
Network Working Group S. Steffann
Internet-Draft S.J.M. Steffann Consultancy
Intended status: Informational I. van Beijnum
Expires: October 6, 2013 Institute IMDEA Networks
 R. van Rein
 OpenFortress
 April 4, 2013

A Comparison of IPv6 over IPv4 Tunnel Mechanisms
draft-steffann-tunnels-03

Abstract

 This document provides an overview of various ways to tunnel IPv6
 packets over IPv4 networks. It covers mechanisms in current use,
 touches on several mechanisms that are now only of historic interest,
 and discusses some newer tunnel mechanisms that are not (yet) widely
 used at the time of publication. The goal of the document is helping
 people with an IPv6-in-IPv4 tunneling need to select the mechanisms
 that may apply to them.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on October 6, 2013.

Copyright Notice

 Copyright (c) 2013 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents

Steffann, et al. Expires October 6, 2013 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft IPv6 tunnels April 2013

 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Terminology . 4
3. Tunnel Mechanisms . 6
3.1. Configured Tunnels (Manual Tunnels / 6in4) 7
3.2. Automatic Tunneling 8
3.3. IPv6 over IPv4 without Explicit Tunnels (6over4) 8
3.4. Generic Routing Encapsulation (GRE) 9
3.5. Connection of IPv6 Domains via IPv4 Clouds (6to4) 10
3.6. Anything In Anything (AYIYA) 11
3.7. Intra-site Automatic Tunnel Addressing (ISATAP) 12
3.8. Tunneling IPv6 over UDP through NATs (Teredo) 13
3.9. IPv6 Rapid Deployment (6rd) 14
3.10. Native IPv6 behind NAT44 CPEs (6a44) 15
3.11. Locator/ID Separation Protocol (LISP) 15
3.12. Subnetwork Encapsulation and Adaptation Layer (SEAL) . . . 17
3.13. Peer-to-Peer IPv6 on Any Internetwork (6bed4) 18

4. Related Protocols . 19
4.1. Tunnel Setup Protocol (TSP) 19
4.2. SixXS Heartbeat Protocol 19
4.3. Tunnel Information and Control protocol (TIC) 20

5. Common Aspects . 20
5.1. Protocol 41 Encapsulation 20
5.2. NAT and Firewalls . 21
5.3. MTU Considerations . 23
5.4. IPv4 Addresses Embedded in IPv6 Addresses 24

6. Evaluation of Tunnel Mechanisms 26
6.1. Efficiency of IPv4 Address Use 26
6.2. Supported Network Topologies 27
6.3. Robustness . 28
6.4. Gateway State . 30
6.5. Performance . 31

7. IANA considerations . 32
8. Security considerations 32
9. Contributors . 33
10. Acknowledgements . 33
11. References . 33
Appendix A. Evaluation Criteria 37

 Authors' Addresses . 38

Steffann, et al. Expires October 6, 2013 [Page 2]

Internet-Draft IPv6 tunnels April 2013

1. Introduction

 During the transition from IPv4 to IPv6, IPv6 islands are separated
 by a sea of IPv4. Tunnels provide connectivity between these IPv6
 islands. Tunnels work by encapsulating IPv6 packets inside IPv4
 packets, as shown in the figure.

 +---------------+
 | IPv4 |
 | Header |
 +---------------+
 +---------------+ : Optional :
 | IPv6 | : Encapsulation :
 | Header | : Header :
 +---------------+ +---------------+
 | Transport | | IPv6 |
 | Layer | ===> | Header |
 | Header | +---------------+
 +---------------+ | Transport |
 | | | Layer |
 ~ Data ~ | Header |
 | | +---------------+
 +---------------+ | |
 ~ Data ~
 | |
 +---------------+

 Encapsulating IPv6 in IPv4

 Various tunnel mechanisms have been proposed over time. So many in
 fact, that it is difficult to get an overview.

 Some tunnel mechanisms have been abandoned by the community, others
 have known problems and yet others have shown to be reliable. Some
 tunnel mechanisms were designed with a particular use-case in mind,
 others are generic. There may be documented limitations as well as
 limitations that have cropped up in deployment.

 This document provides an overview of available and/or noteworthy
 tunnel mechanisms, with the intention to guide selection of the best
 mechanism for a particular purpose. As such, the discussion of the
 different tunnel mechanisms is limited to the working principles of
 the different mechanisms and a few important details.

 Please use the references to learn the full details of each
 mechanism. For brevity, only the most relevant documents are
 referenced. Refer to these for additional specifications, updates
 and links to older versions of protocol specifications as well as

Steffann, et al. Expires October 6, 2013 [Page 3]

Internet-Draft IPv6 tunnels April 2013

 links to more general background information.

 The intended audience for this document is everyone who needs a
 connection to the IPv6 internet at large, but is not in the position
 to use native (untunneled) IPv6 connectivity, and thus needs to
 select an appropriate tunnel mechanism. This document is also
 intended as a quick reference to tunnel mechanisms for the IETF
 community.

 The scope of this document is limited to tunnel mechanisms for
 providing IPv6 connectivity over an IPv4 infrastructure. Mechanisms
 for Virtual Private Networks (VPNs) and security architectures such
 as IPSec [RFC4301] are out of scope for this document as they serve a
 different purpose, even if they could technically be used to provide
 IPv6 connectivity.

2. Terminology

 Anycast: Mechanism to provide a service, in multiple locations
 and/or using multiple servers, by configuring each server with the
 same IP address.

 Dual stack: Also known as "dual IP layer". Nodes run IPv4 and IPv6
 side by side, and can communicate with other dual stack nodes
 (using IPv4 or IPv6), as well as IPv4-only nodes (using IPv4) and
 IPv6-only nodes (using IPv6). Most current operating systems are
 set up to use IPv4 when available as well as use IPv6 when
 available, allowing them to run in IPv4-only, IPv6-only or dual
 stack mode as circumstances permit. Except for a few things
 concerning the Domain Name System (DNS), there is no separate
 specification for dual stack beyond the specifications relevant to
 running IPv4 and IPv6. Dual stack is one of the three IPv4-to-
 IPv6 transition tools; the others are translation and tunnels.

 Encapsulation: Transporting packets as data inside another packet.
 For instance, an IPv6 packet inside an IPv4 packet.

 Host: A device that communicates using the Internet Protocol, but
 that is not a router.

 ISP: Internet Service Provider; the party connecting the outside of
 the local network's perimeter to the public Internet.

 MTU: Maximum Transmission unit, the maximum size of a packet that
 can be transmitted over a link (or tunnel) without splitting it
 into multiple fragments.

https://datatracker.ietf.org/doc/html/rfc4301

Steffann, et al. Expires October 6, 2013 [Page 4]

Internet-Draft IPv6 tunnels April 2013

 NAT: Network Address Translation or Network Address Translator. NAT
 makes it possible for a number of hosts to share a single IP
 address. TCP and UDP port numbers are used to distinguish the
 traffic to/from different hosts served by the NAT; protocols other
 than TCP and UDP may be incompatible with NAT due to lack of port
 numbers. NAT also breaks protocols that depend on the IP
 addresses used in some way.

 NBMA: Non-Broadcast, Multiple Access. This is a network
 configuration in which nodes can exchange packets directly by
 addressing them at the desired destination. However, broadcasts
 or multicasts are not supported, so autodiscovery mechanisms such
 as IPv6 Neighbour Discovery must be modified to use unicast to
 work.

 Node: A device that implements IP, either a host or a router; also
 known as a system.

 Path stretch: The difference between the shortest path through the
 network and the path (tunneled) packets actually take.

 PMTUD: Path MTU Discovery, a method to determine the smallest MTU on
 the path between two nodes. There are separate specifications for
 PMTUD over IPv4 [RFC1191] and IPv6 [RFC1981].

 Router: A device that forwards IP packets that it didn't generate
 itself.

 System: A device that implements IP, either a host or a router; a
 network node.

 Translation: The IPv6 and IPv4 headers are similar enough that it is
 possible to translate between them. This allows IPv6-only hosts
 to communicate with IPv4-only hosts. The original specification
 for translating between IPv6 and IPv4, was heavily criticised by
 the Internet Architecture Board, but new specifications for
 translating between IPv6 and IPv4 were later published [RFC6145].
 Translation is of the three IPv4-to-IPv6 transition tools; the
 others are dual stack and tunnels.

 Tunnel: By encapsulating IPv6 packets inside IPv4 packets, IPv6-
 capable hosts and IPv6-capable networks isolated from other IPv6-
 capable systems or the IPv6 internet at large can exchange IPv6
 packets over IPv4-only infrastructure. There are numerous ways to
 tunnel IPv6 over IPv4. This document compares these mechanisms.
 One of the three IPv4-to-IPv6 transition tools; the others are
 translation and dual stack.

https://datatracker.ietf.org/doc/html/rfc1191
https://datatracker.ietf.org/doc/html/rfc1981
https://datatracker.ietf.org/doc/html/rfc6145

Steffann, et al. Expires October 6, 2013 [Page 5]

Internet-Draft IPv6 tunnels April 2013

 Tunnel broker: A service that provides tunneled connectivity to the
 IPv6 internet, such as [SIXXS], [TUNBROKER] and [GOGO6].

3. Tunnel Mechanisms

 Automatic tunnels (Section 3.2), configured tunnels (Section 3.1),
 6over4 (Section 3.3), 6to4 (Section 3.5), ISATAP (Section 3.7) and
 6rd (Section 3.9) solve similar problems at different scales. They
 all encapsulate IPv6 packets immediately inside an IPv4 packet,
 without using additional headers. This is called "protocol 41
 encapsulation" (see Section 5.1), as the Protocol field in the IPv4
 header is set to 41 to indicate that what follows is an IPv6 packet.

 Each of these mechanisms also creates an IPv6 address for the host or
 router running the protocol based on the system's IPv4 address in one
 way or another (see Section 5.4). This lets 6to4, 6rd, ISATAP and
 automatic tunnels determine the IPv4 destination address in the outer
 IPv4 header from the IPv6 address of the destination, allowing for
 automatic operation without the need to administratively configure
 the remote tunnel endpoint.

 6over4 and ISATAP provide IPv6 connectivity between IPv6-capable
 systems within a single organisation's network that is otherwise
 IPv4-only. 6rd allows ISPs to provide IPv6 connectivity to their
 customers over IPv4-only last mile infrastructures. 6to4 directly
 provides connectivity to the global IPv6 internet without involving
 an ISP.

 Configured tunnels (Section 3.1) also use protocol 41 encapsulation,
 but rely on manual configuration of the remote tunnel endpoint. (The
 Heartbeat Protocol (Section 4.2) solves this.) Configured tunnels
 can be used within an organisation's network, but are typically used
 by tunnel broker services to provide connectivity to the IPv6
 internet. GRE (Section 3.4) is similar to configured tunnels, but
 also supports tunnel protocols other than IPv6.

