
Workgroup: TBD

Internet-Draft:

draft-steele-cose-merkle-tree-proofs-00

Published: 14 March 2023

Intended Status: Standards Track

Expires: 15 September 2023

Authors: O. Steele

Transmute

H. Birkholz

Fraunhofer SIT

M. Riechert

Microsoft

A. Delignat-Lavaud

Microsoft

C. Fournet

Microsoft

Concise Encoding of Signed Merkle Tree Proofs

Abstract

This specification describes three CBOR data structures for primary

use in COSE envelopes. A format for Merkle Tree Root Signatures with

metadata, a format for Inclusions Paths, and a format for disclosure

of a single hadh tree leaf payload (Merkle Tree Proofs).

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 15 September 2023.

Copyright Notice

Copyright (c) 2023 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

1.1. Requirements Notation

2. Terminology

3. CBOR Merkle Structures

3.1. Signed Merkle Tree Root

3.2. Inclusion Paths

3.3. Signed Merkle Tree Proof

3.4. Signed Merkle Tree Multiproof

4. Merkle Tree Algorithms

4.1. RFC9162_SHA256

5. Privacy Considerations

6. Security Considerations

7. IANA Considerations

7.1. Additions to Existing Registries

7.1.1. New Entries to the COSE Header Parameters Registry

7.2. New SCITT-Related Registries

7.2.1. Tree Algorithms

8. References

8.1. Normative References

8.2. Informative References

Authors' Addresses

1. Introduction

Merkle proofs are verifiable data structures that support secure

data storage, through their ability to protect the integrity of

batches of documents or collections of statements.

Merkle proofs can be used to prove a document is in a database

(proof of existence), or that a smaller set of statements are

contained in a large set of statements (proof of disclosure).

A merkle proof is a path from a leaf to a root in a merkle tree.

Merkle trees are constructed from simple operations such as

concatenation and digest via a cryptographic hash function.

The simple design and valuable cryptographic properties of merkle

trees have been leveraged in many network and database applications.

Differences in the representation of a merkle tree, merkle leaf and

merkle inclusion proof can increase the burden for implementers, and

create interoperability challenges.

¶

¶

¶

¶

¶

¶

¶

Leaf Bytes:

Merkle Tree:

Merkle Tree Root:

Merkle Tree Algorithm:

Payload and Extra Data:

Inclusion Path:

Signed Merkle Tree Proof:

This document describes the three data structures necessary to use

merkle proofs with COSE envelopes.

1.1. Requirements Notation

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

2. Terminology

A merkle tree leaf is labelled with the cryptographic

hash of a sequence of bytes. These bytes may be structured as a

combination of Payload and Extra Data.

A Merkle tree is a tree where every leaf is labelled

with the cryptographic hash of a sequence of bytes and every node

that is not a leaf is labeled with the cryptographic hash of the

labels of its child nodes.

A Merkle tree root is the root node of a tree

which represents the cryptographic hash that commits to all

leaves in the tree.

A Merkle tree algorithm specifies how nodes

in the tree must be hashed to compute the root node.

A payload is data bound to in a Merkle tree

leaf. The Merkle tree algorithm determines how a payload together

with extra data is bound to a leaf. The simplest case is that the

payload is the leaf itself without extra data.

An inclusion path confirms that a value is a leaf

of a Merkle tree known only by its root hash (and tree size,

possibly).

A signed Merkle tree proof is the

combination of signed Merkle tree root hash, inclusion path,

extra data, and payload.

3. CBOR Merkle Structures

This section describes representations of merkle tree structures in

CBOR.

Some of the structures such as the construction of a merkle tree

leaf, or an inclusion proof from a leaf to a merkle root, might have

several different representations.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Some differences in representations are necessary to support

efficient verification of proofs and compatibility with deployed

tree algorithms used in specific implementations.

3.1. Signed Merkle Tree Root

A Merkle tree root is signed with COSE_Sign1, creating a Signed

Merkle Tree Root:

Protected header parameters:

alg (label: 1): REQUIRED. Signature algorithm. Value type: int /

tstr.

tree alg (label: TBD): REQUIRED. Merkle tree algorithm. Value

type: int / tstr.

tree size (label: TBD): OPTIONAL. Merkle tree size as the number

of leaves. Value type: uint.

A COSE profile of this specification may add further header

parameters, for example to identify the signer.

Payload: Merkle tree root hash bytes according to tree alg (i.e.,

header params tell you what the alg id is here)

Note: The payload is just a byte string representing the Merkle tree

root hash (and not some wrapper structure) so that it can be

detached (see defintion of payload in https://www.rfc-editor.org/

rfc/rfc9052#section-4.1) and easily re-computed from an inclusion

path and leaf bytes. This allows to design other structures that

force re-computation and prevent faulty implementations (forgetting

to match a computed root with one embedded in a signature).

One example of a Signed Merkle Tree Proof is a "transparent signed

statement" or "claim" as defined in [I-D.ietf-scitt-architecture].

