking SIDs

HostName
Type: string
Description: The hostname associated with a host.

(ExtendedBy FQHostName)
Type: string
Description: The fully qualified hostname.

ServerDNSName
Type: string
Description: The name of a server associated with a user
or an object. This is always a fully qualified DNS name.

DomainName
Type: string
Description: An administrative domain name.

(ExtendedBy FQDomainName)
Type: string
Description: The fully qualified domain name.

draft-ietf-cidf-data-formats-00.txt Expires 9/18/98 Page 73
DomainID
Type: ulong

Description: An administrative domain's 1ID.

DomainUUID
Type: 16-byte array
Description: A UUID associated with an administrative domain.

DataLinkProtocol

Type: byte

Description: Enumerated value.
0 = reserved
1 = Ethernet
2 = Token ring
3 = ARC net
4 = IEEE 802.5, SNAP header
5 = IEEE 802.2, FDDI
6 = IEEE 802.3, MAN

https://datatracker.ietf.org/doc/html/draft-ietf-cidf-data-formats-00.txt

7 = SLIP

8 = PPP
9-255 = reserved
NetworkProtocol
Type: byte
Description: Enumerated value.
0 = reserved
1 = IPv4
2 = IPv6
3 = ICMP
4 = ARP
5 = RARP
6-255 = reserved
TransportProtocol
Type: byte
Description: Enumerated value.
0 = reserved
1 = TCP
2 = UDP
3-255 = reserved

B.5.5.1. Data Link Layer Attribute SIDs

EthernetAddress
Type: 6-byte array
Description: The ethernet address associated with a host.

EtherPreamble
Type: 8-byte array
Description: The ethernet preamble.

EtherType

Type: ushort
Description: The ethernet type.

draft-ietf-cidf-data-formats-00.txt Expires 9/18/98 Page 74

EtherFrameCheckSeq
Type: ulong
Description: The ethernet frame check sequence number.

B.5.5.2. Network Layer Attribute SIDs
IPV4Address
Type: ulong

Description: The IPv4 address associated with a host.

IPV4Mask
Type: ulong

https://datatracker.ietf.org/doc/html/draft-ietf-cidf-data-formats-00.txt

Description: An IPv4 network mask.

IPV4Port
Type: ushort
Description: An IPv4 port.

IPV4verIHL
Type: byte
Description: 8 bit representation of IP header version ID
(bits 0-3) and header length (bits 4-7).

IPV4servicetype
Type: byte
Description: The IPv4 Type of Service (TOS). Only bits 3-6
are significant. They are, in order, Minimize Delay, Maximize
Throughput, Maximize Reliability, and Minimize Monetary Cost.

IPV4totallength
Type: ushort
Description: The IPv4 total packet length. This is the length
of the entire packet, header included. Subtracting the header
length (determined from IPV4verIHL) gives the length of the
data portion.

IPV4identifier
Type: ushort
Description: The IPv4 packet identifier. Typically sequential.

IPV4flags
Type: byte
Description: The IPv4 flags field. Only bits 1 and 2 are
significant. They are, in order, Don't Fragment and More
Fragments.

IPV4fragoffset
Type: ushort
Description: The IPv4 offset of a datagram fragment.

IPVAttl
Type: byte
Description: The IPv4 packet time-to-live (maximum number
of routers to relay the packet).

draft-ietf-cidf-data-formats-00.txt Expires 9/18/98 Page 75

IPV4protocol
Type: byte
Description: The IPv4 protocol number. This is an enumerated
value. A full table of the enumeration can be found in RFC
1700. [There has to be something more recent than that.]

https://datatracker.ietf.org/doc/html/draft-ietf-cidf-data-formats-00.txt
https://datatracker.ietf.org/doc/html/rfc1700
https://datatracker.ietf.org/doc/html/rfc1700

IPV4checksum
Type: ushort
Description: The IPv4 header checksum. It does not cover
any of the data portion.

B.5.5.3. Transport Layer SIDs

TCPPort
Type: ushort
Description: A TCP port number.