 AYIYA (Section 3.6) is similar to configured tunnels and GRE, but
 typically uses a UDP header for better compatibility with NATs and is
 generally used with TIC (Section 4.3) to set up the tunnel rather
 than rely on manual configuration. Teredo (Section 3.8), 6a44
 (Section 3.10) and 6bed4 (Section 3.13) are similar to 6to4, except
 that they are designed to work through NATs by running over UDP. Of
 these, Teredo and 6bed4 assume no ISP involvement and 6a44 does; and
 6bed4 is designed to work over direct IPv4 paths between peers
 whenever possible.

 LISP (Section 3.11) is a system for abstracting the identifying

Steffann, et al. Expires October 6, 2013 [Page 6]

Internet-Draft IPv6 tunnels April 2013

 function from the location function of IP addresses, which allows for
 the use of IPv6 for the former and IPv4 for the latter.

 SEAL (Section 3.12)) and its companion technologies (VET, AERO, IRON
 and RANGER) provide a configured tunnel system for IPv6-in-IPv4
 tunneling to default routers as well as automatic tunnel endpoint
 discovery for optimisation of more-specific routes.

 Dual-Stack Lite [RFC6333] and MAP [I-D.ietf-softwire-map], both
 developed by the IETF Softwire working group, often come up in
 discussions about IPv6 tunneling. However, they are _not_ IPv6-in-
 IPv4 tunnel mechanisms. They are IPv4-in-IPv6 mechanisms for
 providing IPv4 connectivity over an IPv6 infrastructure.

 Please refer to Section 5 for more information about issues common to
 many tunnel mechanisms; those issues are not discussed separately for
 each mechanism. The mechanisms are discussed below in roughly
 chronological order of first publication.

3.1. Configured Tunnels (Manual Tunnels / 6in4)

 Configured and automatic tunnels are the two oldest tunnel
 mechanisms, originally published in "Transition Mechanisms for IPv6
 Hosts and Routers" [RFC1933] in 1996. The latest specification of
 configured tunnels is "Basic Transition Mechanisms for IPv6 Hosts and
 Routers" [RFC4213], published in 2005. The mechanism is sometimes
 called "manual tunnels", "static tunnels", "protocol 41 tunnels" or
 "6in4".

 Configured tunnels connect two systems in point-to-point fashion
 using protocol 41 encapsulation. The configuration that the name of
 the mechanism alludes to consists of a remote "tunnel endpoint".
 This is the IPv4 address of the system on the other side of the
 tunnel. When a system (potentially) has multiple IPv4 addresses, the
 local tunnel endpoint address may also need to be configured.

 The need to explicitly set up a configured tunnel makes them more
 difficult to deploy than automatic mechanisms. However, because
 there is a fixed, single remote tunnel endpoint, performance is
 predictable and easy to debug.

 In the early days it was not unheard for a small network to get IPv6
 connectivity from another continent. This excessive path stretch
 makes communication over short geographic distances much less
 efficient because the distance travelled by packets may be larger
 than the geographic distance by an order of magnitude or more.

 Configured tunnels are widely implemented. Common operating systems

https://datatracker.ietf.org/doc/html/rfc6333
https://datatracker.ietf.org/doc/html/rfc1933
https://datatracker.ietf.org/doc/html/rfc4213

Steffann, et al. Expires October 6, 2013 [Page 7]

Internet-Draft IPv6 tunnels April 2013

 can terminate configured tunnels, as well as IPv6-capable routers and
 home gateways. The mechanism is versatile, but is mostly used
 between isolated smaller IPv6-capable networks and the IPv6 internet,
 often through a "tunnel broker" such as tunnelbroker.net [TUNBROKER],
 SixXS [SIXXS] or [GOGO6].

 [RFC4891] discusses the use of IPsec to protect the confidentiality
 and integrity of IPv6 traffic exchanged over configured tunnels.

3.2. Automatic Tunneling

 Automatic tunneling is described in [RFC2893], "Transition Mechanisms
 for IPv6 Hosts and Routers", but removed in [RFC4213], which is an
 update of RFC 2893. Configured tunnels (Section 3.1) are closely
 related to automatic tunnels and are specified in RFCs 2893 and 4213,
 too. Both use protocol 41 encapsulation.

 Hosts that are capable of automatic tunneling use special IPv6
 addresses: IPv4-compatible addresses. An IPv4-compatible IPv6
 address consists of 96 zero bits followed by the system's IPv4
 address. When sending packets to destinations within the IPv4-
 compatible ::/96 prefix, the IPv4 destination address in the outer
 IPv4 header is taken from the IPv4 address in the IPv4-compatible
 IPv6 destination address.

 Automatic tunneling has a big limitation: it only allows for
 communication between IPv6-capable systems that both support
 automatic tunneling. There are no provisions for communicating with
 the native IPv6 internet. As such, the mechanism is of almost no
 practical use and is not implemented in current operating systems, as
 6to4 (Section 3.5) does what automatic tunneling was supposed to do,
 but also provides connectivity to the rest of the IPv6 internet.

3.3. IPv6 over IPv4 without Explicit Tunnels (6over4)

 "Transmission of IPv6 over IPv4 Domains without Explicit Tunnels"
 [RFC2529] was published in 1999. The mechanism is commonly known as
 "6over4".

 6over4 is designed to work within a single organisation's IPv4
 network, where IPv6-capable hosts and routers are separated by IPv4-
 only routers. 6over4 treats the IPv4 network as a "virtual Ethernet"
 for the purpose of IPv6 communication. It uses IPv4 multicast to
 tunnel IPv6 multicast packets. A node's IPv4 address is included in
 the Interface Identifier used on the virtual 6over4 interface,
 allowing the exchange of protocol 41 encapsulated packets between
 6over4 nodes without prior administrative configuration.

https://datatracker.ietf.org/doc/html/rfc2893
https://datatracker.ietf.org/doc/html/rfc4213
https://datatracker.ietf.org/doc/html/rfc2893
https://datatracker.ietf.org/doc/html/rfc2529

Steffann, et al. Expires October 6, 2013 [Page 8]

Internet-Draft IPv6 tunnels April 2013

 Because multicast is supported, standard IPv6 Neighbour Discovery and
 Stateless Address Autoconfiguration [RFC4862] can be used. Although
 like automatic tunnels (Section 3.2) and other mechanisms, 6over4
 embeds the IPv4 address of the host is in the IPv6 address, the
 destination IPv4 address in the outer IPv4 header is *not* derived
 from the IPv6 address embedded in the inner IPv6 header, but learnt
 through Neighbour Discovery [RFC4861]. In effect, the IPv4 addresses
 of the hosts are used as link-layer addresses, in the same way that
 MAC addresses are used on Ethernet networks.

 One or more routers with connectivity to the global IPv6 internet
 send out Router Advertisements to provide 6over4 hosts with
 connectivity to the rest of the IPv6 internet.

 6over4 has the minimal protocol 41 encapsulation overhead and doesn't
 require manual configuration. Hosts can only take advantage of
 6over4 if they run the mechanism themselves. 6over4 packets can't
 pass through a NAT successfully, as the IPv4 address exchanged
 through Neighbour Discovery will be different from the one needed to
 reach the host in question, and because without port numbers,
 protocol 41 doesn't allow for multiplexing multiple hosts using this
 encapsulation behind a single IPv4 address. However, 6over4 works
 within IPv4 domains that reside behind a NAT in their entirety and
 use [RFC1918] addressing.

 Because of its reliance on IPv4 multicast and because local IPv6
 communication is relatively easy to facilitate using IPv6 routers,
 6over4 is not supported in current operating systems. ISATAP
 (Section 3.7) provides very similar functionality without requiring
 IPv4 multicast capability, and is implemented more widely.

3.4. Generic Routing Encapsulation (GRE)

 Generic Routing Encapsulation (GRE) [RFC2784] is a generic point-to-
 point tunnel mechanism that allows many other protocols to be
 encapsulated in IP.

 GRE is a simple protocol which is similar to configured tunnels
 (Section 3.1) when used for IPv6-in-IPv4 tunneling. The main benefit
 of GRE is that it can not only encapsulate IPv6 packets but any
 protocol. The GRE header causes an extra overhead of 8 to 16 bytes
 depending on which options are used. GRE sets the Protocol field in
 the IP header to 47.

 The GRE header can optionally contain a checksum, a key to separate
 different traffic flows (for example, different tunnels) between the
 same end points and a sequence number that can be used to prevent
 packets from being processed out of order.

https://datatracker.ietf.org/doc/html/rfc4862
https://datatracker.ietf.org/doc/html/rfc4861
https://datatracker.ietf.org/doc/html/rfc1918
https://datatracker.ietf.org/doc/html/rfc2784

Steffann, et al. Expires October 6, 2013 [Page 9]

Internet-Draft IPv6 tunnels April 2013

 GRE is implemented in many routers, but not in most consumer-level
 home gateways or desktop operating systems.

3.5. Connection of IPv6 Domains via IPv4 Clouds (6to4)

 6to4 is specified in "Connection of IPv6 Domains via IPv4 Clouds"
 [RFC3056]. It creates a block of IPv6 addresses from a locally
 configured IPv4 address by concatenating that IPv4 address to the
 prefix 2002::/16, resulting in a /48 IPv6 prefix. Addresses in
 2002::/16 are considered reachable through the tunnel interface, so
 the 6to4 network functions as a non-broadcast, multiple access (NBMA)
 network through which 6to4 users can communicate. IPv6 packets are
 encapsulated by adding an IPv4 header with the Protocol field set to
 41.

 The /48 prefix allows a single system running 6to4 to act as a
 gateway or router for a large number of IPv6 hosts. Alternatively,
 an individual host may run 6to4 and not act as a gateway or router.
 The system running 6to4 must have a globally reachable IPv4 address.
 Using 6to4 with a private IPv4 address [RFC1918] is not possible.

 "An Anycast Prefix for 6to4 Relay Routers" [RFC3068] specifies an
 anycast mechanism for 6to4 relays that provide connectivity between
 the 6to4 network and the regular IPv6 internet. All public relays
 share the IPv4 address 192.88.99.1, which corresponds to 2002:c058:
 6301::. Relays advertise reachability towards 2002::/16 towards the
 native IPv6 internet, so packets addressed to systems using 6to4
 addresses are routed to the closest gateway. The gateway
 encapsulates these packets and forwards them to the IPv4 address
 included in the IPv6 address. Systems running 6to4 have a default
 route pointing to 2002:c058:6301::, so they tunnel packets addressed
 to non-6to4 IPv6 destinations to the closest relay, which
 decapsulates the packet and forwards them as IPv6 packets.

 The 6to4 protocol adds minimal protocol 41 overhead and requires no
 manual configuration from users. The biggest problem specific to
 6to4 is that it is unpredictable which 6to4 anycast relay is used.
 These relays are often provided by third parties on a best-effort
 basis. In practice this has caused unpredictable performance.
 Traffic from the 6to4 network to the regular IPv6 internet will
 likely use a different 6to4 relay than the traffic in the opposite
 direction. If either of those relays is not reliable then the
 communication between those networks is affected. Especially the
 lack of control over the relay used for return traffic is considered
 to be a problem with 6to4.