3.2. Inclusion Paths

[RFC6962] defines a merkle audit path for a leaf in a merkle tree as

the shortest list of additional nodes in the merkle tree required to

compute the merkle root for that tree.

[RFC9162] changed the term from "merkle audit path" to "merkle

inclusion proof".

We prefer to use the term "inclusion path" to avoid confusion with

Signed Merkle Tree Proof.

¶

¶

SMTR = THIS.COSE.profile .and COSE_Sign1_Tagged¶

¶

*

¶

*

¶

*

¶

¶

¶

¶

¶

¶

¶

¶

If the tree size and leaf index is known, then a compact inclusion

path variant can be used:

Otherwise, the direction for each path step must be included:

FIXME bit vector: 0 right, 1 left, so no bit labels

For some tree algorithms, the direction is derived from the hashes

themselves and both the index and direction can be left out in the

path:

Note: Including the tree size and leaf index may not be appropriate

in certain privacy-focused applications as an attacker may be able

to derive private information from them.

TODO: Should leaf index be part of inclusion path

(IndexAwareInclusionPath) or outside?

TODO: Define root computation algorithm for each inclusion path type

TODO: Do we need both inclusion path types? what properties does

each type have?

TODO: Should the inclusion path be opaque (bstr) and fixed by the

tree algorithm? It seems this is orthogonal and the choice of

inclusion path type should be application-specific.

3.3. Signed Merkle Tree Proof

A signed Merkle tree proof is a CBOR array containing a signed tree

root, an inclusion path, extra data for the tree algorithm, and the

payload.

¶

IndexAwareInclusionPath = #6.1234([

 leaf_index: int

 hashes: [+ bstr]

])

¶

¶

¶

IndexUnawareInclusionPath = #6.1235([

 hashes: [+ bstr]

 left: uint ; bit vector

])

¶

¶

; TODO: find a better name for this

UndirectionalInclusionPath = #6.1236([+ bstr])

¶

InclusionPath = IndexAwareInclusionPath / IndexUnawareInclusionPath / UndirectionalInclusionPath¶

¶

¶

¶

¶

¶

¶

https://github.com/ietf-scitt/cose-merkle-tree-proofs/issues/6
https://github.com/ietf-scitt/cose-merkle-tree-proofs/issues/6

extra_data is an additional input to the tree algorithm and is used

together with the payload to compute the leaf hash. A use case for

this field is to implement blinding.

TODO: maybe rename extra_data

3.4. Signed Merkle Tree Multiproof

TODO: define a multi-leaf variant of a signed Merkle tree proof like

in:

https://github.com/transmute-industries/merkle-proof

https://transmute-industries.github.io/merkle-disclosure-

proof-2021/

TODO: consider using sparse multiproofs, see https://medium.com/

@jgm.orinoco/understanding-sparse-merkle-multiproofs-9b9f049e8f08

and https://arxiv.org/pdf/2002.07648.pdf

4. Merkle Tree Algorithms

This document establishes a registry of Merkle tree algorithms with

the following initial contents:

[FIXME] exploration table, what should go into -00?

Name Label Description

Reserved 0

RFC9162_SHA256 1 RFC9162 with SHA-256

Table 1: Merke Tree Alogrithms

Each tree algorithm defines how to compute the root node from a

sequence of leaves each represented by payload and extra data. Extra

data is algorithm-specific and should be considered opaque.

4.1. RFC9162_SHA256

The RFC9162_SHA256 tree algorithm uses the Merkle tree definition

from [RFC9162] with SHA-256 hash algorithm.

For n > 1 inputs, let k be the largest power of two smaller than n.

SignedMerkleTreeProof = [

 signed_tree_root: bstr .cbor SMTR ; payload of COSE_Sign1_Tagged is detached

 inclusion_path: bstr .cbor InclusionPath

 extra_data: bstr / nil

 payload: bstr

]

¶

¶

¶

¶

* ¶

*

¶

¶

¶

¶

¶

¶

¶

where d(0) is the payload. This algorithm takes no extra data.

5. Privacy Considerations

TBD

6. Security Considerations

TBD

7. IANA Considerations

7.1. Additions to Existing Registries

7.1.1. New Entries to the COSE Header Parameters Registry

IANA will be requested to register the new COSE Header parameters

defined below in the "COSE Header Parameters" registry at some

point.

7.2. New SCITT-Related Registries

IANA will be asked to add a new registry "TBD" to the list that

appears at https://www.iana.org/assignments/.

The rest of this section defines the subregistries that are to be

created within the new "TBD" registry.

7.2.1. Tree Algorithms

IANA will be asked to establish a registry of tree algorithm

identifiers, named "Tree Algorithms", with the following

registration procedures: TBD

The "Tree Algorithms" registry initially consists of:

Identifier Tree Algorithm Reference

TBD TBD tree algorithm This document

Table 2: Initial content of Tree Algorithms

registry

The designated expert(s) should ensure that the proposed algorithm

has a public specification and is suitable for use as [TBD].