TCPsequencenumber
Type: ulong
Description: The TCP sequence number. Identifies the first
byte of the stream in this packet. The first byte of the
stream as a whole is indexed number zero.

TCPacknumber
Type: ulong
Description: The TCP ack number. Identifies the first byte
of the stream in the next (expected) packet.

TCPwindow
Type: ushort
Description: The TCP window size, in bytes.

TCPchecksum
Type: ushort
Description: The TCP packet checksum. This covers both the
header *and* the data portions of the packet.

TCPurgentpointer
Type: ushort
Description: The TCP urgent pointer. Presence of this SID
presumes that the URGent bit was set. Number of bytes to
get to the last byte of urgent data, starting from the
first byte of this packet, inclusive.

TCPMSS
Type: ushort
Description: The TCP maximum segment size.

TCPflags
Type: byte
Description: Bit © = URG, Bit 1 = ACK, Bit 2 = PSH, Bit 3 = RST,
Bit 4 = SYN, Bit 5 FIN, Bits 6-7 = undefined.

draft-ietf-cidf-data-formats-00.txt Expires 9/18/98 Page 76

TCPflagsmask
Type: byte

https://datatracker.ietf.org/doc/html/draft-ietf-cidf-data-formats-00.txt

B.5.

Description: A bitmask over the TCPflags field.

UDPPort
Type: ushort
Description: A UDP port number.

UDPlength
Type: ushort

Description: The UDP packet length. Covers both the header and

the data.

UDPchecksum
Type: ushort
Description: The UDP packet checksum. This covers both the
header *and* the data.

6. Statistics SIDs

SampleCount
Type: ulong
Description: The number of samples that were analyzed.

MatchCount
Type: ulong
Description: The number of samples that matched the filter.

DistinctMatchCount
Type: ulong

Description: The number of non-duplicated samples that matched

the filter.

MismatchCount
Type: ulong
Description: The number of samples that did not match the
filter.

DistinctMismatchCount
Type: ulong

Description: The number of non-duplicated samples that did not

match the filter.

Anomalousness
Type: float

Description: This represents the degree to which the statistics

are unexpected, represented as a probability that a random
sample set of the given size would exhibit the given behavior
or more extreme. This can only be used with filter match
or mismatch counts. With match counts, this represents the
estimated probability of finding at least that many matches;
with mismatch counts, the estimated probability of finding at
least that many mismatches.

draft-ietf-cidf-data-formats-00.txt Expires 9/18/98 Page 77

Deviation
Type: float
Description: The distance of the statistics from the mean
value, expressed as multiples of the standard deviation.
If the value is lower than expected, then the value of this
field is negative; if the value is higher than expected,
then the value of this field is positive.

B.5.7. Access Control SIDs

AccessControlList
Type: string
Description: An access control list, in some format. This
ought to be standardized, but isn't.

MACLabel
Type: string
Description: The security label of the user.

MACEffectivelLabel
Type: string
Description: The security label of the effective user
identifier.

MACClearances
Type: string
Description: The clearances of the user.

MACObjectLabel
Type: string
Description: The security label of an object.

Permissions

Type: byte

Description: This is a bitfield.
0 = read (MSB)
1 = append
2 = modify
3 = execute
4-7 = reserved

B.5.8. Uninterpreted SIDs

CharSID
Type: char
Description: A char type with no defined semantics.

ByteSID
Type: byte

https://datatracker.ietf.org/doc/html/draft-ietf-cidf-data-formats-00.txt

Description: A byte type with no defined semantics.

ShortSID
Type: short
Description: A short type with no defined semantics.

draft-ietf-cidf-data-formats-00.txt Expires 9/18/98 Page 78

UShortSID
Type: ushort
Description: A ushort type with no defined semantics.

LongSID
Type: long
Description: A long type with no defined semantics.

ULongSID
Type: ulong
Description: A ulong type with no defined semantics.

FloatSID
Type: float
Description: A float type with no defined semantics.

DoubleSID
Type: double
Description: A double type with no defined semantics.

StringSID
Type: string
Description: A string type with no defined semantics.