 To avoid problems with 6to4 the IPv6 Default Address Selection
 algorithm [RFC6724] gives IPv4 addresses a higher preference than

https://datatracker.ietf.org/doc/html/rfc3056
https://datatracker.ietf.org/doc/html/rfc1918
https://datatracker.ietf.org/doc/html/rfc3068
https://datatracker.ietf.org/doc/html/rfc6724

Steffann, et al. Expires October 6, 2013 [Page 10]

Internet-Draft IPv6 tunnels April 2013

 6to4 addresses. When making a connection a system will prefer native
 IPv6 over IPv4, and IPv4 over 6to4 IPv6. This causes 6to4 to be used
 only when a destination is not reachable over IPv4 and no other IPv6
 connectivity is available.

 For more information about 6to4, see "Advisory Guidelines for 6to4
 Deployment" [RFC6343].

 Warning:

 Although many, if not all, 6to4 implementations disable the mechanism
 when the system only has an RFC 1918 address, recently a block of
 IPv4 address has been set aside for use in service provider operated
 Network Address Translators, also known as Carrier Grade NAT (CGN).
 [RFC6598] sets aside the block 100.64.0.0/10 for the use between CGNs
 and subscriber devices. As 100.64.0.0/10 is not an RFC 1918 address
 block, systems implementing 6to4 may fail to disable the mechanism,
 but due to the shared nature of the 100.64.0.0/10 prefix, 6to4 cannot
 work using these addresses. The same issue is present if an ISP
 decides to use regular global unicast IPv4 address space behind a
 CGN.

3.6. Anything In Anything (AYIYA)

 AYIYA [AYIYA] is designed for use by the SIXXS [SIXXS] tunnel broker
 service. The specification has been published as an Internet-Draft
 [I-D.massar-v6ops-ayiya].

 The AYIYA protocol defines a method for encapsulating any protocol in
 any other protocol. The most common way of deploying AYIYA is to use
 the following sequence of headers: IPv4-UDP-AYIYA-IPv6, although
 other combinations like IPv4-AYIYA-IPv6 or IPv6-SCTP-AYIYA-IPv4 are
 also possible. The draft does not limit the contents nor the
 protocol that carries the AYIYA packets. In this document we only
 look at the most common usage (IPv4-UDP-AYIYA-IPv6) which is deployed
 on the SixXS tunnel brokers to provide IPv6 access to clients behind
 NAT devices.

 AYIYA specifies the encapsulation, identification, checksum, security
 and certain management operations that can be used once the tunnel is
 established. It does not specify how the tunnel configuration
 parameters can be negotiated. Typically, the TIC protocol described
 in Section 4.3 protocol is used for that part of the tunnel setup,
 although the TSP protocol (Section 4.1) could be used.

 AYIYA provides a point-to-point tunnel, over which the endpoints can
 route traffic for any source and destination. When using SHA-1
 hashing for authentication, as is common when using the AICCU client

https://datatracker.ietf.org/doc/html/rfc6343
https://datatracker.ietf.org/doc/html/rfc1918
https://datatracker.ietf.org/doc/html/rfc6598
https://datatracker.ietf.org/doc/html/rfc1918

Steffann, et al. Expires October 6, 2013 [Page 11]

Internet-Draft IPv6 tunnels April 2013

 with a SixXS tunnel server, the total packet overhead is 72 bytes (20
 for the IPv4 header, 8 for UDP and 44 for AYIYA).

 AYIYA provides operational commands for querying the hostname,
 address, contact information, software version and last error
 message. An operational command to ask the other side of the tunnel
 to shut down is also available. These commands in the protocol can
 make debugging of AYIYA tunnels easier if the tools support them.

 The main advantage of AYIYA is that it can provide a stable tunnel
 through an IPv4 NAT, and possibly multiple layers of NAT. The UDP
 port numbers allow multiple AYIYA users to share a single IPv4
 address behind a NAT.

 The client will contact the tunnel server at regular intervals and
 the tunnel server will automatically adapt to changing IPv4 addresses
 and/or UDP port numbers. To prevent a third party from injecting
 rogue packets into the tunnel the client can optionally be
 authenticated by using the identity and signature fields. A
 timestamp is included in the AYIYA header to guard against replay
 attacks.

 There is currently a single implementation of this protocol: the
 AICCU [AICCU] client software used with the SIXXS [SIXXS] tunnel
 broker service.

3.7. Intra-site Automatic Tunnel Addressing (ISATAP)

 ISATAP [RFC5214] uses protocol 41 encapsulation, to provide
 connectivity between isolated IPv6-capable nodes within an
 organisation's internal network. It is similar to 6over4
 (Section 3.3), but without the requirement that the IPv4 network
 supports multicast; unlike 6over4, ISATAP uses a Non-Broadcast
 Multiple Access (NBMA) communication model and thus doesn't support
 multicasts. The mechanism assigns IPv6 addresses whose interface
 identifier is solely defined by a node's IPv4 address, which is
 assumed to be unique.

 In order to obtain a /64 prefix, an ISATAP host needs to send a
 unicast Router Solicitation to receive a unicast Router Advertisement
 from an ISATAP router. Without the ability to send and receive IPv6
 multicasts, an ISATAP host must be configured with a Potential Router
 List through an all-IPv4 mechanism, such as manual setup, DHCP or the
 DNS. Site administrators are encouraged to use a DNS Fully Qualified
 Domain Name using the convention "isatap.domainname" (e.g.,
 isatap.example.com). Hosts will accept packets with IPv4 sender
 addresses that are either on the Potential Router List, or that are
 embedded in the IPv6 sender address.

https://datatracker.ietf.org/doc/html/rfc5214

Steffann, et al. Expires October 6, 2013 [Page 12]

Internet-Draft IPv6 tunnels April 2013

 The router's prefix and the IPv4 address together define the IPv6
 address for the ISATAP interface. This means that precisely one
 ISATAP address is available for each IPv4 address. As such, each
 host needs to run ISATAP itself in order to enjoy ISATAP IPv6
 connectivity. The IPv4 address in the destination IPv6 address is
 used to bootstrap Neighbour Discovery.

 [RFC5214] doesn't explicitly address the use of ISATAP using private
 [RFC1918] addresses. Despite that, the mechanism seems compatible
 with private addresses. NAT, however, breaks the relationship
 between the IPv4 address embedded in the IPv6 address and would
 therefore make communication between ISATAP hosts impossible. Any
 device that can communicate with the ISATAP hosts over IPv4 using
 protocol 41 can participate in the IPv6 subnet.

 ISATAP is available in Windows, Linux and Cisco IOS. It is not
 recommended [ISATAP-WIN] to be run on production networks running
 Windows if native IPv6 is available.

3.8. Tunneling IPv6 over UDP through NATs (Teredo)

 Teredo is specified in [RFC4380] and a few updates; it is designed as
 an automatic tunnel mechanism of last resort. It can configure an
 IPv6 address behind most NAT devices, but not all. Because Teredo
 uses encapsulation in UDP, multiple Teredo clients can be
 simultaneously active behind the same NAT. For each Teredo client, a
 single IPv6 address is then created at the expense of a single
 external UDP port.

 The operation of Teredo is based on a classification of NAT [RFC3489]
 as established during an interaction with a Teredo server. This
 classification has since been obsoleted [RFC5389] because it assigns
 more properties to NAT than achieved in reality.

 Teredo is present in Windows XP and later, and is enabled by default
 in Windows Vista and later. However, Windows will only use Teredo
 connectivity as a way to connect to IPv6 destinations of last resort.
 If no other IPv6 connectivity is present, Windows will not even look
 up AAAA records when resolving domain names. This means that Teredo
 is only used to connect to explicit IPv6 addresses obtained through
 another mechanism than DNS. An open source implementation named
 Miredo exists for other platforms.

 The performance of Teredo falls noticeably short of that of IPv4.
 The setup time of a connection involves finding a Teredo relay nearby
 the native address to encapsulate and decapsulate traffic, and
 finding this relay can take in the order of seconds. This process is
 not sufficiently reliable; Teredo fails in about 37% [TERTST] of its

https://datatracker.ietf.org/doc/html/rfc1918
https://datatracker.ietf.org/doc/html/rfc4380
https://datatracker.ietf.org/doc/html/rfc3489
https://datatracker.ietf.org/doc/html/rfc5389

Steffann, et al. Expires October 6, 2013 [Page 13]

Internet-Draft IPv6 tunnels April 2013

 attempts to connect to native IPv6 destinations. The round trip time
 of traffic can add tenths of a second, and jitter generally worsens
 if it is dependent on a public relay.

 Teredo clients need to be configured with a Teredo server when
 setting up their local IPv6 address and when initiating a connection
 to a native IPv6 destination. The hostnames of the Teredo servers
 are usually pre-configured by the vendor of the Teredo
 implementation. All Microsoft Windows implementation use Teredo
 servers provided by Microsoft by default.

3.9. IPv6 Rapid Deployment (6rd)

 6rd [RFC5969] is used by service providers to connect customer
 networks behind a CPE to the IPv6 internet.

 The structure of the 6rd protocol is based on 6to4 and it has the
 same minimal overhead as all protocols that use protocol 41
 encapsulation. The main differences between 6rd and 6to4 are that
 6rd is meant to be used inside a service provider's network and does
 not use a special IPv6 prefix but one or more prefixes routed to the
 service provider. As such, 6rd users aren't immediately recognisable
 by their IPv6 address the way 6to4 users are. Where 6to4 uses relays
 based on global anycast routing 6rd uses relays provided and
 maintained by the service provider. Because of this architecture the
 tunnel does not traverse unknown networks which makes any debugging
 much easier.

 6rd is completely stateless once it is configured. The tunnel
 endpoints can therefore be deployed using anycast. This is commonly
 done for the 6rd border relays deployed by the service provider to
 provide redundancy.

 Because of the different prefix, the device used as the 6rd client
 cannot use the hard-coded IPv6 prefix calculation and relay addresses
 of 6to4. Instead, the 6rd client needs to receive configuration
 information to work. In principle 6rd nodes may be configured in a
 variety of ways, the most common one being through DHCP. If the
 client receives its IPv4 address from a DHCPv4 server then the 6rd
 configuration can be included in the DHCP message exchange using the
 6rd DHCPv4 Option defined in [RFC5969]. Manual configuration of 6rd
 options and configuration using [TR-069] is also possible.

 The main advantage of using 6rd is that it allows service providers
 to deploy IPv6 on last mile access networks that for some reason
 cannot provide native IPv6 connectivity. It does not share the lack
 of predictable routing that 6to4 suffers from, because all routing,
 encapsulation and de-encapsulation is done by the service provider.

https://datatracker.ietf.org/doc/html/rfc5969
https://datatracker.ietf.org/doc/html/rfc5969

Steffann, et al. Expires October 6, 2013 [Page 14]

Internet-Draft IPv6 tunnels April 2013

 A disadvantage of 6rd for clients is that 6rd is only available when
 a service provider provides the relays and address space.

