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Abstract

This specification describes three CBOR data structures for primary

use in COSE envelopes. A format for Merkle Tree Root Signatures with

metadata, a format for Inclusions Paths, and a format for disclosure

of a single hadh tree leaf payload (Merkle Tree Proofs).
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1. Introduction

Merkle proofs are verifiable data structures that support secure

data storage, through their ability to protect the integrity of

batches of documents or collections of statements.

Merkle proofs can be used to prove a document is in a database

(proof of existence), or that a smaller set of statements are

contained in a large set of statements (proof of disclosure).

A merkle proof is a path from a leaf to a root in a merkle tree.

Merkle trees are constructed from simple operations such as

concatenation and digest via a cryptographic hash function.

The simple design and valuable cryptographic properties of merkle

trees have been leveraged in many network and database applications.

Differences in the representation of a merkle tree, merkle leaf and

merkle inclusion proof can increase the burden for implementers, and

create interoperability challenges.
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Leaf Bytes:

Merkle Tree:

Merkle Tree Root:

Merkle Tree Algorithm:

Payload and Extra Data:

Inclusion Path:

Signed Merkle Tree Proof:

This document describes the three data structures necessary to use

merkle proofs with COSE envelopes.

1.1. Requirements Notation

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

2. Terminology

A merkle tree leaf is labelled with the cryptographic

hash of a sequence of bytes. These bytes may be structured as a

combination of Payload and Extra Data.

A Merkle tree is a tree where every leaf is labelled

with the cryptographic hash of a sequence of bytes and every node

that is not a leaf is labeled with the cryptographic hash of the

labels of its child nodes.

A Merkle tree root is the root node of a tree

which represents the cryptographic hash that commits to all

leaves in the tree.

A Merkle tree algorithm specifies how nodes

in the tree must be hashed to compute the root node.

A payload is data bound to in a Merkle tree

leaf. The Merkle tree algorithm determines how a payload together

with extra data is bound to a leaf. The simplest case is that the

payload is the leaf itself without extra data.

An inclusion path confirms that a value is a leaf

of a Merkle tree known only by its root hash (and tree size,

possibly).

A signed Merkle tree proof is the

combination of signed Merkle tree root hash, inclusion path,

extra data, and payload.

3. CBOR Merkle Structures

This section describes representations of merkle tree structures in

CBOR.

Some of the structures such as the construction of a merkle tree

leaf, or an inclusion proof from a leaf to a merkle root, might have

several different representations.
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Some differences in representations are necessary to support

efficient verification of proofs and compatibility with deployed

tree algorithms used in specific implementations.

3.1. Signed Merkle Tree Root

A Merkle tree root is signed with COSE_Sign1, creating a Signed

Merkle Tree Root:

Protected header parameters:

alg (label: 1): REQUIRED. Signature algorithm. Value type: int /

tstr.

tree alg (label: TBD): REQUIRED. Merkle tree algorithm. Value

type: int / tstr.

tree size (label: TBD): OPTIONAL. Merkle tree size as the number

of leaves. Value type: uint.

A COSE profile of this specification may add further header

parameters, for example to identify the signer.

Payload: Merkle tree root hash bytes according to tree alg (i.e.,

header params tell you what the alg id is here)

Note: The payload is just a byte string representing the Merkle tree

root hash (and not some wrapper structure) so that it can be

detached (see defintion of payload in https://www.rfc-editor.org/

rfc/rfc9052#section-4.1) and easily re-computed from an inclusion

path and leaf bytes. This allows to design other structures that

force re-computation and prevent faulty implementations (forgetting

to match a computed root with one embedded in a signature).

One example of a Signed Merkle Tree Proof is a "transparent signed

statement" or "claim" as defined in [I-D.ietf-scitt-architecture].

3.2. Inclusion Paths

[RFC6962] defines a merkle audit path for a leaf in a merkle tree as

the shortest list of additional nodes in the merkle tree required to

compute the merkle root for that tree.

[RFC9162] changed the term from "merkle audit path" to "merkle

inclusion proof".