B.5.9. Packaged SIDs

The following SIDs are grouped into packages. Each package, generally
speaking, covers a domain of interest. The intent is to group SIDs
together that would be useul to any component interested in a specific
area. This organization confers the following benefits.

* Components will be able to concisely specify which SIDs they
do and do not understand, without being required to support a
mandated set of SIDs.

* Components will not be required to support SIDs for which they
have no use.

* Newly developed SIDs can be dropped into place with minimal
fuss.

Some SIDs within packages extend earlier defined SIDs. As noted in the
main text, this means that the interpretation of such SIDs builds upon
the meaning of the extended SIDs.

https://datatracker.ietf.org/doc/html/draft-ietf-cidf-data-formats-00.txt

B.5.9.1. Kerberos SIDs

This package contains SIDs related to Kerberos activity: Kerberos
extensions (as enumerated by preauthentication field types), Kerberos
logging, Kerberos error types, and identities.

KerberosV5PreauthType
Type: ushort

Description: The Kerberos V5 preauthentication field type.

draft-ietf-cidf-data-formats-00.txt Expires 9/18/98 Page 79

KerberosV5EncType
Type: ushort
= NULL (no encryption)
= ENCTYPE_DES_CBC_CRC (DES 1in
= ENCTYPE_DES_CBC_MD4 (DES in
ENCTYPE_DES_CBC_MD5 (DES in
= ENCTYPE_DES_CBC_RAW (DES in

~NOoO o~ WNPRE O
1l

reserved
511 = unknown encryption type

1
a1
=
(o]

1

CBC
CBC
CBC
CBC

mode
mode
mode
mode

with CRC32 checksum)
with MD4 checksum)
with MD5 checksum)
raw (no checksum))

= ENCTYPE_DES3_CBC_SHA (DES in CBC mode with SHA1 checksum)
= ENCTYPE_DES3_CBC_RAW (DES in CBC mode raw (no checksum))

Description: The Kerberos V5 encryption type used.

KerberosLogUserNumber
Type: string

Description: The user number associated with this audit log entr
be well-formed, it should be a six-digit number, although other
information may be inserted here,

if that six-digit number is no

present.
KerberosLogEventType
Type: byte
1 = A ticket was requested by this user.
2 = A service (application) was requested by this user.
3 = The allowed threshold for initial ticket requests has been e
4 = User has been blacklisted by the KNSC (Kerberos system).
5 = User blacklist has been cleared by the KNSC.
6 = Denied request.

Description: An enumerated type indicating the type of event bei

logged.

KerberosLogEventStatus
Type: byte
For KerberosLogEventType = 1,
1 Successful activity.

2 = Failed ticket request: Invalid computing level.
3 = Failed ticket request: Expired password.
4 = Failed ticket request: Access failure.

https://datatracker.ietf.org/doc/html/draft-ietf-cidf-data-formats-00.txt

5 = Failed ticket request: Unknown user.

6 = Failed ticket request: Invalid level for source.

For KerberosLogEventType = 2,

1 = Successful activity.

2 = Failed service request: Invalid computing level.

3 = Failed service request: Unknown service.

4 = Failed service request: Expired ticket.

5 = Failed service request: Invalid level for destination.
Description: An enumerated type indicating, for various event ty
the current status of the event at the time of log entry.

draft-ietf-cidf-data-formats-00.txt Expires 9/18/98 Page 80

KerberosLogEventLevel

Type: char

u = Unclassified.

p = PARD.

c = Confidential.

s = Secret.

Description: The user's requested computing level during
authentication.

KerberosLogEventService
Type: string
Description: Thirty-character name associated with the service
requested by the user. This may be an application (such as
telnet) or a node such as the CFS. A single '?' indicates that
the event service name was unknown.

ReturnCode (ExtendedBy KerberosV5Error)
Type: byte
Description: Indicates a Kerberos V5 error code. As
before, zero indicates success. The complete
enumeration may be found in RFC 1510.

PrincipalName (ExtendedBy KerberosName)
Type: string
Description: A Kerberos principal name, unparsed.
An example is "joe@WORK.COM". Its two extensions
ought to be self-explanatory.