3.10. Native IPv6 behind NAT44 CPEs (6a44)

 Inspired by Teredo, the 6a44 tunnel is described in "Native IPv6
 behind IPv4-to-IPv4 NAT Customer Premise Equipment (6a44)" [RFC6751].
 Its purpose is to enable Internet Service Providers to establish IPv6
 connectivity for their customers, in spite of the use of a CPE or
 home gateway that is not prepared for IPv6. The infrastructure
 required for this is a 6a44 relay in the ISP's network and a 6a44
 client in the customer's internal network.

 6a44 was explicitly designed to overcome the noted problems with
 Teredo. Where Teredo was designed as a global solution without
 dependency on ISP co-operation, the 6a44 tunnel explicitly assumes
 ISP co-operation. Instead of using Teredo's well-known prefix, a /48
 prefix out of the ISP's address space is used. A well-known
 (anycast) IPv4 address has been assigned for the 6a44 relay to be run
 inside the ISP network without client configuration. This well-known
 address is allocated from the same IPv4 /24 as 6to4.

 As part of its bootstrapping, a 6a44 client requests an address from
 the 6a44 relay, and a regular keepalive sent by the 6a44 client to
 the 6a44 relay keeps mapping state in NATs and firewalls on the path
 alive. Traffic passed from the native IPv6 internet to 6a44 is
 encapsulated in UDP and IPv4 by the relay and decapsulated by the
 6a44 client; the opposite is done in the other direction.

3.11. Locator/ID Separation Protocol (LISP)

 The Locator/ID Separation Protocol (LISP) [RFC6830] is a protocol to
 separate the identity of systems from their location on the internet
 and/or internal network. The addresses of the systems are called
 Endpoint Identifiers (EIDs) and the addresses of the gateways are
 called Routing Locators (RLOCs). It is possible to use IPv6 EIDs
 with IPv4 RLOCs and thereby use LISP for tunneling IPv6 over IPv4.

 LISP defines its own packet formats for encapsulation of data packets
 and for control messages. All such packets are then encapsulated in
 UDP. Data packets use port 4341 and control packets use port 4342.

 The LISP specification consists of several RFC documents. The
 relevant ones for IPv6-in-IPv4 tunneling are the base specification
 [RFC6830], Interworking between Locator/ID Separation Protocol (LISP)
 and Non-LISP Sites [RFC6832] and the Locator/ID Separation Protocol
 (LISP) Map-Server Interface [RFC6833].

https://datatracker.ietf.org/doc/html/rfc6751
https://datatracker.ietf.org/doc/html/rfc6830
https://datatracker.ietf.org/doc/html/rfc6830
https://datatracker.ietf.org/doc/html/rfc6832
https://datatracker.ietf.org/doc/html/rfc6833

Steffann, et al. Expires October 6, 2013 [Page 15]

Internet-Draft IPv6 tunnels April 2013

 +----+ +----+
 | MS | | MR |
 +----+ +----+ +-----+ /-----------\
 | | /---| xTR |---| LISP site |
 +------+ /------------\---/ +-----+ \-----------/
 | PxTR |---| IP network |
 +------+ \------------/---\ +-----+ /-----------\
 | \---| xTR |---| LISP site |
 /---------------\ +-----+ \-----------/
 | Non-LISP site |
 \---------------/

 An example of a LISP deployment

 LISP introduces new terminology and new concepts. The relevant ones
 for this document are:

 ITR: Ingress Tunnel Router, a router encapsulating data packets at
 the border of a LISP site

 ETR: Egress Tunnel Router, a router decapsulating data packets at
 the border of a LISP site

 xTR: A router performing both the ITR and the ETR functions

 PITR: Proxy ITR, a router accepting traffic from non-LISP sites,
 encapsulating it and tunneling it to the LISP sites

 PETR: Proxy ETR, a router accepting traffic from LISP sites to send
 it to non-LISP sites

 PxTR: A router performing both the PITR and the PETR functions

 MS: Map Server, a server accepting RLOC registrations from ETRs

 MR: Map Resolver, a server that can resolve queries for RLOCs from
 ITRs

 LISP ETRs register the EID prefixes that they can handle traffic for
 in one or more Map Servers. ITRs and PITRs can then query Map
 Resolvers to determine which RLOCs to use when sending traffic to a
 LISP site. PITRs advertise aggregates of EID prefixes to the global
 routing table and provide tunneling services for them so that non-
 LISP sites can reach LISP sites. PETRs provide a way for LISP sites
 to send traffic to non-LISP sites.

 LISP is a complex protocol if only used for tunneling. What it
 provides additionally is that ETRs can advertise their own RLOC

Steffann, et al. Expires October 6, 2013 [Page 16]

Internet-Draft IPv6 tunnels April 2013

 addresses, that one site can have multiple xTRs with independent
 RLOCs and that the LISP site administrator can specify priorities and
 weights for those RLOCs. This provides redundancy and explicit load
 balancing between RLOCs. It also provides automatic tunneling
 between different sites without using a PxTR if both sites use Map
 Servers and Map Resolvers that are interconnected, for example by
 participating in the LISP Beta Network [LISPBETA]. To facilitate
 these interconnections the LISP Delegated Database Tree (DDT) system
 is available.

 The LISP protocol is implemented on most Cisco devices. There are
 implementations available for FreeBSD and Linux, as well as a
 platform independent implementation in the Python programming
 language.

3.12. Subnetwork Encapsulation and Adaptation Layer (SEAL)

 The Subnetwork Encapsulation and Adaptation Layer (SEAL)
 [I-D.templin-intarea-seal] (along with its companion technologies
 cited therein) provides a hybrid configured/automatic tunneling
 system. SEAL itself provides a mid-layer of encapsulation between
 the inner IPv6 header and the outer IPv4 header, i.e., as IPv4-SEAL-
 IPv6. SEAL can also be used in conjunction with an outer UDP
 encapsulation header, e.g., if NAT traversal is necessary.

 The SEAL tunnel endpoint creates bidirectional configured tunnels to
 reach default IPv6 routers, and discovers unidirectional automatic
 tunnels. SEAL tunnels can be configured over multiple underlying
 IPv4 links whether the addresses are provisioned from public or
 private IPv4 addressing domains. In that case, multi-homing and
 traffic engineering are naturally supported.

 SEAL provides an optional 32-bit Identifier and variable-length
 Integrity Check Vector that can be used for packet identification,
 message origin authentication, anti-replay and a mid-layer
 segmentation and reassembly capability. SEAL also provides a SEAL
 Control Message Protocol (SCMP) used for neighbour coordinations
 between tunnel endpoints. These coordinations are used for functions
 such as tunnel MTU signalling, route optimisations, neighbour
 reachability testing and so on.

 SEAL ensures that packets that are no larger than 1500 bytes can be
 transported through the tunnel by using a tunnel segmentation
 function. IPv6 packets that are too large to transport through the
 tunnel whole are split into segments. The segments are encapsulated
 in IPv4 and reassembled into the original IPv6 packets at the remote
 tunnel endpoint. SEAL also admits packets larger than 1500 bytes
 into the tunnel on a best-effort basis in case the path between the

Steffann, et al. Expires October 6, 2013 [Page 17]

Internet-Draft IPv6 tunnels April 2013

 tunnel endpoints can support the larger size.

 When SEAL is used alone without its companion technologies, it can be
 used in the same scenarios as for GRE. However, SEAL provides
 advanced capabilities that make it better suited than GRE for many
 use cases. There is currently an experimental open source
 implementation of SEAL.

3.13. Peer-to-Peer IPv6 on Any Internetwork (6bed4)

 The 6bed4 tunnel is specified in "6bed4: Peer-to-Peer IPv6 on Any
 Internetwork" [6BED4]. A specific goal of 6bed4 is to achieve direct
 communication between peers when the intermediate infrastructure does
 not prohibit it. The advantage of direct communication is to get a
 performance level similar to IPv4. The address of a 6bed4 peer is
 formed from the external IPv4 address and UDP port. The tunnel
 service used for fallback connectivity can run anywhere; perhaps at
 the local ISP or perhaps with a third party service provider for
 6bed4, or even on a well-known address. It is currently an NBMA
 protocol; there are openings for expansion with multicast.

 The setup of 6bed4 is somewhat similar to 6to4, except that it
 employs UDP so it can be used behind NAT. It also has elements found
 in Teredo, but without a need to classify NATs and induce behaviour
 from that. The 6bed4 tunnel makes no assumption NAT devices beyond
 straightforward UDP support. Given this, 6bed4 can create reliable
 IPv6 tunnels.

 In environments where direct connections between 6bed4 peers is
 possible, additional path stretch compared to IPv4 communication is
 avoided, so 6bed4 performance comes close to IPv4 performance. In
 situations where this is not possible run over the direct path
 between two peers because a NAT that does not conform to [RFC4787] is
 on the path, a fallback to a tunnel server is used. This increases
 path stretch and affects scalability through its impact on roundtrip
 times and jitter.

 Another area where the tunnel server is needed, is for connectivity
 between 6bed4 peers and native IPv6 hosts. For reasons of
 performance and scalability, connections between 6bed4 peers are
 preferred over connections between a 6bed4 peer and a native IPv6
 host. A default address exists to support zero-config operation, but
 it is possible to locally configure a tunnel server as a fallback
 route, which then also defines the tunnel server for the return path.

 6bed4 has been specifically designed to support realtime interactive
 traffic streams, such as SIP calls, between 6bed4-supporting end
 points, assuming that each prefers 6bed4-to-6bed4 traffic over 6bed4-

https://datatracker.ietf.org/doc/html/rfc4787

Steffann, et al. Expires October 6, 2013 [Page 18]

Internet-Draft IPv6 tunnels April 2013

 to-native traffic. Under that premise, the only hosts that need to
 go through a tunnel server are those that are behind a NAT with
 Address-Dependent Mapping or Address and Port-Dependent Mapping. A
 number of different implementations of 6bed4 have been constructed
 [6BED4] during the ongoing development of its specification.

4. Related Protocols

 The following protocols are not tunnel mechanisms but they can be
 used in the configuration and/or setup phase of such protocols.

4.1. Tunnel Setup Protocol (TSP)

 The Tunnel Setup Protocol [RFC5572] specifies a protocol for
 negotiating the setup of a variety of tunnel encapsulations. In this
 document we are only interested in the encapsulation of IPv6 in IPv4.
 The Tunnel Setup Protocol can negotiate these as a protocol 41
 encapsulated tunnel or as a UDP-encapsulated tunnel. The tunnel
 negotiation is performed as an XML exchange over UDP or TCP.

 As a TSP client exchanges all IPv6 traffic with the same tunnel
 server, there are no concerns caused by NAT implementations. The
 only concern is to send regular keepalives, for which ICMPv6 ping
 messages to the tunnel server are suggested. When encapsulating IPv6
 packets directly in IPv4, all protocol 41 limitations apply. To
 avoid these, an additional UDP header may be used.

 The Tunnel Setup Protocol treats all protocols and ports for one IPv4
 client address as equivalent. This suffices when protocol 41 is
 used, but for UDP it creates a situation where one user can set up a
 tunnel behind NAT, and another user could hijack the tunnel
 privileges.