MTH({d(0)}) = SHA-256(0x00 || d(0))

MTH(D[n]) = SHA-256(0x01 || MTH(D[0:k]) || MTH(D[k:n]))

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

[RFC2119]

[RFC6234]

[RFC6962]

[RFC6979]

[RFC8032]

[RFC8174]

[RFC8949]

[RFC9162]

[I-D.ietf-cose-countersign]

8. References

8.1. Normative References

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://doi.org/10.17487/RFC2119>.

Eastlake 3rd, D. and T. Hansen, "US Secure Hash

Algorithms (SHA and SHA-based HMAC and HKDF)", RFC 6234,

DOI 10.17487/RFC6234, May 2011, <https://doi.org/

10.17487/RFC6234>.

Laurie, B., Langley, A., and E. Kasper, "Certificate

Transparency", RFC 6962, DOI 10.17487/RFC6962, June 2013,

<https://doi.org/10.17487/RFC6962>.

Pornin, T., "Deterministic Usage of the Digital Signature

Algorithm (DSA) and Elliptic Curve Digital Signature

Algorithm (ECDSA)", RFC 6979, DOI 10.17487/RFC6979,

August 2013, <https://doi.org/10.17487/RFC6979>.

Josefsson, S. and I. Liusvaara, "Edwards-Curve Digital

Signature Algorithm (EdDSA)", RFC 8032, DOI 10.17487/

RFC8032, January 2017, <https://doi.org/10.17487/

RFC8032>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://doi.org/10.17487/RFC8174>.

Bormann, C. and P. Hoffman, "Concise Binary Object

Representation (CBOR)", STD 94, RFC 8949, DOI 10.17487/

RFC8949, December 2020, <https://doi.org/10.17487/

RFC8949>.

Laurie, B., Messeri, E., and R. Stradling, "Certificate

Transparency Version 2.0", RFC 9162, DOI 10.17487/

RFC9162, December 2021, <https://doi.org/10.17487/

RFC9162>.

8.2. Informative References

Schaad, J., "CBOR Object Signing and Encryption (COSE):

Countersignatures", Work in Progress, Internet-Draft,

draft-ietf-cose-countersign-10, 20 September 2022,

<https://datatracker.ietf.org/doc/html/draft-ietf-cose-

countersign-10>.

https://doi.org/10.17487/RFC2119
https://doi.org/10.17487/RFC6234
https://doi.org/10.17487/RFC6234
https://doi.org/10.17487/RFC6962
https://doi.org/10.17487/RFC6979
https://doi.org/10.17487/RFC8032
https://doi.org/10.17487/RFC8032
https://doi.org/10.17487/RFC8174
https://doi.org/10.17487/RFC8949
https://doi.org/10.17487/RFC8949
https://doi.org/10.17487/RFC9162
https://doi.org/10.17487/RFC9162
https://datatracker.ietf.org/doc/html/draft-ietf-cose-countersign-10
https://datatracker.ietf.org/doc/html/draft-ietf-cose-countersign-10

[I-D.ietf-scitt-architecture]
Birkholz, H., Delignat-Lavaud, A.,

Fournet, C., and Y. Deshpande, "An Architecture for

Trustworthy and Transparent Digital Supply Chains", Work

in Progress, Internet-Draft, draft-ietf-scitt-

architecture-01, 13 March 2023, <https://

datatracker.ietf.org/doc/html/draft-ietf-scitt-

architecture-01>.

Authors' Addresses

Orie Steele

Transmute

Email: orie@transmute.industries

Henk Birkholz

Fraunhofer SIT

Rheinstrasse 75

64295 Darmstadt

Germany

Email: henk.birkholz@sit.fraunhofer.de

Maik Riechert

Microsoft

United Kingdom

Email: Maik.Riechert@microsoft.com

Antoine Delignat-Lavaud

Microsoft

United Kingdom

Email: antdl@microsoft.com

Cedric Fournet

Microsoft

United Kingdom

Email: fournet@microsoft.com

https://datatracker.ietf.org/doc/html/draft-ietf-scitt-architecture-01
https://datatracker.ietf.org/doc/html/draft-ietf-scitt-architecture-01
https://datatracker.ietf.org/doc/html/draft-ietf-scitt-architecture-01
mailto:orie@transmute.industries
mailto:henk.birkholz@sit.fraunhofer.de
mailto:Maik.Riechert@microsoft.com
mailto:antdl@microsoft.com
mailto:fournet@microsoft.com

	Concise Encoding of Signed Merkle Tree Proofs
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Requirements Notation

	2. Terminology
	3. CBOR Merkle Structures
	3.1. Signed Merkle Tree Root
	3.2. Inclusion Paths
	3.3. Signed Merkle Tree Proof
	3.4. Signed Merkle Tree Multiproof

	4. Merkle Tree Algorithms
	4.1. RFC9162_SHA256

	5. Privacy Considerations
	6. Security Considerations
	7. IANA Considerations
	7.1. Additions to Existing Registries
	7.1.1. New Entries to the COSE Header Parameters Registry

	7.2. New SCITT-Related Registries
	7.2.1. Tree Algorithms

	8. References
	8.1. Normative References
	8.2. Informative References

	Authors' Addresses