(ExtendedBy KerberosV4Name)
(ExtendedBy KerberosV5Name)
ServerDNSName (ExtendedBy KerberosKDCName)
Type: string
Description: Indicates the host name of the Kerberos

server.

DomainName (ExtendedBy KerberosRealmName)

https://datatracker.ietf.org/doc/html/draft-ietf-cidf-data-formats-00.txt
https://datatracker.ietf.org/doc/html/rfc1510

Type: string
Description: A Kerberos realm name.

B.5.9.2. DCE SIDs

This package contains SIDs related to DCE. It currently contains only

identity-related SIDs,
errors, and privileges.

but it may also contain SIDs relating to logging,

GroupName (ExtendedBy DCEGroupName)
Type: string
Description: A DCE group name.

GroupUUID (ExtendedBy DCEGroupUUID)
Type: 16-byte array
Description: A DCE group UUID.

draft-ietf-cidf-data-formats-00.txt

Expires 9/18/98 Page 81

DomainName (ExtendedBy DCECellName)
Type: string

Description: A DCE cell name.

DomainUUID (ExtendedBy DCECellUUID)
Type: 16-byte array

Description: A DCE cell UUID.

B.5.9.3. AFS SIDs
"Sun0s").
"Sun0s").
"Sunos") .
"Sun0S").
"Sun0s").

(For instance,

(For
(For
(For
(For

instance,
instance,
instance,
instance,

This package contains SIDs related to DCE. It currently contains
identity-related SIDs and ACL-related SIDs, but it may also contain SIDs
relating to logging and errors.

AFSProtectionGroupName
Type: string
Description: The protection group associated with a given ACL.
This is a combination of the form <cell>:<group>:<user>.

AFSACL
Type: char
r = Read.
1 = Lookup.
i = Insert.
d = Delete.
w = Write.
k = locK.

https://datatracker.ietf.org/doc/html/draft-ietf-cidf-data-formats-00.txt

a = Administer.

Description: The access permission granted on the directory,

a given AFSProtectionGroup.

GroupName (ExtendedBy AFSGroupName)
Type: string
Description: A AFS group name.

GroupUUID (ExtendedBy AFSGroupUUID)
Type: 16-byte array
Description: A AFS group UUID.

ServerDNSName (ExtendedBy AFSServerName)
Type: string
Description: Indicates the name of the host serving
the AFS file within the cell.

DomainName (ExtendedBy AFSCellName)
Type: string
Description: An AFS cell name.

draft-ietf-cidf-data-formats-00.txt Expires 9/18/98

This package contains SIDs that
configuration of CIDF-compliant

DomainUUID (ExtendedBy AFSCellUUID)
Type: 16-byte array
Description: An AFS cell UUID.

B.5.9.4. CIDF Box Reporting SIDs

BoxRecsPerSec
Type: ulong

to

convey information about the status and
components (referred to as "boxes").

Description: The number of records per second received since upt

BoxBytesPerSec
Type: ulong

Description: The number of bytes per second received since uptim

BoxSentRecsCnt
Type: ulong

Description: The total number of records received since uptime.

BoxSentByteCnt
Type: ulong

Description: The total number of bytes received since uptime.

BoxErrorCnt
Type: ulong

Description: The total number of errors received since uptime.

https://datatracker.ietf.org/doc/html/draft-ietf-cidf-data-formats-00.txt

BoxWarnDesc
Type: string
Description:

BoxEventStreamID
Type: byte

O =

1 =

15 =
16 =

255 =
Description:

B.5.9.5. Enumerated

A narrative description of the warning.

0S-audit
packet-data

reserved
available

available
A byte value identifying the message stream type

Action SIDs

This package contains enumerated lists of actions.