 Open source clients for the Tunnel Setup Protocol and a matching
 tunnel infrastructure are provided from the freenet6 tunnel service
 [GOGO6].

4.2. SixXS Heartbeat Protocol

 The SixXS Heartbeat Protocol [I-D.massar-v6ops-heartbeat] allows
 nodes that have intermittent connectivity or a dynamic IPv4 address
 that changes from time to time to have continuing tunneled IPv6
 connectivity. One of the goals of the protocol is to determine when
 a node is no longer present at its previous IPv4 address and then
 stop sending tunneled packets to avoid tunneled packets from being
 delivered to the wrong node. The Heartbeat Protocol then allows a
 tunnel broker to determine a client's new IPv4 address and continue

https://datatracker.ietf.org/doc/html/rfc5572

Steffann, et al. Expires October 6, 2013 [Page 19]

Internet-Draft IPv6 tunnels April 2013

 sending tunneled packets with minimal interruption.

 To accomplish this, a node sends periodic heartbeat packets to the
 tunnel broker. If the tunnel broker fails to receive valid heartbeat
 packets, it shuts down the tunnel in question. Heartbeat packets
 contain an MD5 message authentication code and a timestamp to avoid
 replay attacks. The Heartbeat Protocol can work with different
 tunnel mechanisms, but it is often used with configured tunnels
 (Section 3.1).

 The protocol is implemented in the SixXS tunnel broker; client
 implementations are available for common operating systems. AYIYA
 can be considered the successor of the Heartbeat Protocol.

4.3. Tunnel Information and Control protocol (TIC)

 The Tunnel Information and Control protocol (TIC) protocol [TIC] is
 the setup protocol for the [SIXXS] tunnel broker service.

 With the TIC protocol a tunnel broker user can request a list of
 available tunnels and points-of-presence (POPs) from the tunnel
 broker service. When the user chooses one of the tunnels, the
 configuration parameters for that tunnel can then be requested
 through TIC. TIC also provides commands to control the tunnel, for
 example to change the tunnel endpoints, enable or disable the tunnel.

 Authentication of users is done based on username and password.
 Certain tunnel mechanisms, such as AYIYA (Section 3.6) and configured
 tunnels (Section 3.1) with heartbeat (Section 4.2), need a
 synchronised clock between the tunnel server and the client. TIC
 facilitates this by providing a server timestamp on request. The
 client can use that to verify that its clock is synchronised with the
 server and show an error message to the user if it is not.

 The TIC protocol is implemented in the AICCU [AICCU] client software
 and in AVM Fritz!Box home routers.

5. Common Aspects

 The following are aspects common to many or all tunnel mechanisms.

5.1. Protocol 41 Encapsulation

 The most straightforward way to encapsulate an IPv6 packet inside an
 IPv4 packet is by simply adding an IPv4 header in front of the IPv6
 header. In this case, the protocol field in the IPv4 header is set
 to the value 41.

Steffann, et al. Expires October 6, 2013 [Page 20]

Internet-Draft IPv6 tunnels April 2013

 This simple "protocol 41" encapsulation is used by a number of tunnel
 mechanisms:

 configured tunnels (Section 3.1)

 automatic tunneling (Section 3.2)

 6over4 (Section 3.3)

 6to4 (Section 3.5)

 ISATAP (Section 3.7)

 6rd (Section 3.9)

5.2. NAT and Firewalls

 It is not uncommon for NATs and firewalls to block protocol 41
 encapsulated packets, especially at the boundary between an
 organisation's internal network and the public internet. Other
 tunnel mechanisms than protocol 41 typically employ a UDP header, and
 are somewhat less likely to be filtered, assuming that tunneling is
 initiated on the LAN-side.

 Although protocol 41 can in principle work through NAT, there are two
 issues. First, when the IPv6 address is derived from the IPv4
 address (see Section 5.4), NATing of the outer IPv4 header breaks the
 relationship between the IPv4 and IPv6 addresses. Second, because
 protocol 41 does not use port numbers, the number of protocol 41
 tunnel endpoints that can be supported behind a NAT device is equal
 to its number of external IPv4 addresses (see Section 6.1). This
 limitation also applies to GRE.

 Tunnels that pass through a NAT device or stateful firewall need to
 generate traffic at regular intervals to refresh the NAT or firewall
 mapping. If the mapping is lost, tunneled packets from the outside
 won't be able to pass through the NAT/firewall until a system behind
 the NAT or firewall sends a tunneled packet and the mapping is
 recreated. Alternatively, a static mapping (often in the form of a
 "default" or "DMZ" host) may be configured manually.

 The following tunnel mechanisms are incompatible with NAT because
 their addresses must be derived from a globally unique IPv4 address:

Steffann, et al. Expires October 6, 2013 [Page 21]

Internet-Draft IPv6 tunnels April 2013

 automatic tunneling (Section 3.2)

 6to4 (Section 3.5)

 6rd (Section 3.9)

 Note that it is common to run 6to4 or 6rd on a home gateway device
 that also performs IPv4 NAT. In this configuration, NAT is not
 applied to tunneled packets, so NAT and 6to4/6rd can coexist.

 The following tunnel mechanisms cannot operate between nodes on
 opposing sides of a NAT, but they do work if _all_ nodes are behind a
 NAT (where RFC 1918 addresses are often used):

 6over4 (Section 3.3)

 ISATAP (Section 3.7)

 The following tunnel mechanisms may work through NAT in some
 circumstances, but are not designed for NAT compatibility:

 configured tunnels (Section 3.1)

 GRE (Section 3.4)

 The following tunnel mechanisms are designed for NAT compatibility:

 AYIYA (Section 3.6)

 Teredo (Section 3.8) (but it is unreliable)

 6a44 (Section 3.10)

 SEAL (Section 3.12)

 6bed4 (Section 3.13)

 The LISP specification requires that locator addresses (the addresses
 in the outer IPv4 header) are globally routable public addresses.

 A tunnel built over UDP makes a claim on a resource, namely an
 external UDP port. This may impact how well a tunnel will scale in
 an organisation; for instance, if every desktop runs its own tunnel
 client over UDP then the claim on this resource may have some impact.

 Note that ISPs may have multiple subscribers share a public IPv4
 address by performing NAT (Carrier Grade NAT, CGN or CGNAT in this
 context). In this case, the subscribers' home gateways may receive

https://datatracker.ietf.org/doc/html/rfc1918

Steffann, et al. Expires October 6, 2013 [Page 22]

Internet-Draft IPv6 tunnels April 2013

 an address in the 100.64.0.0/10 block [RFC6598]. For the purposes of
 tunnel mechanisms, this address block is similar to the [RFC1918]
 address blocks. However, NAT/RFC1918 aware tunnel implementations
 may not recognise 100.64.0.0/10 as non-public addresses and fail to
 operate successfully. The same issue is present if an ISP decides to
 use regular global unicast IPv4 address space behind a CGN.

5.3. MTU Considerations

 Because of the extra IPv4 header and possible additional headers
 between the IPv4 and IPv6 headers, tunnels experience a reduced
 maximum packet size (Maximum Transfer Unit, MTU) compared to native
 IPv6 communication.

 Path MTU discovery (PMTUD) should handle this in nearly all cases,
 but filtering of ICMPv6 "packet too big" messages may lead to an
 inability to communicate because senders of large packets fail to
 perform PMTUD successfully. However, when a tunnel terminates
 directly on the host using it, the TCP maximum segment size (MSS)
 option communicates the maximum packet size to the remote endpoint,
 so TCP-based communication may still succeed. If not, the initial
 TCP SYN/ACK exchange happens without issue, but then the session
 stalls as the larger packets containing data are lost.

 With tunnel mechanisms where the MTU is left unspecified, it is
 possible for the two endpoints to have different MTUs: typically, one
 uses the IPv6 minimum, 1280, while the other uses the physical MTU
 minus tunnel overhead, often 1480. In theory, this should lead to
 PMTUD failures because the "big" side unknowingly sends packets that
 the "small" side can't handle. However, in practice implementations
 handle incoming packets larger than their own MTU without issue.

 Only when the IPv4 MTU is reduced below 1500 bytes, for instance when
 using PPP over Ethernet (PPPoE, [RFC2516]), issues are more likely to
 arise. So when the possibility exists that tunneled packets
 encounter a PPPoE link, it is prudent to set the MTU of a tunnel to
 no more than 1472 bytes, so tunneled packets don't have to be
 fragmented. Additionally, Section 3.2.1 of [RFC4213] recommends
 limiting the MTU of tunnels to the minimum of 1280.

 SEAL was specifically designed to overcome these limitations by
 adding the capability to fragment IPv6 packets prior to encapsulation
 in IPv4 and then reassembling the fragments at the remote tunnel
 endpoint. This way, the SEAL tunnel ensures that packets that are no
 larger than 1500 bytes will be transported to the tunnel far end even
 if there are restricting links in the path. SEAL can also admit
 larger packets into the tunnel on a best effort basis in case the
 path between the tunnel endpoints can support this larger size.

https://datatracker.ietf.org/doc/html/rfc6598
https://datatracker.ietf.org/doc/html/rfc1918
https://datatracker.ietf.org/doc/html/rfc2516
https://datatracker.ietf.org/doc/html/rfc4213#section-3.2.1

Steffann, et al. Expires October 6, 2013 [Page 23]

Internet-Draft IPv6 tunnels April 2013

5.4. IPv4 Addresses Embedded in IPv6 Addresses

 Many tunnel mechanisms embed IPv4 addresses or further information in
 the IPv6 addresses they use. There are two possible reasons for
 this. First, with an IPv4 address embedded in the IPv6 address, the
 outer IPv4 header can be derived without a need to explicitly
 configure tunnel endpoints. Automatic tunneling, 6to4, ISATAP, 6bed4
 and Teredo do this. 6over4 embeds the IPv4 address for the second
 reason; it is embedded in the interface identifier, and thus the IPv6
 address, because that way, a (presumably) globally unique interface
 identifier can be generated.

 Automatic tunneling uses IPv4-compatible addresses in the prefix
 ::/96 (i.e., the first 96 bits are all zero).

 | 96 bits | 32 |
 +--+-----------------+
 | 0:0:0:0:0:0 | IPv4 address |
 +--+-----------------+

 The IPv4-compatible addresses structure

 Systems running 6to4 have addresses in the 6to4 prefix 2002::/16.

 | 16 | 32 | 16 | 64 bits |
 +--------+-----------------+--------+------------------------------+
 | 2002 | IPv4 address | Subnet | Interface ID |
 +--------+-----------------+--------+------------------------------+

 The 6to4 address structure

 Because a 6rd domain might share a common IPv4 prefix it is not
 always necessary to encode all 32 bits of the IPv4 address in the 6rd
 delegated prefix. The bits that become available because of this
 optimisation can be used to provide more subnet IDs to the user
 and/or to use a smaller address block for the 6rd prefix.

 | n bits | o bits | m bits | 128-n-o-m bits |
 +---------------+--------------+-----------+-----------------------+
 | 6rd prefix | IPv4 address | subnet ID | interface ID |
 +---------------+--------------+-----------+-----------------------+
 |<--- 6rd delegated prefix --->|

 The 6rd address structure

 6over4 uses the IPv4 address to generate a 64-bit Interface
 Identifier, which can then be used to create a 128-bit IPv6 address
 through Stateless Address Autoconfiguration.