We prefer to use the term "inclusion path" to avoid confusion with

Signed Merkle Tree Proof.
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If the tree size and leaf index is known, then a compact inclusion

path variant can be used:

Otherwise, the direction for each path step must be included:

FIXME bit vector: 0 right, 1 left, so no bit labels

For some tree algorithms, the direction is derived from the hashes

themselves and both the index and direction can be left out in the

path:

Note: Including the tree size and leaf index may not be appropriate

in certain privacy-focused applications as an attacker may be able

to derive private information from them.

TODO: Should leaf index be part of inclusion path

(IndexAwareInclusionPath) or outside?

TODO: Define root computation algorithm for each inclusion path type

TODO: Do we need both inclusion path types? what properties does

each type have?

TODO: Should the inclusion path be opaque (bstr) and fixed by the

tree algorithm? It seems this is orthogonal and the choice of

inclusion path type should be application-specific.

3.3. Signed Merkle Tree Proof

A signed Merkle tree proof is a CBOR array containing a signed tree

root, an inclusion path, extra data for the tree algorithm, and the

payload.

¶

IndexAwareInclusionPath = #6.1234([

    leaf_index: int

    hashes: [+ bstr]

])

¶

¶

¶

IndexUnawareInclusionPath = #6.1235([

    hashes: [+ bstr]

    left: uint  ; bit vector

])

¶

¶

; TODO: find a better name for this

UndirectionalInclusionPath = #6.1236([+ bstr])

¶

InclusionPath = IndexAwareInclusionPath / IndexUnawareInclusionPath / UndirectionalInclusionPath¶
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extra_data is an additional input to the tree algorithm and is used

together with the payload to compute the leaf hash. A use case for

this field is to implement blinding.

TODO: maybe rename extra_data

3.4. Signed Merkle Tree Multiproof

TODO: define a multi-leaf variant of a signed Merkle tree proof like

in:

https://github.com/transmute-industries/merkle-proof

https://transmute-industries.github.io/merkle-disclosure-

proof-2021/

TODO: consider using sparse multiproofs, see https://medium.com/

@jgm.orinoco/understanding-sparse-merkle-multiproofs-9b9f049e8f08

and https://arxiv.org/pdf/2002.07648.pdf

4. Merkle Tree Algorithms

This document establishes a registry of Merkle tree algorithms with

the following initial contents:

[FIXME] exploration table, what should go into -00?

Name Label Description

Reserved 0

RFC9162_SHA256 1 RFC9162 with SHA-256

Table 1: Merke Tree Alogrithms

Each tree algorithm defines how to compute the root node from a

sequence of leaves each represented by payload and extra data. Extra

data is algorithm-specific and should be considered opaque.

4.1. RFC9162_SHA256

The RFC9162_SHA256 tree algorithm uses the Merkle tree definition

from [RFC9162] with SHA-256 hash algorithm.

For n > 1 inputs, let k be the largest power of two smaller than n.

SignedMerkleTreeProof = [

  signed_tree_root: bstr .cbor SMTR  ; payload of COSE_Sign1_Tagged is detached

  inclusion_path: bstr .cbor InclusionPath

  extra_data: bstr / nil

  payload: bstr

]
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where d(0) is the payload. This algorithm takes no extra data.

5. Privacy Considerations

TBD

6. Security Considerations

TBD

7. IANA Considerations

7.1. Additions to Existing Registries

7.1.1. New Entries to the COSE Header Parameters Registry

IANA will be requested to register the new COSE Header parameters

defined below in the "COSE Header Parameters" registry at some

point.

7.2. New SCITT-Related Registries

IANA will be asked to add a new registry "TBD" to the list that

appears at https://www.iana.org/assignments/.

The rest of this section defines the subregistries that are to be

created within the new "TBD" registry.

7.2.1. Tree Algorithms

IANA will be asked to establish a registry of tree algorithm

identifiers, named "Tree Algorithms", with the following

registration procedures: TBD

The "Tree Algorithms" registry initially consists of:

Identifier Tree Algorithm Reference

TBD TBD tree algorithm This document

Table 2: Initial content of Tree Algorithms

registry

The designated expert(s) should ensure that the proposed algorithm

has a public specification and is suitable for use as [TBD].

MTH({d(0)}) = SHA-256(0x00 || d(0))

MTH(D[n]) = SHA-256(0x01 || MTH(D[0:k]) || MTH(D[k:n]))
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