FTPCommand
Type: string
Description:

draft-ietf-cidf-data-

The name of an FTP command used during a session.

formats-00.txt Expires 9/18/98 Page 83

ResourceAction
Type: byte
Description:

An enumeration of all the actions that may be

taken on a resource object.
® = access

= link

© 0 ~NO Ok WN B

= open

B R R R
w N PR o
T TR TR

= chdir
= chmod
= chown
= chroot
= close
= create

= mount

read

= umount
unlink
write

14+ = reserved

draft-ietf-cidf-data-

formats-00.txt Expires 9/18/98 Page 84

0SAction

https://datatracker.ietf.org/doc/html/draft-ietf-cidf-data-formats-00.txt
https://datatracker.ietf.org/doc/html/draft-ietf-cidf-data-formats-00.txt

Type: short
Description: This SID enumerates the possible 0S audit/syslog ev
that may be seen in an audit trail.

0 = void

1 = discon

2 = access

3 = open

4 = write

5 = read

6 = delete

7 = create

8 = rmdir

9 = chmod

10 = exec

11 = chown

12 = link

13 = chdir

14 = su

15 = bad_su
16 = exit

17 = logout
18 = uncat

19 = rsh

20 = passwd
21 = rmount
22 = passwd_auth
23 = kill

24 = core

25 = ptrace
26 = truncate
27 = utimes
28 = fork

29 = chroot
30 = mknod

31 = halt

32 = reboot
33 = shutdown
34 = boot

35 = set_time
36 = setuid
37 = setgid
38 = audit_config
39 = is_promiscuous
40 = connect
41 = accept
42 = bind

43 = socketoption

44+ = reserved

B.5.9.6. Unix SIDs

This package contains Unix-related SIDs: error codes and identities. It
may also contain other Unix-specific SIDs.

draft-ietf-cidf-data-formats-00.txt Expires 9/18/98 Page 85

ReturnCode (ExtendedBy UniXxErrno)
Type: byte
Description: Indicates a Unix errno value. Thus,
1 is EPERM, 2 is ENOENT, 3 is ESRCH, and so forth.
This should be standard through 32 (EPIPE). After
that, the values are not standardized, so we may see
this extension further ExtendedBy LinuxErrno, for
example. To be explicit about UnixErrno, we reproduce
the enumeration below. (Depending on the context,
this may not need to be generated by an actual Unix
process, but may also be used by (for example) A-boxes
explaining why an action failed.)

0 = SUCCESS /* Inherited from ReturnCode */
1 = EPERM /* Operation not permitted */
2 = ENOENT /* No such file or directory */
3 = ESRCH /* No such process */
4 = EINTR /* Interrupted system call */
5 = EIO /* 1I/0 error */
6 = ENXIO /* No such device or address */
7 = E2BIG /* Arg list too long */
8 = ENOEXEC /* Exec format error */
9 = EBADF /* Bad file number */
10 = ECHILD /* No child processes */
11 = EAGAIN /* Try again */
12 = ENOMEM /* out of memory */
13 = EACCES /* Permission denied */
14 = EFAULT /* Bad address */
15 = ENOTBLK /* Block device required */
16 = EBUSY /* Device or resource busy */
17 = EEXIST /* File exists */
18 = EXDEV /* Cross-device link */
19 = ENODEV /* No such device */
20 = ENOTDIR /* Not a directory */
21 = EISDIR /* Is a directory */
22 = EINVAL /* Invalid argument */
23 = ENFILE /* File table overflow */
24 = EMFILE /* Too many open files */
25 = ENOTTY /* Not a typewriter */
26 = ETXTBSY /* Text file busy */
27 = EFBIG /* File too large */
28 = ENOSPC /* No space left on device */
29 = ESPIPE /* Illegal seek */
30 = EROFS /* Read-only file system */
31 = EMLINK /* Too many links */
32 = EPIPE /* Broken pipe */

https://datatracker.ietf.org/doc/html/draft-ietf-cidf-data-formats-00.txt

33-255 = undefined

ObjectName (ExtendedBy UnixPathName)
Type: string
Description: A fully expanded Unix pathname, if object
type is file.

draft-ietf-cidf-data-formats-00.txt Expires 9/18/98 Page 86

Priority (ExtendedBy UnixNiceness)
Type: short
Description: The process's Unix nice value. User processes
are restricted to positive (lower-priority) niceness values.