Steffann, et al. Expires October 6, 2013 [Page 24]

Internet-Draft IPv6 tunnels April 2013

 | 48 bits | 16 | 32 | 32 |
 +---------------------+--------+-----------------+-----------------+
 | Organisation prefix | Subnet | 0:0 | IPv4 address |
 +---------------------+--------+-----------------+-----------------+

 The 6over4 address structure

 The ISATAP address structure is similar to the 6over4 address
 structure, except that the unique/local (u) bit signifies whether the
 IPv4 address in the interface identifier is unique. Presumably, this
 is the case for any non-[RFC1918] IPv4 address. The group (g) bit is
 set to zero, and the remaining bits are set to to 0x00005EFE.

 | 48 bits | 16 | 32 | 32 |
 +---------------------+--------+-----------------+-----------------+
 | Organisation prefix | Subnet | ug00:5EFE | IPv4 address |
 +---------------------+--------+-----------------+-----------------+

 The ISATAP address structure

 Teredo embeds the Teredo server's IPv4 address, a number of flags, a
 UDP port number as well as the Teredo client's IPv4 address in the
 IPv6 addresses it creates. For good measure, the UDP port and client
 IPv4 address are "obfuscated" by flipping their bits.

 | 32 bits | 32 | 16 | 16 | 32 |
 +----------------+---------------+-------+-------+-----------------+
 | 2001:0 | Server IPv4 | Flags | Port | Client IPv4 |
 +----------------+---------------+-------+-------+-----------------+

 The Teredo address structure

 6a44 can be seen as a combination of 6rd and Teredo. The 6a44 prefix
 is given out by an ISP. Both the customer site (home gateway) IPv4
 address as well as the host's/client's RFC 1918 IPv4 address and also
 a port number are embedded in the IPv6 address.

 | 48 bits | 32 | 16 | 32 |
 +----------------------+-----------------+-------+-----------------+
 | 6a44 prefix | Cust. site IPv4 | Port | Client IPv4 |
 +----------------------+-----------------+-------+-----------------+

 The 6a44 address structure

 6bed4 embeds two combinations of an IPv4 address and UDP port
 (together acting as a "6bed4 address") in the IPv6 address; the first
 address is for a tunnel server that everyone is certain to reach, the
 other is for the direct address that most peers should be able to

https://datatracker.ietf.org/doc/html/rfc1918
https://datatracker.ietf.org/doc/html/rfc1918

Steffann, et al. Expires October 6, 2013 [Page 25]

Internet-Draft IPv6 tunnels April 2013

 reach directly. The tunnel server however, is the only one with
 guaranteed access to the direct address.

 | 64 bits | 50 | 14 |
 +--------+-----------------------+-------------------------+-------+
 | prefix | general 6bed4 address | direct 6bed4 address | lanIP |
 +--------+-----------------------+-------------------------+-------+

 The 6bed4 address structure

 Some details of the 6bed4 address format are still work in progress
 at the time of this writing. The lanIP bits are free for local
 purposes, such as creating a DHCPv6 range.

6. Evaluation of Tunnel Mechanisms

 The following subsections deal with the various aspects of tunnels
 that guide their selection.

6.1. Efficiency of IPv4 Address Use

 With the depletion of the IPv4 address space, the ability to deploy a
 tunnel mechanism behind NAT as well as the number of IPv6
 subscribers, subnets and individual hosts that can be supported
 behind a single IPv4 address have become important considerations.

 These issues are irrelevant to tunnel mechanisms that provide IPv6
 connectivity between hosts within the same administrative domain,
 such as ISATAP or 6over4, as they can use private IPv4 addresses.
 This is also true for 6rd, which is used between an ISP and its
 customers' home gateways when the ISP has implemented NAT.

 6to4 cannot work behind any kind of NAT. Most other mechanisms based
 on protocol 41 can work behind NAT, at least in principle. In
 practice this difference is not as big as the protocol 41
 encapsulation doesn't provide any fields that allow a NAT to
 demultiplex tunneled packets. This means that only a single protocol
 41 tunnel endpoint can be supported for each public IPv4 address.

 This makes configured tunnels (as well as 6to4) incompatible with
 service provider operated NATs, where multiple subscribers share an
 IPv4 address.

 Teredo, 6a44, 6bed4, AYIYA, SEAL and TSP are designed to work through
 NATs and use a UDP header, so multiple tunnel endpoints can be hosted
 behind a single IPv4 address. On the other hand, Teredo only
 provides IPv6 connectivity to a single host.

Steffann, et al. Expires October 6, 2013 [Page 26]

Internet-Draft IPv6 tunnels April 2013

 The following table shows how many IPv4 addresses each tunnel
 mechanism requires and how many IPv6 hosts it can connect. The
 mechanisms are listed in order of increasing numbers of supported
 IPv6 hosts per IPv4 address.

 +------------+-------------+-------------+-------------+------------+
 | Mechanism | Tunnels per | IPv6 hosts | Public IPv4 | NAT |
 | | IPv4 addr. | per tunnel | address | compatible |
 +------------+-------------+-------------+-------------+------------+
Auto. tun.	one	one	required	no
6to4	one	multiple	required	no
LISP	one	multiple	required	no
6rd	one	multiple	not needed	no
Conf. tun.	one	multiple	not needed	limited
GRE	one	multiple	not needed	limited
Teredo	multiple	one	not needed	yes (*)
6bed4	multiple	multiple	not needed	yes
6a44	multiple	multiple	not needed	yes
AYIYA	multiple	multiple	not needed	yes
SEAL	multiple	multiple	not needed	yes
 +------------+-------------+-------------+-------------+------------+

 Tunneled IPv6 hosts per IPv4 address

 (*) Although Teredo is designed for NAT compatibility, it doesn't
 work through all existing NATs.

6.2. Supported Network Topologies

 There are two ways to use an IPv6-in-IPv4 tunnel to connect to the
 IPv6 internet: using a point-to-point tunnel to a tunnel broker or an
 ISP-operated gateway, or using a non-broadcast multiple access (NBMA)
 tunnel and anycasted public gateways or relays.

 The advantages of the point-to-point model are predictable
 performance and flexibility regarding the IPv6 addresses used. The
 advantage of the NBMA model is that traffic between two hosts or
 networks that both use the mechanism can flow directly without
 passing through a gateway (direct peer-to-peer communication.). An
 extra advantage of the NBMA model with public gateways is automatic
 configuration and no involvement from an ISP.

 Unfortunately, the advantages of this NBMA public anycast model come
 at a price: both the peer-to-peer connectivity between tunnel users
 and the connectivity towards the native IPv6 internet may suffer from
 reliability and performance issues.

 The anycast mechanism allows tunnel users to utilise the nearest

Steffann, et al. Expires October 6, 2013 [Page 27]

Internet-Draft IPv6 tunnels April 2013

 gateway to connect to the IPv6 internet by simply giving each gateway
 the same address. Routing protocols then select the lowest-cost (and
 presumably, shortest) path towards a gateway. However, this makes
 the path taken by tunneled packets hard to predict or influence. It
 is common for traffic in two directions to use different gateways,
 complicating debugging even further. Because nobody is in charge or
 gets paid for operating a gateway, the number of public gateways is
 lower than would be ideal. This increases the distance to the
 nearest gateway for some users. There is also the possibility that
 gateways encounter more traffic than they can handle.

 The advantage of a tunnel provided by an ISP or tunnelbroker is that
 there is a clear responsibility for providing a good service with
 well maintained gateways.

 +------------+---------------+--------------------------------+
 | Mechanism | Peer-to-peer | Gateway provided by |
 +------------+---------------+--------------------------------+
 | Conf. tun. | No | ISP or Tunnel broker |
 | AYIYA | No | ISP or Tunnel broker |
 | GRE | No | N/A |
 | 6a44 | Within domain | ISP |
 | 6rd | Within domain | ISP |
 | 6over4 | Globally | N/A |
 | ISATAP | Within domain | Own organisation |
 | Teredo | Globally | Public |
 | 6to4 | Globally | Public or ISP |
 | 6bed4 | Globally | Public or ISP or Tunnel broker |
 | Auto. tun. | Globally | N/A |
 | LISP | Configurable | ISP or Tunnel broker |
 | SEAL | Configurable | ISP or Tunnel broker |
 +------------+---------------+--------------------------------+

 Topologies Supported per Tunnel Mechanism

6.3. Robustness

 Tunnels may fail for three main reasons: when tunneled packets are
 filtered, typically by a firewall, when a tunnel endpoint IPv4
 address changes or when tunneled packets are filtered or because of
 NAT issues.

 If a tunnel endpoint gets a new address, the other side of the tunnel
 needs to know to send packets to the new address. With mechanisms
 that derive IPv6 addresses from the IPv4 address, the previous IPv6
 addresses become unreachable and new IPv6 addresses must be
 configured.

Steffann, et al. Expires October 6, 2013 [Page 28]

Internet-Draft IPv6 tunnels April 2013

 Some tunnel mechanisms don't work through NAT, or are limited when
 working through NAT. NAT mappings can typically only be created by
 traffic from the "inside" to the "outside", not by traffic from
 outside the NAT to the network behind the NAT.

 Point-to-point tunnel mechanisms either work consistently or they
 always fail. As such, a simple ping to the other side of the tunnel
 is sufficient to learn its state. Also, point-to-point tunnels may
 support routing protocols, which can automatically reroute traffic
 around a failed tunnel.

 Some tunnel mechanisms use a public gateway to reach the native IPv6
 internet. Public gateways may or may not be operational and/or
 reachable, and may have limited performance, depending on distance
 and usage.

 Tunnel mechanisms that use a broadcast or non-broadcast multiple
 access (NBMA) communication model may experience failures between
 some combinations of tunnel endpoints and not others.

 The following table lists tunnel mechanisms that provide connectivity
 to the IPv6 internet in order of decreasing robustness. (However,
 even less-robust mechanisms may function well in suitable
 environments.)

 +------------+---------------+--------------------------------------+
Mechanism	Endpoint	Main issues
	address	
	change	
+------------+---------------+--------------------------------------+		
LISP	automatic	None
6rd	interrupt	None
AYIYA	automatic	Transient NAT mapping issues
Conf. + HB	interrupt	Proto 41 filtering, competition for
		NAT mappings (1)
Conf. tun.	failure	Proto 41 filtering, competition for
		NAT mappings, address change (1)
GRE	failure	Proto 47 filtering, address change
6a44	interrupt	NAT mapping towards peers
6bed4	interrupt	NAT mapping towards peers
6to4	interrupt	Enabled out of the box but filtered,
		gateway performance (2)
Teredo	interrupt	NAT compatibility, mapping towards
		peers (3)
 +------------+---------------+--------------------------------------+

 Susceptibility of tunnel mechanisms to problems

Steffann, et al. Expires October 6, 2013 [Page 29]

Internet-Draft IPv6 tunnels April 2013

 Notes:

 (1): only one protocol 41 tunnel endpoint can receive a NAT mapping
 behind a NAT using a single public IPv4 address. Additional
 endpoints will not receive incoming packets. When a tunnel
 endpoint changes its internal address, the old NAT mapping needs
 to time out before a new one can be created.

 (2): 6to4 implementations automatically disable the mechanism when
 the system has an RFC 1918 address. However, 6to4 may remain
 enabled and be non-operational when ISPs apply NAT using non-RFC
 1918 addresses [RFC6598].

 (3): whether Teredo can obtain an address depends on the type of NAT
 it detects. Whether Teredo functions at such an address depends
 on the accuracy of that determination, which is founded on an
 incomplete model of NAT.

 On some widely used implementations, 6to4 has been enabled by default
 without checking whether there was connectivity to the anycasted
 public gateway address. As a result, 6to4-derived connectivity to
 the IPv6 internet was often found to be broken because of protocol 41
 filtering. Because of this, many operating systems now try to avoid
 using IPv6 over 6to4. See [RFC6343].

 Also see [TERTST] for more information about the robustness of
 Teredo.

 There is not a single tunnel mechanism that is more robust in all
 possible ways than every other tunnel mechanism. However, in general
 mechanisms that use public gateways and peer-to-peer tunneling tend
 to have the most issues. Configured tunnels on the other hand, often
 work very well, especially if there is no NAT on the path, but may
 need administrative intervention when a tunnel endpoint address
 changes.

6.4. Gateway State

 There is an additional consideration that is important to operators
 of gateways that connect IPv6-in-IPv4 tunnels to the IPv6 internet:
 how much state a tunnel mechanism requires.

 6to4 and 6rd require no state at all: when encapsulating IPv6 packets
 inside an IPv4 packet, the IPv4 destination address is directly
 copied from bits in the IPv6 destination address. This makes all
 possible tunneled destinations directly reachable through a single
 virtual interface.

https://datatracker.ietf.org/doc/html/rfc1918
https://datatracker.ietf.org/doc/html/rfc6598
https://datatracker.ietf.org/doc/html/rfc6343

Steffann, et al. Expires October 6, 2013 [Page 30]

Internet-Draft IPv6 tunnels April 2013

 Teredo, 6a44 and 6bed4 require additional logic to work through NATs,
 which requires them to keep track of relatively volatile state. They
 also work on a per-host basis rather than allowing a number of hosts
 to make use of a single tunnel.

 With configured tunnels, GRE, AYIYA and SEAL there is no direct
 mapping from (part of) the IPv6 destination address to the IPv4
 destination address. A typical implementation of these mechanisms is
 by having a virtual tunnel interface for each tunnel. Packets are
 forwarded to the correct virtual interface through a routing table
 lookup. Routing tables can grow very large and remain fast, so the
 number of virtual interfaces tends to be the limiting factor for
 tunnel gateways. AYIYA and the SixXS Heartbeat Protocol also keep
 track of the reachability status of each tunnel.

6.5. Performance

 There are several reasons why tunneled connectivity may perform
 inferior to native, un-tunneled connectivity. Inherently, tunnels
 add one or more extra headers, and therefore increase overhead.
 However, for a maximum size (1500 bytes) Ethernet packet the
 additional overhead of an IPv4 header is only 1.3%.

 The process of encapsulation is not inherently slow, but in some
 implementations, it may be. Larger routers that normally forward
 packets using special purpose hardware, often don't have high
 performance CPUs. If then tunnel encapsulation must be done by that
 relatively slow CPU, performance will be worse than regular hardware-
 based packet forwarding.

 The path that tunneled packets take can be longer than the path that
 untunneled packets would take. (Increased path stretch.) This may
 or may not lead to decreased performance.

Steffann, et al. Expires October 6, 2013 [Page 31]

Internet-Draft IPv6 tunnels April 2013

 +------------+-----------------+----------------------+-------------+
 | Mechanism | Overhead | Increased path | Variability |
 | | (bytes) | stretch | |
 +------------+-----------------+----------------------+-------------+
Conf. tun.	20	may be large	none
Auto. tun.	20	none	none
6over4	20	none	none
GRE	28 - 36	may be large	none
6to4	20	may be large	high
AYIYA	72	may be large	low
ISATAP	20	none	none
Teredo	28 - 36	may be large	high
6rd	20	small	low
6a44	20 - 28	small	low
6bed4	28	may be large	high
LISP	36	small	low
SEAL	24 - variable	small	low
 +------------+-----------------+----------------------+-------------+

 Typical tunnel performance

7. IANA considerations

 None.

8. Security considerations

 There are many security considerations with tunneling. An important
 one is that through a tunnel, connectivity to the IPv6 internet may
 exist even though network administrators did not intend for it to be
 there. "Security Concerns with IP Tunneling" [RFC6169] discusses
 this issue in detail.

 Although in principle, ingress filtering (BCP 38, [RFC2827]) is
 possible with tunnels, in practice, it is relatively easy for spoofed
 packets to make their way through a tunnel. Not only is it often
 easy to spoof the outer IPv4 header and make false IPv6 packets seem
 to originate from a tunnel broker or gateway, it may also be possible
 for an attacker to route false IPv6 packets through a legitimate
 tunnel broker or gateway. Many tunneling protocols have various
 means of detecting and rejecting such packets, while others have
 limited or no such provisions. For instance, see [RFC3964] for how
 this can be addressed with 6to4.

 So it is important to recognise that unless special measures are
 taken (like [RFC4301]), both IPv4 and IPv6 addresses in tunnel

https://datatracker.ietf.org/doc/html/rfc6169
https://datatracker.ietf.org/doc/html/bcp38
https://datatracker.ietf.org/doc/html/rfc2827
https://datatracker.ietf.org/doc/html/rfc3964
https://datatracker.ietf.org/doc/html/rfc4301

Steffann, et al. Expires October 6, 2013 [Page 32]

Internet-Draft IPv6 tunnels April 2013

 packets may be spoofed and cannot be relied upon for access controls.
 Such spoofing was used successfully to discover IPv6-in-IPv4 tunnels
 in [TUNDISC].

 Tunnels may also be used by third parties to obfuscate their
 activities or perform amplification attacks. To avoid contributing
 to this problem, it is important to make sure only locally generated
 packets with legitimate addresses are sent out over tunnels.

9. Contributors

 Job Snijders contributed text to the points of comparison. Fred
 Templin provided the text for SEAL and contributed to the security
 considerations. Jeroen Massar, Brian Carpenter, Tina Tsou, John
 Mann, Suresh Krishnan, Victor Kuarsingh and Dan Jones reviewed the
 document and/or offered suggestions for improvement.

10. Acknowledgements

 We wish to thank SURFnet and Rogier Spoor for commissioning this
 work; both their initiative and funding has helped this document to
 be written.

11. References

 [6BED4] Van Rein, R., "6bed4: Peer-to-Peer IPv6 on Any
 Internetwork", <http://devel.0cpm.org/6bed4/>.

 [AICCU] SixXS, "Automatic IPv6 Connectivity Client Utility
 (AICCU)", <http://www.sixxs.net/tools/aiccu/>.

 [AYIYA] SixXS, "Anything In Anything (AYIYA)",
 <http://www.sixxs.net/tools/ayiya/>.

 [GOGO6] "Freenet6: Free and Easy IPv6 Connectivity",
 <http://www.gogo6.com/freenet6>.

 [I-D.ietf-softwire-map]
 Troan, O., Dec, W., Li, X., Bao, C., Matsushima, S., and
 T. Murakami, "Mapping of Address and Port with
 Encapsulation (MAP)", draft-ietf-softwire-map-05 (work in
 progress), March 2013.

 [I-D.massar-v6ops-ayiya]
 Massar, J., "AYIYA: Anything In Anything",

http://devel.0cpm.org/6bed4/
http://www.sixxs.net/tools/aiccu/
http://www.sixxs.net/tools/ayiya/
http://www.gogo6.com/freenet6
https://datatracker.ietf.org/doc/html/draft-ietf-softwire-map-05

Steffann, et al. Expires October 6, 2013 [Page 33]

Internet-Draft IPv6 tunnels April 2013

draft-massar-v6ops-ayiya-02 (work in progress), July 2004.

 [I-D.massar-v6ops-heartbeat]
 Massar, J., "SixXS Heartbeat Protocol",

draft-massar-v6ops-heartbeat-01 (work in progress),
 June 2005.

 [I-D.templin-intarea-seal]
 Templin, F., "The Subnetwork Encapsulation and Adaptation
 Layer (SEAL)", draft-templin-intarea-seal-52 (work in
 progress), March 2013.

 [ISATAP-WIN]
 Microsoft, "Intra-site Automatic Tunnel Addressing
 Protocol Deployment Guide", September 2010, <http://

www.microsoft.com/en-us/download/details.aspx?id=18383>.

 [LISPBETA]
 "LISP Beta Network", <http://www.lisp4.net/beta-network/>.

 [RFC1191] Mogul, J. and S. Deering, "Path MTU discovery", RFC 1191,
 November 1990.

 [RFC1918] Rekhter, Y., Moskowitz, R., Karrenberg, D., Groot, G., and
 E. Lear, "Address Allocation for Private Internets",

BCP 5, RFC 1918, February 1996.

 [RFC1933] Gilligan, R. and E. Nordmark, "Transition Mechanisms for
 IPv6 Hosts and Routers", RFC 1933, April 1996.

 [RFC1981] McCann, J., Deering, S., and J. Mogul, "Path MTU Discovery
 for IP version 6", RFC 1981, August 1996.

 [RFC2516] Mamakos, L., Lidl, K., Evarts, J., Carrel, D., Simone, D.,
 and R. Wheeler, "A Method for Transmitting PPP Over
 Ethernet (PPPoE)", RFC 2516, February 1999.

 [RFC2529] Carpenter, B. and C. Jung, "Transmission of IPv6 over IPv4
 Domains without Explicit Tunnels", RFC 2529, March 1999.

 [RFC2784] Farinacci, D., Li, T., Hanks, S., Meyer, D., and P.
 Traina, "Generic Routing Encapsulation (GRE)", RFC 2784,
 March 2000.

 [RFC2827] Ferguson, P. and D. Senie, "Network Ingress Filtering:
 Defeating Denial of Service Attacks which employ IP Source
 Address Spoofing", BCP 38, RFC 2827, May 2000.

https://datatracker.ietf.org/doc/html/draft-massar-v6ops-ayiya-02
https://datatracker.ietf.org/doc/html/draft-massar-v6ops-heartbeat-01
https://datatracker.ietf.org/doc/html/draft-templin-intarea-seal-52
http://www.microsoft.com/en-us/download/details.aspx?id=18383
http://www.microsoft.com/en-us/download/details.aspx?id=18383
http://www.lisp4.net/beta-network/
https://datatracker.ietf.org/doc/html/rfc1191
https://datatracker.ietf.org/doc/html/bcp5
https://datatracker.ietf.org/doc/html/rfc1918
https://datatracker.ietf.org/doc/html/rfc1933
https://datatracker.ietf.org/doc/html/rfc1981
https://datatracker.ietf.org/doc/html/rfc2516
https://datatracker.ietf.org/doc/html/rfc2529
https://datatracker.ietf.org/doc/html/rfc2784
https://datatracker.ietf.org/doc/html/bcp38
https://datatracker.ietf.org/doc/html/rfc2827

Steffann, et al. Expires October 6, 2013 [Page 34]

Internet-Draft IPv6 tunnels April 2013

 [RFC2893] Gilligan, R. and E. Nordmark, "Transition Mechanisms for
 IPv6 Hosts and Routers", RFC 2893, August 2000.