ObjectName (ExtendedBy DeviceName) (ExtendedBy UnixFullDeviceName)
Type: string
Description: Indicates a full Unix device name, such
as "/dev/ttyp0". A simple "ttypO@" is not a valid
value if this extension is present.

UserName (ExtendedBy UnixUserName)
Type: string
Description: A Unix account name.

UserID (ExtendedBy UnixUID)
Type: ushort
Description: A Unix UID.

PersistentUserName (ExtendedBy UnixAUserName)
Type: string
Description: A Unix audit (real) user name.

PersistentUserID (ExtendedBy UnixAUID)
Type: ushort
Description: A Unix audit (real) user 1ID.

CurrentUserName (ExtendedBy UnixCUserName)
Type: string
Description: A Unix current user name.

CurrentUserID (ExtendedBy UnixEUID)
Type: ushort
Description: A Unix current user ID.

EffectiveUserName (ExtendedBy UnixEUserName)
Type: string
Description: A Unix effective user name.

EffectiveUserID (ExtendedBy UnixEUID)
Type: ushort
Description: A Unix effective user ID.

https://datatracker.ietf.org/doc/html/draft-ietf-cidf-data-formats-00.txt

GroupName (ExtendedBy UnixGroupName)
Type: string
Description: The name of a Unix group.

EffectiveGroupName (ExtendedBy UnixEGroupName)

Type: string
Description: The name of a Unix effective group.

draft-ietf-cidf-data-formats-00.txt Expires 9/18/98 Page 87

UnixPermissions
Type: string
Description: The permissions associated with a Unix file,
expressed in "04777" format. For example, "00544" means
readable and executable by the owner, readable only by anyone
else.

B.5.9.7. DOS SIDs
This package contains D0S-specific SIDs.

ObjectName (ExtendedBy DOSPathName)
Type: string
Description: A fully expanded DOS pathname, if object
type is file.

B.5.9.8. X.500 SIDs

This package contains X.500 SIDs. It currently contains only identity-
related SIDs, but it may also contain SIDs conveying information about
certificates, directory servers, and algorithms.

RealName (ExtendedBy X500CommonName)
Type: string
Description: An X.500 Common Name.

PrincipalName (ExtendedBy X500DistName)
Type: string
Description: An X.500 Distinguished Name, encoded as
in REC 1779.
Expiration Date
This draft expires September 18th, 1998.

Authors

Stuart Staniford-Chen
Department of Computer Science,
UC Davis,

https://datatracker.ietf.org/doc/html/draft-ietf-cidf-data-formats-00.txt
https://datatracker.ietf.org/doc/html/rfc1779

Davis, CA 95616

Phone:

(707) 825-0836

Fax:

(707) 826-7571

E-mail: stanifor@cs.ucdavis.edu

Brian Tung

USC Information Sciences Institute
4676 Admiralty wWay Suite 1001
Marina del Rey CA 90292

Phone: (310) 822-1511 x135

Fax: (310) 823-6714

E-mail: brian@isi.edu

draft-ietf-cidf-data-formats-00.txt Expires 9/18/98

Phil Porras

SRI

Phone: (650) 859-3232

Fax: (650) 859-2844
E-mail: porras@csl.sri.com

Cliff Kahn

The Open Group Research Institute
11 Cambridge Center

Cambridge MA 02142

Phone: (617) 621-7221

Fax: (617) 621-8696

E-mail: c.kahn@opengroup.org

Dan Schnackenberg

Boeing Information, Space and Defense Systems
P.0. Box 3999

MS 88-12

Seattle WA 98124

Phone: (253) 773-8231

Fax: (253) 773-1015

E-mail: dan@baker.ds.boeing.com

Rich Feiertag

Trusted Information Systems
444 Castro Street, Suite 800
Phone: (415) 962-8885 x3012
Fax: (415) 962-9330

E-mail: feiertag@tis.com

Maureen Stillman
Odyssey Research Associates
33 Thornwood Drive, Suite 500

Page 88

https://datatracker.ietf.org/doc/html/draft-ietf-cidf-data-formats-00.txt

Phone: (607) 266-7123
Fax:

(607) 257-1972
E-mail: maureen@oracorp.com