 [RFC3056] Carpenter, B. and K. Moore, "Connection of IPv6 Domains
 via IPv4 Clouds", RFC 3056, February 2001.

 [RFC3068] Huitema, C., "An Anycast Prefix for 6to4 Relay Routers",
RFC 3068, June 2001.

 [RFC3489] Rosenberg, J., Weinberger, J., Huitema, C., and R. Mahy,
 "STUN - Simple Traversal of User Datagram Protocol (UDP)
 Through Network Address Translators (NATs)", RFC 3489,
 March 2003.

 [RFC3964] Savola, P. and C. Patel, "Security Considerations for
 6to4", RFC 3964, December 2004.

 [RFC4213] Nordmark, E. and R. Gilligan, "Basic Transition Mechanisms
 for IPv6 Hosts and Routers", RFC 4213, October 2005.

 [RFC4301] Kent, S. and K. Seo, "Security Architecture for the
 Internet Protocol", RFC 4301, December 2005.

 [RFC4380] Huitema, C., "Teredo: Tunneling IPv6 over UDP through
 Network Address Translations (NATs)", RFC 4380,
 February 2006.

 [RFC4787] Audet, F. and C. Jennings, "Network Address Translation
 (NAT) Behavioral Requirements for Unicast UDP", BCP 127,

RFC 4787, January 2007.

 [RFC4861] Narten, T., Nordmark, E., Simpson, W., and H. Soliman,
 "Neighbor Discovery for IP version 6 (IPv6)", RFC 4861,
 September 2007.

 [RFC4862] Thomson, S., Narten, T., and T. Jinmei, "IPv6 Stateless
 Address Autoconfiguration", RFC 4862, September 2007.

 [RFC4891] Graveman, R., Parthasarathy, M., Savola, P., and H.
 Tschofenig, "Using IPsec to Secure IPv6-in-IPv4 Tunnels",

RFC 4891, May 2007.

 [RFC5214] Templin, F., Gleeson, T., and D. Thaler, "Intra-Site
 Automatic Tunnel Addressing Protocol (ISATAP)", RFC 5214,
 March 2008.

 [RFC5389] Rosenberg, J., Mahy, R., Matthews, P., and D. Wing,
 "Session Traversal Utilities for NAT (STUN)", RFC 5389,

https://datatracker.ietf.org/doc/html/rfc2893
https://datatracker.ietf.org/doc/html/rfc3056
https://datatracker.ietf.org/doc/html/rfc3068
https://datatracker.ietf.org/doc/html/rfc3489
https://datatracker.ietf.org/doc/html/rfc3964
https://datatracker.ietf.org/doc/html/rfc4213
https://datatracker.ietf.org/doc/html/rfc4301
https://datatracker.ietf.org/doc/html/rfc4380
https://datatracker.ietf.org/doc/html/bcp127
https://datatracker.ietf.org/doc/html/rfc4787
https://datatracker.ietf.org/doc/html/rfc4861
https://datatracker.ietf.org/doc/html/rfc4862
https://datatracker.ietf.org/doc/html/rfc4891
https://datatracker.ietf.org/doc/html/rfc5214
https://datatracker.ietf.org/doc/html/rfc5389

Steffann, et al. Expires October 6, 2013 [Page 35]

Internet-Draft IPv6 tunnels April 2013

 October 2008.

 [RFC5572] Blanchet, M. and F. Parent, "IPv6 Tunnel Broker with the
 Tunnel Setup Protocol (TSP)", RFC 5572, February 2010.

 [RFC5969] Townsley, W. and O. Troan, "IPv6 Rapid Deployment on IPv4
 Infrastructures (6rd) -- Protocol Specification",

RFC 5969, August 2010.

 [RFC6145] Li, X., Bao, C., and F. Baker, "IP/ICMP Translation
 Algorithm", RFC 6145, April 2011.

 [RFC6169] Krishnan, S., Thaler, D., and J. Hoagland, "Security
 Concerns with IP Tunneling", RFC 6169, April 2011.

 [RFC6333] Durand, A., Droms, R., Woodyatt, J., and Y. Lee, "Dual-
 Stack Lite Broadband Deployments Following IPv4
 Exhaustion", RFC 6333, August 2011.

 [RFC6343] Carpenter, B., "Advisory Guidelines for 6to4 Deployment",
RFC 6343, August 2011.

 [RFC6598] Weil, J., Kuarsingh, V., Donley, C., Liljenstolpe, C., and
 M. Azinger, "IANA-Reserved IPv4 Prefix for Shared Address
 Space", BCP 153, RFC 6598, April 2012.

 [RFC6724] Thaler, D., Draves, R., Matsumoto, A., and T. Chown,
 "Default Address Selection for Internet Protocol Version 6
 (IPv6)", RFC 6724, September 2012.

 [RFC6751] Despres, R., Carpenter, B., Wing, D., and S. Jiang,
 "Native IPv6 behind IPv4-to-IPv4 NAT Customer Premises
 Equipment (6a44)", RFC 6751, October 2012.

 [RFC6830] Farinacci, D., Fuller, V., Meyer, D., and D. Lewis, "The
 Locator/ID Separation Protocol (LISP)", RFC 6830,
 January 2013.

 [RFC6832] Lewis, D., Meyer, D., Farinacci, D., and V. Fuller,
 "Interworking between Locator/ID Separation Protocol
 (LISP) and Non-LISP Sites", RFC 6832, January 2013.

 [RFC6833] Fuller, V. and D. Farinacci, "Locator/ID Separation
 Protocol (LISP) Map-Server Interface", RFC 6833,
 January 2013.

 [SIXXS] Massar, J. and P. van Pelt, "IPv6 Deployment & Tunnel
 Broker", <http://www.sixxs.net/>.

https://datatracker.ietf.org/doc/html/rfc5572
https://datatracker.ietf.org/doc/html/rfc5969
https://datatracker.ietf.org/doc/html/rfc6145
https://datatracker.ietf.org/doc/html/rfc6169
https://datatracker.ietf.org/doc/html/rfc6333
https://datatracker.ietf.org/doc/html/rfc6343
https://datatracker.ietf.org/doc/html/bcp153
https://datatracker.ietf.org/doc/html/rfc6598
https://datatracker.ietf.org/doc/html/rfc6724
https://datatracker.ietf.org/doc/html/rfc6751
https://datatracker.ietf.org/doc/html/rfc6830
https://datatracker.ietf.org/doc/html/rfc6832
https://datatracker.ietf.org/doc/html/rfc6833
http://www.sixxs.net/

Steffann, et al. Expires October 6, 2013 [Page 36]

Internet-Draft IPv6 tunnels April 2013

 [TERTST] Huston, G., "Testing Teredo", April 2011,
 <http://www.potaroo.net/ispcol/2011-04/teredo.html>.

 [TIC] SixXS, "Tunnel Information and Control protocol (TIC)",
 <http://www.sixxs.net/tools/tic/>.

 [TR-069] The Broadband Forum, "CPE WAN Management Protocol",
 July 2011, <http://www.broadband-forum.org/technical/

download/TR-069_Amendment-4.pdf>.

 [TUNBROKER]
 Hurricane Electric, "Hurricane Electric Free IPv6 Tunnel
 Broker", <http://www.tunnelbroker.net/>.

 [TUNDISC] Colitti, L., Di Battista, G., and M. Patrignani, "IPv6-in-
 IPv4 tunnel discovery: methods and experimental results",
 IEEE eTransactions on Network and Service Management
 (eTNSM) vol. 1, no. 1, pag. 2-10, April 2004.

Appendix A. Evaluation Criteria

 Each type of tunnel has specific advantages and disadvantages. We
 have considered the following points when evaluating the different
 protocols. Not every point is mentioned in each section where a
 protocol is described, only those that are specifically relevant to
 that protocol.

 Protocol overhead: How much overhead does the tunneling protocol
 cause? There are two factors that play a role: number of
 interactions to set up the tunnel and packet header size causing a
 lower MTU and/or fragmentation.

 Automatic configuration: Does this protocol require manual
 configuration at the endpoints?

 Predictability: How predictable is the functioning of the protocol?

 Single host or network: Is this protocol intended to be used by a
 single host or by a router that then provides IPv6 connectivity to
 multiple hosts?

 Load balancing: Does the tunnel traffic have enough entropy and/or
 hashability to be able to be load-balanced over multiple links, or
 do all tunnel packets have the same outer 5-tuple?

http://www.potaroo.net/ispcol/2011-04/teredo.html
http://www.sixxs.net/tools/tic/
http://www.broadband-forum.org/technical/download/TR-069_Amendment-4.pdf
http://www.broadband-forum.org/technical/download/TR-069_Amendment-4.pdf
http://www.tunnelbroker.net/

Steffann, et al. Expires October 6, 2013 [Page 37]

Internet-Draft IPv6 tunnels April 2013

 Path stretch: Does the tunnel optimise the route, or is there a big
 potential for a much longer path when using the tunnel?

 NAT traversal: Can the tunnel pass through a NAT gateway, and does
 it require configuration on that NAT gateway?

 Tunnel endpoint mobility: Are the IPv4 addresses of the tunnel fixed
 or do they adjust automatically when an endpoint moves.

 State: Are the endpoints required to keep state for the tunnel or is
 the tunnel stateless?

 Network type: Is this network a point-to-point or NBMA type of
 network?

 Purpose: What is the intended purpose of this tunnel protocol?

 Related protocols: To which protocols is this tunnel protocol
 related? Are there alternatives?

 Implementations: Is this protocol supported on the major operating
 systems, routers and firewalls?

 Limitations: What are the known limitations of this protocol?

Authors' Addresses

 Sander Steffann
 S.J.M. Steffann Consultancy
 Tienwoningenweg 46
 Apeldoorn, Gelderland 7312 DN
 The Netherlands

 Email: sander@steffann.nl

 Iljitsch van Beijnum
 Institute IMDEA Networks
 Avda. del Mar Mediterraneo, 22
 Leganes, Madrid 28918
 Spain

 Email: iljitsch@muada.com

Steffann, et al. Expires October 6, 2013 [Page 38]

Internet-Draft IPv6 tunnels April 2013

 Rick van Rein
 OpenFortress
 Haarlebrink 5
 Enschede, Overijssel 7544 WP
 The Netherlands

 Email: rick@openfortress.nl

Steffann, et al. Expires October 6, 2013 [Page 39]

